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sis of HuH7 cells cultured in nor-
mal media (Dulbecco’s modified
Eagle medium supplemented with
10% FBS) or Wnt10B conditioned
media (details are described in
the Materials and Methods sec-
tion). Cells were cultured in each
medium for 2 weeks. (D) Repre-
sentative phase-contrast images
{left panel: scale bar, 100 um)or IF
images (right panel: scale bar, 50

um) of HuH7 cells treated with 2 E

MeBIO

EpCAM AFP DAR

wmol/L of BIO or MeBIO for 14~ CYP3A4 2157

days. (E) Quantitative reverse tran- UGT2B7 'g P =.009
scription-polymerase chain reaction £

analysis of representative HpSC- HTERT R4 10+

HCC-related genes in HUR7 cells °

treated with 2 umol/L of BIO or MYC 2 5 -

MeBIO for 14 days. (F) Spheroid g

formation assay of HuH7 cells TACSTD1 Z

treated with 2 umol/L of BIO or f 1 04

MeBIO for 14 days (mean * SD). 0.2 0 0.4

ATC, fluorescein isothiocyanate.

to maintain HCC stemness and serve as a good marker
for HCC initiating cells.

CD133 or CD90 have been used to identify potential
hepatic CSCs.?542 CD133 is expressed in normal and
malignant stem cells of the neural, hematopoietic,
epithelial, hepatic, and endothelial lineages,?34344 sug-
gesting that CD133 is also a common marker to detect
normal cells and CSCs. Captivatingly, EpCAM expres-
sion overlaps with CD133 expression in normal human
colon tissues and colorectal cancer tissues, yet CD133*+
and CD133" cells are equally tumorigenic.* Similarly,
we found that EpCAM* and EpCAM~ HuH1 cells
equally expressed CD133, but only EpCAM™ cells de-

Log(BIO/MeBIO)

veloped large hypervascular tumors. Our data suggest
that EpCAM may be a better marker than CD133 to
enrich HCC tumor-initiating cells from AFPT tumors.
We also found that CD90 expression was limited to
HCC cell lines that are EpCAM™ AFP~, and Wnt/pB-
catenin signaling had lictle effect on CD90* cell en-
richment. These results suggest that the expression
patterns of various stem cell markers in tumor-initiat-
ing cells with stem/progenitor cell features may be
different in each HCC subtype, possibly owing to the
heterogeneity of activated signaling pathways in nor-
mal stem/progenitor cells where these tumor-initiating
cells may originate. Therefore, it would be useful to
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comprehensively investigate the expression patterns of
stem cell markers to characterize the population of
CSCs that may correlate with the activation of their
distinct molecular pathways.

CSCs may be more resistant to chemotherapeutic
agents than differentiated tumor cells possibly owing to
an increased expression of adenosine triphosphate-bind-
ing cassette transporters and anti-apoptotic proteins.*
Thus, the development of an effective strategy to target
CSC pools together with conventional chemotherapies is
essential to eradicate a tumor mass.!* By blocking the
programs that activate self-renewal and/or inhibit asym-
metric division, CSC features could be destemmed.46:47
Consistently, EpCAM blockage could inhibit cellular in-
vasion and tumorigenicity of EpCAM™* HCC cells, reveal-
ing the feasibility of targeting a CSC marker to destem
CSC features. EpCAM may induce c-Myc,*® a common
molecular node activated in HpSC-HCC.?7 c-Myg, to-
gether with Oct3/4, Sox2, and Klf4, can induce pluripo-
tent stem cells from adult fibroblasts.*® It is possible
that EpCAM blockage to inhibit hepatic CSCs may

transfected with siRNA oligos and
1000 cells were injected 24 hours
after transfection.

result in a suppression of c-Myc signaling. Encourag-
ingly, EpCAM-specific antibodies are currently in
phase II clinical trials.5° Furthermore, a recent study
indicated that EpCAM™ circulating tumor cells identi-
fied by a unique microfluidic platform can be used to
monitor outcomes of patients undergoing systemic
treatment.5! Therefore, it may be useful to combine
EpCAM antibodies with conventional chemotherapy
to target both CSCs and non-CSCs for the treatment
of HCC.

Supplementary Data

Note: To access the supplementary material
accompanying this article, visit the online version of
Gastroenterology at www.gastrojournal.org, and at doi:
10.1053/j.gastro.2008.12.004.
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Supplementary Materials and Methods
FACS and MACS Analyses

Cultured cells were trypsinized, washed, and re-
suspended in Hank’s balanced salt solutions (Lonza,
Basel, Switzerland) supplemented with 1% HEPES and
2% fetal bovine serum. Cells then were incubated with
FITC-conjugated anti-EpCAM monoclonal antibody
Clone Ber-EP4 (DAKO, Carpinteria, CA) on ice for 30
minutes, and EpCAM™ and EpCAM™ cells were isolated
by a BD FACSAria cell sorting system (BD Biosciences).
For magnetic separation, cells were labeled 24 hours after
enzymatic dissociation with primary EpCAM antibody
(mouse IgG1; Dako), subsequently magnetically labeled
with rat anti-mouse IgG1 Microbeads, and separated on
a MACS LS column (Miltenyi Biotec, Inc, Auburn, CA).
All the procedures were performed according to the man-
ufacturer’s instructions. The purity of sorted cells was
evaluated by FACS. Fixed cells also were analyzed by
FACS using a FACSCalibur (BD Biosciences). Anti-
EpCAM antibody VU-1D9, anti-CD133/2 clone 293C3
(Miltenyi Biotec Inc), and anti-CD90 clone 5E10 (Stem-
Cell Technologies Inc, Vancouver, British Columbia, Can-
ada) were used to detect EpCAM*, CD133*, or CD90*
cells. Intracellular AFP levels were examined by a BD
Cytofix/Cytoperm Fixation/Permeabilization Kit (San

WNT SIGNALING AND HEPATIC CANCER STEM CELLS 1024.el1

Jose, CA) and anti-AFP rabbit polyclonal antibody
(DAKO).

Quantitative Reverse
Transcription-Polymerase Chain
Reaction and IHC Analyses

Total RNA was extracted using TRIzol (Invitro-
gen) according to the manufacturer’s instructions. The
expression of selected genes was determined in triplicate
using the Applied Biosystems 7500 Sequence Detection
System (Applied Biosystems, Foster City, CA) as previ-
ously described.! Genes expressed in embryonic stem cells
were determined in quadruplicate using TagMan Human
Stem Cell Pluripotency Array (Applied Biosystems). IHC
analyses with specific antibodies were performed essen-
tially as previously described.! Confocal fluorescence mi-
croscopic analysis was performed essentially as previously

described.?
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Supplemetary Table 1. Clinicopathologic Characteristics of HpSC-HCC and MH-HCC Cases Used for Oligonucleotide
Microarray Analyses

Parameters HpSC-HCC (n = 60) MH-HCC (n = 96) P value?

Mean age, y (SD) 46.0 + 10.7 52.9*10.5 .0004
Sex: male/female 50/10 87/9 .18
Cirrhosis: yes/no/no data 56/4 88/7/41 72
Median AFP level, ng/mL (25%-75%) 1706 (865-5915) 11.8(4.0-48.6) <.0001
Histologic grade®

1=l 14 41

S]] 44 48

-1V 2 5

No data 0 2 .031
Mean tumor size, cm (SD) 51 *3.0 4.4+ 3.0 .088
Muitinodular: yes/no 16/44 15/81 .09
Portal vein invasion, yes/no® 11/49 9/87 .40
TNM classification

| 24 46

1l 22 42

il 14 8 .03
Virus status: HBV/HBV + HCV/unknown 56/4/0 95/0/1 .43

aMann-Whitney U test or x? test.
bEdmondson-Steiner.
‘Macroscopic portal vein invasion.

Supplementary Table 2. Clinicopathologic Characteristics of HpSC-HCC and MH-HCC Cases Used for IHC

Parameters HpSC-HCC (n = 24) MH-HCC (n = 55) P value®

Mean age, y (SD) 46.4 + 9.4 58.4+11.9 - <.0001
Sex: male/female 20/4 48/7 .64
Cirrhosis: yes/no 23/1 46/9 14
Median AFP level, ng/mL (25%—75%) 1620 (887-3166) 12 (9.3-219) < .0001
Histologic grade®

Il 12 32

(1] 8 21

-1V 4 2 A3
Mean tumor size, cm (SD) 7.1+ 3.6 5.2+ 3.6 .014
Multinodular: yes/no 4/20 16/39 . 24
Portal vein invasion: yes/no¢ 12/12 12/43 012
TNM classification

| 4 19

il 8 20

|1} 12 16 14
Virus status: HBV/HCV/unknown 21/2/1 32/21/2 .026

aMann-Whitney U test or x? test.
bEdmondson-Steiner.
‘Macroscopic portal vein invasion.
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Supplementary Table 3. Top 10 List of Canonical Pathways Activated in HpSC-HCC From Ingenuity Pathway Analysis

Pathways

Genes included in cluster A

Axonal guidance signaling
Up

Down
Transforming growth factor-B signaling
Up
Down
Integrin signaling
Up
Down
Apoptosis signaling
Up
Down
G2/M DNA damage checkpoint regulation
Up
Down
ERK/MAPK signaling
Up
Down
Wnt/B-catenin signaling
Up
Down
PI3K/AKT signaling
Up
Down
Amyloid processing
Up
Down
Leukocyte extravasation signaling
Up
Down

ROBO2, ARPCSL (includes EG:81873), SEMA4G, PDGFRB, PLCB1, PRKCD, FGFR3, FZD5,
MERTK, DDR1, LINGO1, SEMA3C
PIK3C3, IGF1, PIK3C2G, MAP2K2, ARHGEF15

PDGFRB, FGFR3, MERTK, UBD, DDR1, SMADS
MAP2K2, HNF4A

ARPCSL (includes EG:81873), PDGFRB, FGFR3, GRB7, MERTK, ITGB5, DDR1, DDEF1
PIK3C3, MYLK, PIK3C2G, MAP2K2

PDGFRB, BAK1, CYCS, FGFR3, MERTK, DDR1
MAP3K5, MAP2K2

YWHAZ, CCNB2, UBD, WEE1
CDKN2A, GADD45A

ELF3, PDGFRB, YWHAZ, PRKCD, FGFR3, MERTK, DDR1
PIK3C3, DUSP1, PIK3C2G, ESR1, MAP2K2

DKK1, SOX9, FZD5, UBD, TCF7L2, CSNK1E
CDKN2A, RARG

PDGFRB, YWHAZ, FGFR3, MERTK, DDR1
MAP3K5, MAP2K2, GYS2

BACE2, CSNK1E, MAPK13

PRKCD, CLDN4, CLDN1, MMP11, MAPK13
PIK3C3, CLDN2, PIK3C2G, MAP2K2

NOTE. The top 10 pathways were selected based on the significance for the enrichment of the genes with a particular canonical signaling pathway
determined by the one-sided Fisher exact test (P < .01).
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Supplementary Table 4. Top 10 List of Canonical Pathways Activated in MH-HCC From Ingenuity Pathway Analysis

Pathways

Genes included in cluster B

Lipopolysaccharide/interleukin-1-mediated inhibition

of RXR function
Up
Down

Xenobiotic metabolism signaling
Up
Down

Hepatic cholestasis
Up
Down

Aryl hydrocarbon receptor signaling
Up
Down

NRF2-mediated oxidative stress response
Up
Down

Complement system

SULT1C2, ACSL4, ACSL3, FABPS, GSTP1

NR1I2, NR1I3, CYP7AL, ALDH1L1, ABCB1, SLC10A1, SLC27A2, CD14,
GSTM1, ALDHBAL, GSTM4, ACSL5, CES2 (includes EG:8824), FMO3,
SULT2A1 (includes EG:6822), GSTA1, CYP2C8, LC27A5, CYP3AT7, ABCGS,
ALDHS8A1, APOC4 (includes EG:346), CYP3A4, ACSL1, ABCB11, FMO4,
MAOA

SULT1C2, PRKCD, GSTP1, MAPK13

NR1I2, NR1I3, ALDH1L1, ABCB1, UGT2B15, MAP2K2, UGT2B7, PPARGC1A,
GSTM1, PIK3C3, ALDHBAL, GSTM4, CES2 (includes EG:8824), MAP3KS5,
FMO3, PIK3C2G, SULT2A1 (includesEG:6822), CYP1A2, GSTAL, CYP2CS,
CYP3A7, NQO2, ALDH8A1, CYP3A4, CES1 (includes EG:1066), FMO4, MAOA

ADCY3, PRKCD
CD14, ABCG5, NR112, CYP7A1, CYP7B, CYP8B1, ABCB1, ESR1, SLC10AL,
ABCB11, ABCB4, HNF4A

GSTP1
CDKN2A, NQO2, GSTM1, ALDHB8A1, ALDHEAL, ALDH1L1, GSTM4, ESR1,
CYP1A2, GSTAL, RARG

DNAJA4, PRKCD, GSTP1
NQO2, GSTM1, AOX1, PIK3C3, GSTM4, MAP3K5, SOD1, PIK3C2G, MAP2KZ,
FKBP5, GSTAL

Up

Down C8A, C1R, MASP1, C6, C8B, MASP2
Coagulation system

Up

Down SERPINC1, KLKB1, F9, KNG1 (includes EG:3827), F11
Acute-phase response signaling

Up MAPK13

Down APCS, RBP5, C1R, MAP3K5, HRG, MAP2K2, KLKB1, SAA4
p53 signaling

Up THBS1

Down CDKN2A, PIK3C3, SNAI2, GADD45A, PIK3C2G, GADD458
LXR/RXR activation

Up HMGCR

Down CD14, ABCG5, APOAS, CYP7AL, APOCA4 (includes EG:346)

LXR/RXR, liver X receptor/retinoid X receptor; NRF2, NF-E2-related factor 2.
NOTE. The top 10 pathways were selected based on the significance for the enrichment of the genes with a particular canonical signaling pathway
determined by the one-sided Fisher exact test (P < .01).
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Visceral adiposity in obesity causes excessive free fatty acid
(FFA) flux into the liver via the portal vein and may cause fatty
liver disease and hepatic insulin resistance. However, because
animal models of insulin resistance induced by lipid infusion or
a high fat diet are complex and may be accompanied by alter-
ations not restricted to the liver, it is difficult to determine the
contribution of FFAs to hepatic insulin resistance. Therefore,
we treated H4IIEC3 cells, a rat hepatocyte cell line, with a
monounsaturated fatty acid (oleate) and a saturated fatty acid
(palmitate) to investigate the direct and initial effects of FFAs on
hepatocytes. We show that palmitate, but not oleate, inhibited
insulin-stimulated tyrosine phosphorylation of insulin receptor
substrate 2 and serine phosphorylation of Akt, through c-Jun
NH,-terminal kinase (JNK) activation. Among the well estab-
lished stimuli for JNK activation, reactive oxygen species (ROS)
played a causal role in palmitate-induced JNK activation. In
addition, etomoxir, an inhibitor of carnitine palmitoyltrans-
ferase-1, which is the rate-limiting enzyme in mitochondrial
fatty acid 3-oxidation, as well as inhibitors of the mitochondrial
respiratory chain complex (thenoyltrifluoroacetone and car-
bonyl cyanide m-chlorophenylhydrazone) decreased palmitate-
induced ROS production. Together, our findings in hepatocytes
indicate that palmitate inhibited insulin signal transduction
through JNK activation and that accelerated B-oxidation of
palmitate caused excess electron flux in the mitochondrial res-
piratory chain, resulting in increased ROS generation, Thus,
mitochondria-derived ROS induced by palmitate may be major
contributors to JNK activation and cellular insulin resistance.

Insulin is the major hormone that inhibits gluconeogenesis
in the liver. Visceral adiposity in obesity causes hepatic steatosis
and insulin resistance. In an insulin-resistant state, impaired
insulin action allows enhancement of glucose production in the
liver, resulting in systemic hyperglycemia (1) and contributing
to the development of type 2 diabetes. In addition, we have
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demonstrated experimentally that insulin resistance acceler-
ated the pathology of steatohepatitis in genetically obese dia-
betic OLETF rats (2). In contrast, lipid-induced oxidative stress
caused steatohepatitis and hepatic insulin resistance in mice
(3). In fact, steatosis of the liver is an independent predictor of
insulin resistance in patients with nonalcoholic fatty liver dis-
ease (4).

It remains unclear whether hepatic steatosis causally con-
tributes to insulin resistance or whether it is merely a resulting
pathology. Excessive dietary free fatty acid (FFA)? flux into the
liver via the portal vein may cause fatty liver disease and hepatic
insulin resistance. Indeed, elevated plasma FFA concentrations
correlate with obesity and decreased target tissue insulin sensi-
tivity (5).

Experimentally, lipid infusion or a high fat diet that increases
circulating FFA levels promotes insulin resistance in the liver.
Candidate events linking FFA to insulin resistance in vivo are
the up-regulation of SREBP-1c¢ (6), inflammation caused by
activation of c-Jun amino-terminal kinase (JNK) (7) or IKKf
(8), endoplasmic reticulum (ER) stress (9), ceramide (10, 11),
and TRB3 (12).

However, which event is the direct and initial target of FFA in
the liver is unclear. Insulin resistance induced by lipid infusion
or a high fat diet is complex and may be accompanied by alter-
ations not restricted to the liver, making it difficult to determine
the contribution of FFAs to hepatic insulin resistance. For
example, hyperinsulinemia and hyperglycemia secondary to
the initial event also may contribute to the development of diet-
induced insulin resistance in vivo (6).

To address the early event(s) triggering the development of
high fat diet- or obesity-induced insulin resistance, we investi-
gated the molecular mechanism(s) underlying the direct action
of FFA on hepatocytes to cause insulin resistance in vitro, using
the rat hepatocyte cell line H4IIEC3. We found that mitochon-
dria-derived reactive oxygen species (ROS) were a cause of
palmitate-induced insulin resistance in hepatocytes.

2The abbreviations used are: FFA, free fatty acid; IRS, insulin receptor sub-
strate; JNK, c-Jun NH,-terminal kinase; ER, endoplasmic reticulum; ROS,
reactive oxygen species; NAC, N-acetyl-L-cysteine; H2DCFDA, 2’,7'-dichlo-
rofluorescin diacetate; OXPHOS, oxidative phosphorylation; PYDF, polyvi-
nylidene difluoride.
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FIGURE 1. Effects of palmitate and oleate on insulin-stimulated tyrosine phosphorylation of IRS-2 and serine phosphorylation of Akt and GSK-3 in
H4IIEC3 hepatocytes. A, HAIIEC3 cells were incubated in the presence or absence of palmitate (Pal) or oleate (Ole) for 16 h prior to stimulation with insulin (1
ng/ml, 15 min). Total cell lysates were resolved by SDS-PAGE, transferred to a PVDF membrane, and immunoblotted (18) with the indicated antibodies. Total cell
lysates were subjected to immunoprecipitation (IP) with phosphotyrosine antibody prior to SDS-PAGE to examine tyrosine phosphorylation of IRS-2. Detection
was by enhanced chemiluminescence. Representative blots are shown. 8, the values from densitometry of three (p-IRS-2), eight (p-Akt), or five (p-GSK-3a)
independent experiments were normalized to the level of total IRS-2, Akt, or GSK-3« protein, respectively, and expressed as the mean -fold increase over
control * S.E. ¥, p < 0.05 versus insulin treatment alone. **, p < 0.01 versus insulin treatment alone.

EXPERIMENTAL PROCEDURES kinase/JNK (Thr'®3/Tyr'®%), and phospho-GSK (glycogen syn-

Materials—The antibody against IRS-2 was purchased from
Upstate Biotechnology, Inc. (Lake Placid, NY). Antibodies
against phosphotyrosine, Akt, phospho-Akt (Ser*”?), stress-ac-
tivated protein kinase/JNK, phospho-stress-activated protein

14810 JOURNAL OF BIOLOGICAL CHEMISTRY

thase kinase)-3 (Ser*"?) were purchased from Cell Signaling
Technology (Beverly, MA). Antibodies against GSK-3 and
phospho-c-Jun were from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA). Insulin from porcine pancreas, sodium
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FIGURE 2. Effects of palmitate and oleate on JNK activation in H4lIEC3 hepatocytes. A, H4IIEC3 cells were
incubated in the presence or absence of FFAs (palmitate (Pal) or oleate (Ole)) and the JNK inhibitor SP600125
(SP) for 16 h. Total cell lysates were resolved by SDS-PAGE, transferred to a PVDF membrane, and immuno-
blotted with the indicated antibodies. Detection was by enhanced chemiluminescence. Representative blots
are shown. B, the values from densitometry of four (p-JNK) independent experiments were normalized to the
level of total JNK (p-c-Jun was not normalized; n = 4) and expressed as the mean fold increase over control +

S.E. **, p < 0.01 versus control. 11, p < 0.01 versus palmitate treatment.

palmitate, sodium oleate, myriocin, N-acetyl-L-cysteine, rote-
none, thenoyltrifluoroacetone, cyanide m-chlorophenylhydra-
zone, oxypurinol, etomoxir, and tunicamycin was obtained
from Sigma. SP600125 and apocynin were from Calbiochem.
pL-a-tocopherol and  2',7'-dichlorofluorescin  diacetate
(H,DCFDA) were from Wako (Osaka, Japan).

Cell Culture and Fatty Acid Treatment—Studies were per-
formed in the rat hepatoma cell line H4IIEC3, purchased
from the American Type Culture Collection (Manassas, VA).
Cells were cultured in Dulbecco’s modified Eagle’s medium
(Invitrogen) supplemented with 10% fetal bovine serum
(Invitrogen), penicillin (100 units/ml), and streptomycin (0.1
mg/ml; Invitrogen). The cells were cultured at 37 °C in a
humidified atmosphere containing 5% CO,, with medium
changes three times a week. All studies were conducted
using 80-90% confluent cells, which were treated with the
indicated concentrations of FFAs in the presence of 2% FFA-
free bovine serum albumin (Sigma).

MAY 29, 2009+ VOLUME 284+ NUMBER 22

(TBS-T) for 1 h at room tempera-
ture. They were then incubated with
specific primary antibodies and sub-
sequently with horseradish peroxi-
dase-linked secondary antibodies.
Signals were detected with a chemi-
luminescence detection system
(ECL Plus Western blotting detection reagents; GE Health-
care). Densitometric analysis was conducted directly on the
blotted membrane, using a CCD camera system (LAS-3000
Mini; Fyjifilm, Tokyo, Japan) and Scion Image software.

Quantitative Real Time PCR—Total RNA was extracted
from cultured H4ITEC3 hepatocytes using an RNeasy mini kit
(Qiagen, Germantown, MD), according to the manufacturer’s
protocol. The cDNA was synthesized from total RNA (100 ng)
using random hexamer primers, N, and a high capacity cDNA
reverse transcription kit (Applied Biosystems, Foster City, CA).
Quantitative real time PCR was performed with an ABI Prism
7900HT (Applied Biosystems). The set of specific primers and
TagMan probes in the present study was obtained from
Applied Biosystems. The PCR conditions were one cycle at
50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles at
95 °C for 15 s and 60 °C for 1 min.

Analysis of XBP-1 (X-box-binding Protein-1) mRNA Splicing—
Total RNA was extracted from H4IIEC3 hepatocytes, and
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FIGURE 3. Effect of a JNK inhibitor on palmitate-induced alterations in insulin-stimulated phosphoryla-
tion of Akt and GSK-3 in H4IIEC3 hepatocytes. A, HHIEC3 cells were incubated in the presence or absence of
palmitate (Pal) and the JNK inhibitor SP600125 (SP) for 16 h prior to stimulation with insulin (1 ng/ml, 15 min).
Total cell lysates were resolved by SDS-PAGE, transferred to a PVDF membrane, and immunoblotted with the
indicated antibodies. Detection was enhanced by chemiluminescence. Representative blots are shown. B, the
values from densitometry of four (p-Akt or p-GSK-3) independent experiments were normalized to the level of
total Akt or GSK-3 protein, respectively, and expressed as the mean -fold increase over control = S.E.**, p <

0.01 versus palmitate treatment.

cDNA was synthesized as described above. The cDNA was
amplified with a pair of primers (reverse 5'-CCA TGG GAA
GAT GTT CTG GG-3' and forward 5'-ACA CGC TTG GGG
ATG AAT GC-3') corresponding to the rat XBP-1 cDNA. The
PCR conditions were initial denaturation at 94 °C for 3 min, fol-
lowed by 30 cycles of amplification (94 °C for 30 s, 58 °C for 30 s,
72°C for 30 s) and a final extension at 72 °C for 3 min. The PCR
products were separated by 2.5% agarose gel electrophoresis.

Measurement of Intracellular ROS—The intracellular forma-
tion of ROS was detected using the fluorescent probe
H,DCFDA, according to a published method (13). Briefly,
H4IIEC3 hepatocytes, grown to 70 — 80% confluence in 96-well
plates, were treated with the indicated reagents in Dulbecco’s
modified Eagle’s medium for 8 h. After treatment, the cells were
washed with phosphate-buffered saline, loaded with 10 um
H,DCFDA, and incubated for 30 min at 37 °C. The fluorescence
was analyzed using a plate reader (Fluoroskan Ascent FL, Ther-
molLab Systems, Franklin, MA).

14812 JOURNAL OF BIOLOGICAL CHEMISTRY

using a protein carbonyl assay kit
(Cayman Chemical, Ann Arbor, MI)
according to the manufacturer’s
instructions and as described previ-
ously (14).

Statistical Analysis—All values
are given as means * S.E. Differ-
ences between two groups were
assessed using unpaired, two-tailed
¢ tests. Data involving more than
two groups were assessed by one-
way analysis of variance. All calcula-
tions were performed with SPSS
(version 12.0 for Windows; SPSS,
Chicago, IL).

EE]

RESULTS

Palmitate Inhibited Insulin
Receptor-mediated Signaling—Two
long chain fatty acids were chosen
for the study: palmitate, a C16:0 sat-
urated fatty acid, and oleate, a C18:1
monounsaturated fatty acid. To
examine whether FFAs impaired
insulin  signal transduction in
HA4IIEC3 hepatocytes, we assessed
the effect of FFAs on insulin-stimu-
lated tyrosine phosphorylation of
IRS-2 and serine phosphorylation of
Aktand GSK-3« (Fig. 1). Incubation
with 0.25 mM palmitate inhibited
insulin-stimulated tyrosine phos-
phorylation of IRS-2 by 40% in
HA4IIEC3 cells. Downstream of IRS-2, insulin-stimulated serine
phosphorylation of Akt and GSK-3a were also inhibited by 0.25
mM palmitate treatment, by 80 and 70%, respectively, indicating
an insulin-resistant state. However, the protein levels of total
IRS-2, Akt, and GSK-3 were unaffected by palmitate. Further-
more, we confirmed that palmitate, but not oleate, impaired
insulin-stimulated Akt serine phosphorylation in the human
hepatoma cell line HepG2 (supplemental Fig. 1).

JNK Activation by Palmitate Contributes to Palmitate-in-
duced Insulin Resistance—JNK, a stress-activated protein
kinase, has been reported to phosphorylate IRS-1 and -2 at ser-
ine residues (15, 16). Serine phosphorylation of IRSs impairs
IRS tyrosine phosphorylation, leading to a reduction in insulin
receptor-mediated signaling. Many studies have verified the
role of JNK in fat-induced insulin resistance in several experi-
mental systems (7, 17, 18). Thus, we next examined the effect of
FFAs on JNK activation and its involvement in insulin signaling.
Palmitate, but not oleate, dramatically increased phosphoryla-
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FIGURE 4. Effect of palmitate on oxidative stress in H4lIEC3 hepatocytes,
H4IIEC3 cells were incubated in the presence or absence of palmitate {Pal) or
oleate (Ole) for 8 h. Intracellular ROS production was quantified using the
fluorescent probe H,DCFDA. The values are expressed as mean -fold increase
over control = SE. (n = 4).*¥, p < 0.01 versus control. 11, p < 0.01 versus 0.25
mm palmitate treatment.

ted JNK and c-Jun (Fig. 2). A potent and selective inhibitor of
JNK, SP600125 (19), reversed the palmitate-induced phospho-
rylation of c-Jun (Fig. 2), suggesting that palmitate activated
JNK. To test whether palmitate-induced JNK activation medi-
ated cellular insulin resistance, we inhibited the JNK pathway
with SP600125. SP600125 dose-dependently improved insulin-
stimulated serine phosphorylation of Akt and GSK-3 in
H4IIEC3 hepatocytes exposed to palmitate (Fig. 3). These
results suggest that INK activation by palmitate contributed to
palmitate-induced insulin resistance.

Pathways for SREBP-1c¢ and ER Stress Are Not Involved in
Palmitate-induced JNK Activation and Insulin Resistance in
HA4IIEC3 Hepatocytes—The SREBP-1c pathway has been
reported to play arole in diet-induced insulin resistance in vivo.
Ide et al. (6) found that high sucrose diet-induced hyperglyce-
mia and hyperinsulinemia up-regulated hepatic expression of
SREBP-1c, leading to down-regulation of IRS-2 at the tran-
scriptional level. However, in the present study, palmitate dra-
matically down-regulated the expression of SREBP-1c in
H4IIEC3 hepatocytes (supplemental Fig. 2). Consistent with
this, the mRNA (supplemental Fig. 2) and protein (Fig. 1) levels
of IRS-2 were unaffected by palmitate. Thus, palmitate itself did
not appear to cause insulin resistance in hepatocytes via the
SREBP-1c pathway.
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FIGURE 5. Effects of antioxidants on palmitate-induced intracellular ROS
production in H4IIEC3 hepatocytes. H4IIEC3 cells were incubated in the
presence or absence of palmitate (Pal) and antioxidants for 8 h. Intracellular
ROS production was quantified using the fluorescent probe H,DCFDA. The
values are expressed as mean -fold increase over control = S.E.(n = 4).%,p <
0.05 versus palmitate treatment alone. **, p < 0.01 versus palmitate treatment
alone. NAC, N-acetyl-L-cysteine; Toc, a-tocopherol.

ER stress is induced in insulin-resistant states, such as obesity
and type 2 diabetes, and in turn, this stress has been shown to
lead to the inhibition of insulin signaling, through overactiva-
tion of JNK (9). Since excessive FFAs have been shown to trigger
ER stress in pancreatic B-cells (20), we examined whether
palmitate caused ER stress in H4IIEC3 hepatocytes. ER stress
induces the spliced form of XBP-1 (XBP-1s), which up-regu-
lates the transcription of molecular chaperones, including
GRP78 (78-kDa glucose-regulated/binding immunoglobulin
protein) (21). Palmitate at 0.25 mwm did not alter the expression
level of GRP78 mRNA or the splicing pattern of XBP-1, unlike
tunicamycin, an agent commonly used to induce ER stress (sup-
plemental Fig. 3). Next, we compared the impact of palmitate
and tunicamycin on insulin-stimulated signal transduction and
JNK activation (supplemental Fig. 4). The inhibitory effect of
tunicamycin on insulin-stimulated serine phosphorylation of
Akt was mild and not significant compared with that of palmi-
tate. Additionally, the increment in phosphorylated JNK by
tunicamycin was lower and not significant compared with that
of palmitate. These results suggest that ER stress played a minor
role in palmitate-induced JNK activation and cellular insulin
resistance in H4IIEC3 hepatocytes.

Palmitate Induces ROS Production—In addition to ER stress,
increased cellular ROS levels are known to stimulate threonine
phosphorylation of JNK (22). Indeed, ROS levels are increased
in clinical conditions associated with insulin resistance, such as
sepsis, burn injuries, obesity, and type 2 diabetes (23). Further-
more, FFAs have been reported to generate ROS in various
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FIGURE 6. Effects of antioxidants on palmitate-induced alterations in insulin-stimulated serine phos-
phorylation of Akt in H4IIEC3 hepatocytes. A, H4IEC3 cells were incubated in the presence or absence of
palmitate (Pal) and antioxidants for 16 h prior to stimulation with insulin (1 ng/ml, 15 min). Total cell lysates
were resolved by SDS-PAGE, transferred to a PVDF membrane, and immunoblotted with the indicated anti-
bodies. Detection was by enhanced chemiluminescence. Representative blots are shown. B, the values from
densitometry of four (NAC) or five (a-tocopherol) independent experiments were normalized to the level of
total Akt protein and expressed as the mean -fold increase over control + S.E. *, p < 0.05 versus palmitate

treatment. NAC, N-acetyl-L-cysteine; Toc, a-tocopherol.

cells, such as pancreatic islet cells (24), cardiac myocytes (25),
and adipocytes (23).

Thus, we hypothesized that palmitate increased intracellular
ROS production and thereby activated JNK, leading to the
impaired insulin signaling. To evaluate this, H4IIEC3 hepato-
cytes were incubated with H,DCFDA, a fluorescent probe, to
visualize intracellular ROS, with or without palmitate.
H,DCFDA-associated fluorescence was elevated by 58% after
incubation with 0.25 mM palmitate for 8 h, and palmitate
induced more ROS production than oleate (Fig. 4). Consistent
with this, the amount of protein carbonyls, a marker of oxida-
tive stress, significantly increased in palmitate-treated hepato-
cytes (4.6 = 0.5 nmol/mg protein), compared with control cells
(3.1 *+ 0.4 nmol/mg protein). These results suggest that FFAs,
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production in Mitochondria—To
define the source of ROS induced by
palmitate in H4IIEC3 hepatocytes,
we examined the cellular pathway
involved in ROS production,
including NADPH oxidase, xan-
thine oxidase, and mitochondria-
mediated pathways. Palmitate-in-
duced ROS production was markedly suppressed by rotenone,
an inhibitor of mitochondrial respiratory chain complex I; the-
noyltrifluoroacetone, an inhibitor of mitochondrial respiratory
chain complex II; and carbonyl cyanide m-chlorophenylhydra-
zone, an uncoupler of oxidative phosphorylation (Fig. 8). In
contrast, ROS production in palmitate-treated H4IIEC3 cells
was not suppressed by apocynin, an inhibitor of NADPH oxi-
dase, or oxypurinol, an inhibitor of xanthine oxidase. These
results suggest that the mitochondrial respiratory chain is
involved in palmitate-induced ROS overproduction in
HA4IIEC3 hepatocytes.

Palmitate Increases ROS through the Mitochondrial Fatty
Acid B-Oxidation Respiratory Chain—FFAs are metabolized in
the mitochondrial fatty acid B-oxidation pathway, which sup-
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palmitate, but not the unsaturated
fatty acid oleate, impaired insulin-in-
duced tyrosine phosphorylation
of IRS-2, serine phosphorylation of
Akt, and serine phosphorylation of
GSK-3a, all of which are indicative
of insulin resistance in cultured
H4IIEC3 hepatocytes (Fig. 10).
Unlike in vivo findings (6), the
expression of the SREBP-Ic gene
was down-regulated by adding
palmitate to cultured H4IIEC3
hepatocytes, which is likely a result
of a negative feedback loop for fatty
acid synthesis, and IRS-2 protein

" levels were unaffected. FFA-in-
l o duced insulin resistance has been
T reported in other insulin-sensitive

cells, such as adipocytes (18) and
skeletal muscle cells (26). These
studies, together with the present
results, suggest that FFA inhibits
insulin signaling at the level of tyro-
sine phosphorylation of IRSs,
regardless of cell type. Similar to the
findings in 3T3-L1 adipocytes (18)
and primary mouse hepatocytes and
pancreatic B-cells (16), the activa-
tion of JNK, a known suppressor
of the tyrosine phosphorylation of
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FIGURE 7. Effects of antioxidants on palmitate-induced JNK activation in H4IIEC3 hepatocytes. A, H4IIEC3
cells were incubated in the presence or absence of palmitate (Pal) and antioxidants for 16 h. Total cell lysates
were resolved by SDS-PAGE, transferred to a PVDF membrane, and immunoblotted with the indicated anti-
bodies. Detection was by enhanced chemiluminescence. Representative blots are shown. 8, the values from
densitometry of four (NAC or a-tocopherol) independent experiments were normalized to the level of total INK
protein and expressed as the mean -fold increase over control = SE. **, p < 0.01 versus palmitate treatment

alone. Toc, a-tocopherol.

plies the mitochondrial respiratory chain with electrons. Large
amounts of electrons entering the respiratory chain may cause
abnormal reduction of oxygen, leading to ROS production.
Thus, we next examined whether palmitate-induced ROS pro-
duction was dependent on mitochondrial fatty acid B-oxida-
tion. CPT-1a (carnitine palmitoyltransferase-1a) is the rate-
limiting enzyme in mitochondrial fatty acid B-oxidation. As
expected, etomoxir, a CPT-1 inhibitor, decreased palmitate-
induced ROS production, by 80% (Fig. 9A). Furthermore,
palmitate, but not oleate, significantly increased expression of
the CPT-1a gene (Fig. 9B). This up-regulation may contribute
to palmitate-induced ROS overproduction, because the accel-
erated B-oxidation should cause excessive electron flux in the
respiratory chain.

DISCUSSION

In the present study, we investigated the direct action of fatty
acids on insulin signaling in hepatocytes. The saturated fatty acid

AT
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IRSs, was involved in FFA-induced
tyrosine phosphorylation of IRS-2
in cultured H4IIEC3 hepatocytes.
Because a JNK inhibitor, SP600125,
largely restored palmitate-induced
impairment of the insulin signaling
pathway, JNK activation seems to
play a major role in the development
of palmitate-induced insulin resist-
ance in H4IIEC3 hepatocytes. Our
results support in vivo findings that JNK is activated in the liver
of an animal model of obesity and diabetes in which FFA influx
into the liver is elevated (9, 27). The overexpression of JNK in
mouse liver resulted in hepatic insulin resistance at the level of
IRS tyrosine phosphorylation, and the overexpression of a
dominant negative mutant of JNK in the liver accelerated
hepatic insulin signaling (17).

Given that JNK is activated by many types of cellular stresses
(28), we next searched for a link between palmitate treatment
and JNK activation in H4IIEC3 hepatocytes. ER stress was
unlikely to mediate palmitate-induced insulin resistance in
H4IIEC3 hepatocytes, because palmitate caused insulin resist-
ance independent of ER stress, whereas tunicamycin caused ER
stress without affecting insulin action. Instead, we found that
palmitate-induced ROS generation mediated insulin resist-
ance. ROS are one of many factors suggested to have a possible
role in insulin resistance (29, 30). ROS include reactive prod-
ucts, such as superoxide anion, hydrogen peroxide, and
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duced ROS production in H4IIEC3 hepatocytes. H4IIEC3 cells were incu-
bated in the presence or absence of palmitate (Pal) and each ROS-producing
pathway inhibitor for 8 h. Intracellular ROS production was quantified using
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hydroxyl radical, which are formed as by-products of mito-
chondrial oxidative phosphorylation (OXPHOS). Thus, as a
rule, increased mitochondrial OXPHOS flux leads to
increased formation of ROS (31, 32). ROS can also be pro-
duced during B-oxidation of fatty acids, especially as a by-
product of peroxisomal acyl-CoA oxidase activity (32).
Additionally, ROS can be produced by dedicated enzymes,
such as NADPH oxidase (33), present in phagocytic cells,
where ROS are an important part of cellular defense mech-
anisms. Using specific inhibitors of subcellular ROS, we
identified mitochondrial OXPHOS as an important source
of palmitate-induced ROS generation in H4IIEC3 hepato-
cytes. FFAs supply mitochondrial OXPHOS with electrons
through mitochondrial fatty acid B-oxidation. A final metab-
olite of fatty acids, acetyl-CoA, is metabolized in the trichlo-
roacetic acid cycle. In the processes of fatty acid B-oxidation
and the trichloroacetic acid cycle, NADH and FADH, are
generated and could supply excessive electrons for
OXPHOS.

NAGC, a scavenger of ROS, dose-dependently restored glu-
tathione in palmitate-treated cells (supplemental Fig. 5).
However, glutathione restoration by NAC was unable to
completely rescue palmitate-induced insulin resistance.
Furthermore, the combination of NAC and a-tocopherol did
not completely reverse JNK activation (supplemental Fig. 6,
A and B) and only partly rescued palmitate-induced insulin
resistance (supplemental Fig. 7, A and B). Therefore, other
mechanisms may also be involved in insulin resistance
caused by palmitate.

De novo ceramide synthesis is a potential pathway contribut-
ing to palmitate-induced JNK activation. Ceramide derived

from saturated fatty acids has been

reported to activate JNK and inhibit

insulin-induced Akt phosphoryla-

. tion in myocytes (34-36). In our
investigation, palmitate increased
the intracellular content of cera-
mide in H4IEC3 hepatocytes
(supplemental Fig. 8). Unfortu-
nately, even at the maximum
myriosin concentration, the intra-
cellular accumulation of ceramide
was not blocked by myriosin, a
potent inhibitor of serine palmi-
toyltransferase at the first step in
ceramide biosynthesis (supple-
mental Fig. 8). Furthermore, cera-
mide accumulation was not
blocked when myriosin was used

in combination with fumonisin
B1, an inhibitor of ceramide syn-

FIGURE 9. Involvement of mitochondrial fatty acid oxidation in palmitate-induced ROS production.
A, HAIIEC3 cells were incubated in the presence or absence of palmitate (Pal) and the CPT-1 inhibitor etomoxir
(Eto) for 8 h. Intracellular ROS production was quantified using the fluorescent probe H,DCFDA. The values are
expressed as mean -fold increase over control = S.E. (n = 4).8, H4IEC3 cells were incubated in the presence or
absence of palmitate (Pal) or oleate (Ole) for 16 h. Total RNA was extracted and subjected to reverse transcrip-
tion. Using the cDNA as a template, the amounts of CPT-1 mRNA were detected by real time PCR. The values
were normalized to the level of 18 S ribosomal RNA and expressed as mean -fold increase over control * S.E.
(n = 3).* p < 0.05 versus control. **, p < 0.01 versus palmitate treatment alone.
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thase (data not shown). Therefore,
we cannot rule out the possibility
that intracellular ceramide con-
tributes to palmitate-induced
insulin resistance in HA4IIEC3
hepatocytes. Further studies are
required to assess the role of the
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FIGURE 10. Proposed model for palmitate-induced hepatic insulin
resistance.

ceramide pathway in palmitate-induced insulin resistance in
hepatocytes.

In the present study, etomoxir, an inhibitor of CPT-1,
decreased palmitate-induced intracellular ROS production.
Additionally, palmitate, but not oleate, significantly increased
the expression of the CPT-1a gene, which may account for the
observed differences in insulin action between palmitate and
oleate.

Recently, it was reported that fatty acid composition may be
a determinant in insulin sensitivity (37, 38). In this regard, we
investigated the effect of oleate on insulin signaling in palmi-
tate-treated hepatocytes. Surprisingly, oleate dose-dependently
reversed palmitate-induced ROS generation and JNK phospho-
rylation and rescued palmitate-induced phosphorylation of
Akt.? Further investigations aimed at elucidating the molecular
basis underlying the differential roles and interactions of FFAs
are required.

In conclusion, this study identified mitochondrial ROS gen-
eration as a critical factor in palmitate-induced hepatic insulin
resistance. Palmitate may induce CPT-1 expression, accelerate
metabolism, supply excess electrons for mitochondrial
OXPHOS, and generate ROS. ROS then desensitize the insulin
signaling pathway by activating JNK, impairing tyrosine phos-
phorylation of IRS-2, and causing hepatic insulin resistance
(Fig. 10). The results suggest that an initial event in high fat/
sucrose diet-induced or obesity-induced insulin resistance in
the liver is mitochondrial ROS generation, which could poten-
tially be a therapeutic target. In addition to previously sug-
gested JNK inhibitors or antioxidants, mitochondrial uncou-
plers, such as cyanide m-chlorophenylhydrazone, may provide
a candidate therapeutic strategy for this pathway by preventing
ROS generation.
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Recent studies have correlated metabolic diseases, such as metabolic syndrome and non-alcoholic fatty
liver disease, with the circadian clock. However, whether such metabolic changes per se affect the circa-
dian clock remains controversial. To address this, we investigated the daily mRNA expression profiles of
clock genes in the liver of a dietary mouse model of non-alcoholic steatohepatitis (NASH) using a custom-
made, high-precision DNA chip. C57BL/6] mice fed an atherogenic diet for 5 weeks developed hypercho-
lesterolemia, oxidative stress, and NASH. DNA chip analyses revealed that the atherogenic diet had a
great influence on the mRNA expression of a wide range of genes linked to mitochondrial energy produc-
tion, redox regulation, and carbohydrate and lipid metabolism. However, the rhythmic mRNA expression
of the clock genes in the liver remained intact. Most of the circadianly expressed genes also showed 24-h
rhythmicity. These findings suggest that the biological clock is protected against such a metabolic
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Circadian rhythm

Clock gene

Non-alcoholic steatohepatitis
Oxidative stress

derangement as NASH.

© 2009 Elsevier Inc. All rights reserved.

Various behavioral and physiological processes, including feed-
ing behavior and energy metabolism, exhibit circadian (i.e., 24-h)
rhythmicity, which may play a role in maintaining functional
homeostasis. Recent studies have revealed that the circadian clock
system consists essentially of a set of clock genes [1,2]. In mam-
mals, the circadian clock resides in the hypothalamic suprachias-
matic nucleus (SCN), which is recognized as being the master
clock, and in almost all peripheral tissues [3]. The SCN appears to
coordinate peripheral clocks, because it is not essential for driving
peripheral oscillations [3].

Rhythmic transcriptional enhancement by two basic helix-
loop-helix transcription factors, CLOCK and brain and muscle
Arnt-like protein 1 (BMAL1), provides the basic drive for the intra-
cellular clock [1,2]. In parallel, the heterodimer activates the tran-
scription of various clock-controlled genes. Given that some clock-
controlled genes also serve as transcription factors, the expression
of numerous genes may be tied to the functions of the circadian
clock [1,2]. For example, nearly half of the known nuclear recep-
tors, including peroxisome proliferator-activated receptors (a, v,
) and thyroid hormone receptors (o, B), exhibit circadian expres-

* Corresponding author, Fax; +81 76 234 4250,
E-mail address; ttakamura@m-kanazawa.jp (T. Takamura).

0006-291X/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.bbrc.2009.01.150

sion in liver and adipose tissues, providing a possible explanation
for the cyclical behavior of carbohydrate and lipid metabolism [4].

Recent studies have demonstrated relationships between circa-
dian clock function and the development of metabolic diseases,
such as type 2 diabetes, metabolic syndrome, and non-alcoholic
fatty liver disease (NAFLD). In mice, homozygous mutations in
the Clock gene lead to the development of metabolic syndrome
[5]. Moreover, we showed that the rhythmic expression of clock
genes is blunted in the liver and visceral adipose tissues in KK-AY
mice, a genetic model of obese diabetes [6]. In humans, a similar
effect in type 2 diabetes was found in peripheral leukocytes [7].
Furthermore, genetic variations in the BMALT gene are associated
with susceptibility to type 2 diabetes and hypertension [8], and
CLOCK haplotypes are associated with metabolic syndrome [9]
and NAFLD [10]. Thus, impairment of the circadian clock appears
to contribute to the development of metabolic diseases.

However, whether metabolic diseases per se affect the circadian
clock remains controversial. High glucose down-regulates mRNA
expression of the clock genes (Per1 and Per2) in cultured fibroblasts
[11]. Additionally, the DNA-binding activity of the CLOCK-BMALT1
heterodimer is regulated by the redox state, at least in vitro [12].
Kohsaka et al. [13] reported that a high-fat diet affected the rhyth-
mic mRNA expression of Clock, Bmall, and Per2 in the liver and adi-
pose tissues of mice. Considering these findings, alterations in
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glucose, lipid, and energy metabolism; redox state; and/or the con-
centrations of humoral factors, such as plasma glucose, appear to
influence the peripheral circadian clock. However, Oishi et al.
[14] demonstrated that clock function was preserved, to a large de-
gree, in the livers, hearts, and kidneys of mice with streptozotocin-
induced insulinopenic diabetes. We also revealed that the circa-
dian clock is hardly impaired in the liver and adipose tissues of
non-obese, mild hyperglycemic Goto-Kakizaki rats [15]. Further-
more, we did not observe impairment of the circadian clock in
the liver or adipose tissues of mice fed a high-fat diet, even though
the mice developed metabolic syndrome, characterized by obesity,
hyperlipidemia, and hyperglycemia [16]. Although the reasons for
these discrepancies among the various studies are unknown, one
reason might be differences in the severity of the pathological
condition.

Non-alcoholic steatohepatitis (NASH) is an aggressive form of
NAFLD, and the liver with steatosis and inflammation develops he-
patic insulin resistance, lipotoxicity, oxidative stress, and mito-
chondrial abnormalities, which lead to hepatic fibrosis or
cirrhosis [17]. We recently established a mouse model of NASH, in-
duced by feeding an atherogenic diet [18]. In this model, the ath-
erogenic diet induced steatosis, inflammation, cellular ballooning,
stellate cell activation, hepatic insulin resistance, lipid peroxida-
tion, and oxidative stress in the liver; it finally caused hepatic cir-
rhosis. Thus, the pathological conditions in the liver of this model
are complex and quite severe compared with those of mice fed a
simple high-fat diet [13,16]. Therefore, it is reasonable to expect
that the hepatic circadian clock may be impaired in this model, if
the alterations in metabolism and redox state affect the oscillator.
To test this, we developed a custom-made, high-precision DNA
chip useful for analyzing the metabolic status of the liver and
investigated the rhythmic mRNA expression of clock genes and
genes linked to carbohydrate and lipid metabolism, energy produc-
tion, and redox regulation in the livers of mice fed an atherogenic
diet.

Materials and methods

Mice. Male C57BL/6] mice (Charles River Laboratories Japan,
Yokohama, Japan) were obtained at 5 weeks of age and maintained
under conditions of controlled temperature and humidity and a
12-h light (08:45-20:45 h)/12-h dark (20:45-08:45 h) cycle. Mice
had free access to food and drinking water. After 3 days of acclima-
tion, the mice were divided into two groups. Half of the mice
(n=16) were fed a standard laboratory diet (CRF-1, Oriental Yeast
Co., Tokyo, Japan), whereas the others (n = 16) were given an ath-
erogenic diet (Research Diets, New Brunswick, NJ) containing
34.3% fat (lard, soybean oil), 25.8% protein (casein, L-cystine),
24.6% carbohydrate (maltodextrin, sucrose), 1.3% cholesterol,
0.5% sodium cholate, 5.7% mineral mixture, 1.5% vitamin mixture,
and 6.3% cellulose. After 5 weeks of feeding, animals were sacri-
ficed to obtain blood and liver samples at the following zeitgeber
times (ZT): 0, 6, 12, and 18, in which ZT 0 is defined as lights on
and ZT 12 as lights off.

All animal procedures were performed in accordance with the
standards set forth in the Guidelines for the Care and Use of Labo-
ratory Animals at the Takara-machi campus of Kanazawa Univer-
sity (Kanazawa, Japan).

Statistical analyses. Differences in the variables and mRNA levels
between mice fed the atherogenic diet and control mice were eval-
uated using Student's t test. The rhythmicity of each gene was as-
sessed using one-way ANOVA. The values are presented as the
means + SEM, and P < 0.05 was deemed to indicate statistical sig-
nificance. All calculations were performed using SPSS software
(version 11 for Windows, SPSS Japan, Tokyo, Japan).

Additional details on methods. For details on the blood chemistry,
DNA chip analysis, and real-time quantitative PCR, see Supplemen-
tal Materials and methods.

Results

Development of a custom-made DNA chip suitable for metabolic
research

We established a database of hepatic gene expression profiles in
various human diseases, and rodent models of diabetes and/or
obesity. The models include patients with type 2 diabetes, with
or without obesity [19-24] and NAFLD [25]; genetic rodent models
of type 2 diabetes and/or obesity [6,26]; diet-induced rodent mod-
els of obesity [27]; diet-induced rodent models of NAFLD
[18,28,29]; and a rodent model of ischemic heart disease (manu-
script submitted), We extracted the significantly altered genes in
each metabolic pathway both in human diseases and animal mod-
els and selected 190 mouse genes linked to the circadian clock, en-
ergy production, redox regulation, ROS defense, MAPK cascade,
energy and cholesterol metabolism, and protein degradation. Be-
cause expression of 70 of these genes was hardly detected in a liver
sample (FirstChoice mouse liver total RNA, Applied Biosystems) or
was determined differently from the results analyzed by real-time
PCR, we used data for the other 120 genes for analyses in this study
(Supplemental Table 1). The results of the 120 genes analyzed by
the DNA chip strongly correlated with those obtained by real-time
PCR (Pearson’s correlation coefficient r = 0.963, P < 0.0001; Supple-
mental Fig. 2).

Mouse model of NASH induced by feeding an atherogenic diet

As reported previously [18], mice fed an atherogenic diet for 5
weeks developed NASH, diagnosed based on histology (Supple-
mental Fig. 3). Serum concentrations of ALT and total cholesterol
in mice fed the atherogenic diet were significantly higher than
those in control mice (Table 1). The concentration of d-ROMs
was also elevated, suggesting that oxidative stress was induced
in the mice on the atherogenic diet.

Global gene expression profile in the livers of mice fed an atherogenic
diet

Consistent with the histological and biochemical findings, the
DNA chip analyses revealed that the atherogenic diet had a wide
influence on mRNA expression, affecting genes linked to energy
production, redox regulation, ROS defense, the MAPK cascade, nu-
clear receptors, energy and cholesterol metabolism, and protein
degradation (Supplemental Table 2). In most of the genes exam-
ined, the atherogenic diet decreased transcript levels. Specifically,

Table 1

Metabolic parameters in mice fed a regular or atherogenic diet.

Parameter Control Atherogenic P
Body weight (g) 28.7+0.8 232+09 <0.01
Blood glucose {mgfdL) 1665 163+8 073
Serum ALT (U/L) 181 5147 <0.01
Serum total cholesterol {(mg/dL) 98+2 1517 <0.01
Serum HDL-chiolesterol (mg/dL) 712 7143 0.90
Serum triglyceride (mg/dL) 8013 14+2 <0.01
d-ROMs (U) 20+1 34+3 <0.01

Blood samples were obtained from non-fasted mice at zeightgeber time 0 and 12
(n =4 for each time point in both groups).

Data are means + SEM of eight mice.

ALT, alanine aminotransferase; HDL, high-density lipoprotein; d-ROMs, derivatives
of reactive oxygen metabolites,
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