318

Semin Immunopathol (2009) 31:309-322

presenting cells but to inhibit antigen-specific activation of
T cells regardless of their co-stimulation requirement [125].

The detection of CX3CR1+ T cells in the liver of
patients with PBC and viral liver diseases suggests that
unlike CD28™ CD4+ T cells, other T lymphocyte subsets do
not decrease their CX3CR1 expression after  receptor
engagement. The group of cytotoxic effector lymphocytes
defined by expression of the fractalkine receptor CX3CR1
includes vd T cells, 70% of which display this receptor on
their-cell surface [117].-yd T lymphocytes have been
implicated in various autoimmune diseases, and. their
frequency. 1s increased in peripheral blood and liver of
patients: with PBC and: PSC.[126, 127]. It seems likely,
however, that CD8+ T cells, which are strongly implicated
inthe ‘bile duct damage seen in PBC. and which: also
frequently express: CX3CR1; represent the major: CX3CR1
+ population in PBC liver: The co-expression of fractalkine
and CX3CR1 on BEC,; as seen in PBC [121], CHC, and
acute hepatitis due to HBV: infection: {122]; suggests: that
interactions between: fractalkine and 1ts receptor may- also
be involved in tissue- generation, particularly:the recruit-
ment of epithelial cells and their arrangement into ductular
structutes.

Macrophage inflammatory: protemns.and monocyte: chemo-
attractant: profems: Although originally named  for: their
ability ‘to attract monocytes: or macrophages; ceftain mem-
bers of  the ‘macrophage inflammatory. protein: (MIP) and
monocyte chemoattractant protein (MCP) families can also
induce chemotaxis and transendothelial migration of T cells,
m- particular’ activated or memory. €D4+ and CD8+ T
Iymphocytes [86. 128]. In normal liver; portal vessels
constitutively express MIP-1a; MIP-1§3, and MCP-1, sinus-
oids and bile ducts show no or only weak immunoreactivity,
and hepatocytes ‘are always: negative [57, 98, 129, 130].
There is little information on the role of these chemokinhes 1n
PBC and PSC. MCP-1 is not upregulated on BEC in PBC.
However, mononuclear Teukocytes 1n the portal tracts
express MCP-1, MCP-2; and MCP-3; and this may in turn
recruit additional T cells into: this area. Mamly, however,
MCP-2 and MCP-3 appear to be involved. in the recruitment
of macrophages and the formation of granulomata.

Concluding remarks

The existing data on: T Iymphocyte recruitment to PSC and
PBC liver suggest the following scenario; inflammatory
signals in both PBC and PSC. liver induce or enhance the
expression of ~adhesion molecules such as ICAM-1,
VCAM-1, and MAdCAM-1; whereas VAP-1 expression is
not altered. At the same time, a variety of chemokines are
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also upregulated. In PSC, expression of CCL25, CCL21,
and CCL28 all are implicated in activating 47 integrins
and thereby enhancing lymphocyte binding to MAACAM-
1. In addition, CCL21and CCL28 could promote adhesion
to VCAM-1 by activating «4f31 integrin. The same holds
true in PBC, except that CCL25 does not participate.
Several of these chemokines have also been shown to
enhance transendothelial migration. Data on other chemo-
kines are largely confined to PBC. They indicate that
induced or upregulated expression of MIG and IP-10 in
portal tracts may also: confribute to. enhanced lymphocyte
recruttment into PBC liver. Once lymphocytes have entered
the portal tract tissue, they are recruited to, and retained
around; the bile ducts by the combinatorial or sequential
actionof  CXCL12 (SDE-1), CXCL16, fractalkine
(CX3CL1), CCL28; and possibly MIG and IP-10. At this
pomt; the relative importance of each of these chemokines
in the recruitment or the retenition of lymphocytes around
the bile ducts remains unclear. These: limited data under-
score the complexity -of lymphocyte. recruitment and
homing to the liver. The data. also suggest that there is no
liver addressin, but instead, liver homing is likely to require
complex. .combinations  of adhesion. molecule ligands and
chemokine receptors that provide not only entry into the
liver but also localization to specific liver compartments,
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Abstract. The liver is an organ consisting of the largest
reticulo-endothelial cell network in the body and playing an
important: role. in  host defense against invading micro-
organisms.. The organ. is comprised of parenchymal cells
and many different types of non-parenchymal cells, all of
which play a significant role. Even biliary epithelial cells
are not only the target in autoimmune liver diseases but also
have central role in orchestrating: several immune: cells
involved .in both innate and  acquired - immunity.  Tissue
damage caused by various agents results in inflammation,
necrosis, fibrosis,  and, eventually, distortion -of notmal
hepatic architecture, cirrhosis, and functional deterioration.
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HSCs Hepatic stellate cells

ICAM-1 intercellular adhesion molecule-1

IFN interferon
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INK jun N-terminal kinase

LPS lipopolysaccharide

LMNC liver-infiltrated mononuclear cells
LSEC liver sinusoidal endothelial cells

MBP myelin basic protein

MCD methionine/choline-deficient

MCP-1 monocyte chemotactic protein-1
NASH non-alcoholic steatohepatitis
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PAMPs pathogen-associated molecular patterns
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pDC plasmatoid DC

PRRs pattern-recognition receptors

PsSC primary sclerosing cholangitis

ROS reactive oxygen species

TLR toll-like receptor

TNFE tumor necrosis factor

VCAM-1 vascular cell adhesion molecule-1

Infroduction

The liver has a particularly intriguing immunological milieu
consisting of the:largest reticulo-endothelial cell network in
the bady and being a major source of many components of
the innate immune response ‘inchuding: acute-phase:and
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complement proteins as well as inflammatory cytokmnes and
chemokines. The organ is also a significant site of immune-
mediated damage initiated by infectious, autoimmune, and
malignant stimuli. Recent studies have demonstrated that
the liver is also an important site of the mnate immune
system. The innate or natural immune system is the rapid
first-line defense against environmental threats such as
microbial infection and physical or chemical myury.
Sequential activation of innate and adaptive immune
response is crucial for elimination of microorganisms and
for immune response orchestrated by dendritic cells linking
innate and adaptive arms of immune system. Unique
repertoires of dendritic and lymphoid cells mcluding NKT
cells and regulatory T lymphocytes modify the immune
response in the liver. Non-immune cells of the liver
including endothelial cells, hepatocytes, and biliary epithe-
lial cells also contribute to local immunological potential. All
of these elements play roles, together and independently,
detérmining the outcome of immunological stimulation
within' the liver. ‘In addition, immune response upon
exposure to exogenous or autogenic agents varies depending
on the host genetic backgrounds. The genetic basis of
mmune response will 'offer new approaches to understanding
the pathophysiology, diagnosis, and management of patients
with liver diseases.

Liver architecture

The liver is the largest organ comptising about 1/50 of the
adult body weight. Structurally and histologically, the liver
can be divided into five tissue systems: (1) vascular system,
(2) hepatocytes and hepatic lobule, (3) hepatic sinusoidal
cells, (4) biliary system, and (5) stroma. The organ is
composed of many different cell types which are divided
into parenchymal cells (hepatocytes) and non-parenchymal
cells (Table 1) It has been estimated that the hepatocyte
population accounts for approximately 78% of the liver
tissue - volume, while non-parenchymal cells  constitute
about 6.3% in ‘which about 2.8% are endothelial cells,
2.1% Kupffer cells, and 1.4% hepatic stellate cells. The
extracellular space represeints approximately 16% of the
liver tissue volume [10].

Vascular system

The: liver receives pottal blood enriched with nutrients
absorbed by the intestine from: splanchnic circulation via
portal ‘vein. The portal blood also contans substances
secreted by the pancreas; intestine, and spleen. Hepatocytes
take up, metabolize, biotransform, and store a great variety
of mcoming substances. They also de novo synthesize and
secrete substances fo other organs in the body. The role of

@_ Springer

Table 1 Cells comprising the liver

Parenchymal cells
Hepatocytes
Non-parenchymal cells
Sinusoidal endothelial cells
Kupffer cells
Hepatic stellate cells (Ito or fat-storing cells)
Pit cells (NK cells)
Hepatic dendritic cells
NKT cells
Biliary epithelial cells

the liver 1s to provide appropriate amounts of solutes
needed for adequate functioning of distant organs such as
the brain, heart, and kidneys. The interaction between blood
and liver cells occurs at the level of the liver cell plate. In
addition to the blood supply by portal vem, the liver is also
perfused by hepatic artery which carries blood with a high
oxygen content. This completes a perfusion eircuit encom-
passmg  the “splanchnic—sinusoidal-systemic -crrculation.
There is another circuit to which the liver actively
contributes: the entero-hepatic circulation.

Hepatocytes and hepatic lobule

The hepatic lobule 1s the structural and functional unit of
the liver (Fig. 1) [53]. It consists of a roughly hexagonal
arrangement of plates of hepatocytes which extend forming
liver cell plates of one-cell-thick by 15-25 hepatocytes in
length. Between the two cell plates; blood: flows from the
portal tract to the terminal hepatic venule, forming so called
“sinusoid”, All’ the hepatocytes seem to be apparently
homogeneous by light microscopy. ~Although - there ~are
some functional differences between periportal hepatocytes
which are located closer to the portal venule and centri-

l Hepatic lobule l

Portal area

~ Artery
- Vein
- Bile duct

Fig. 1 Blood flows through the sinusoids and erpties mto the central
vemn of each lobule
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Iobular ones located closer to the central hepatic venule [9].
The portal tract contains a portal venule, a hepatic arteriole,
and bile ducts. Blood flows from the portal vein into
hepatic smusoids, perfuses the liver cell plate, and flows out
into the hepatic venule m the central acmus reaching
systemic circulation,

Two. structural characterlstlcs are critical for: liver

functions to be accomplished: (a) hepatocytes located m -

different positions between the portal tract and the hepatic
venule express different genes and attamn distinct functional
capabilities, and (b) given this functional compartmentation,
the sequential perfusion of hepatocytes m the liver cell plate,
from portal to hepatic venule, allows progressive qualitative
modification of the sinusoidal blood composition as 1t
traverses the liver.

Hepatic smmusoidal cells

Non-parenchymal cells encompass endothelial cells,
Kupffer cells; hepatic stellate cells (or Ito. or fat-stormg
cells), and Pit cells, all of which are located in sinusoids
and called ‘as “hepatic smusoidal cells” [69]. Endothelial
cells form the walls of the hepatic sinusoids: (Fig. 2). The
extended processes of the endothelial cells have pores or
feriestrations ‘through which solutes can -appatrently move
freely into the perismusoidal space of Disse. Alcoholics or
cirrhotics who have developed liver fibrosis show disturban-
¢es m solutes exchange between blood and hepatocytes due to
loss of the ‘endothelial cell fenestrations concomutantly with
the appearance of endothelial cell basal membranes. Kupffer
cells are mfravascular tissue macrophages which remove
relatively large particles from the circulation, while endothe-
lial cells take up rather small particles. Hepatic stellate cells (or
Ito ot fat-storing cells) are responsible for the storage of
vitamm A and play a major role i the developmient of hepatic
fibrosis in response to mjury [17]. Pit cells which account for
a small propoition - of the non-hepatocyte liver cells are
natural killer cells located beneath endothelial cells and
fibroblasts:

Fig. 2 ‘Hepatocytes secrete bile
into the canaliculi

To
Central

vein %

Disse space

Endothelial cell

Biliary system and biliary epithelial cells

Hepatocytes secrete bile mto the bile canaliculi. Their flow
is parallel'to the sinusoids; but is opposite in direction to the
blood flows (Fig. 3). Via biliary secretion, the liver excretes
substances in feces and participates in’ intestinal functions
such as intestinal absorption of fats by supplying bile acids.
At the ends of the bile canaliculi, bile flows mnto bile ducts,
which are true ducts lined with epithelial cells. Biliary cells
form conduits (biliary system) carrying bile into the gall
bladder and small mtestine with bile flowmg from
hepatocytes near the hepatic venule to portal tract bile
ducts. Bile duct cells also contribute to bile formation
(ductular component of bile formation). Biliary epithelial
cells represent about 3.5% of the liver nuclear population.

Distortion of normal hepatic architecture: cirrhosis

Cirthosis' 1s a consequence of chronic :liver disease
characterized: by replacement of ‘liver: tissue by dense
fibrous scar tissue as well as régenerative nodules formation
which result in widespread  distortion of normal hepatic
architecture. It 1s most commonly caused by hepatitis B and
C, alcohol-induced: liver injury, autoimmune liver diseases
and fatty liver disease but may have many other possible
causes and be cryptogetiic 1n some cases.

Loss. of liver tissue due fo mjury results in fibrosis,
regeneration and. hypetplasia - of ‘liver cells and - arterial
growth (angiogenesis) mduced by growth regulators which
mclude cytokines and hepatic growth factors; e.g., hepato-
cyte growth factor, epithelial growth factor, transforming
growth factor-ce; tumor necrosts: factor; Hormones, mcluding
insulin, ‘glucagon, and change of intrahepatic blood flow
patterns determine localization: and peculiarities of nodules
formation.

Portal hypettension is the most common complication of
cirrthosts; Angiogenesis produces new vessels within the
fibrous sheath that surrounds nodules. These new vessels

Hepatic lobule

Hepatocyte

"fHepat'a a,rterx{,fi\

Kupffer cell lto cell . -
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Hepatic lobule

Sinusoid

Pontal area

Portal vein .,

fery

Sinusoid

Fig. 3 The hepatic lobule 1s the structural unit of the liver

connect hepatic' artery and portal vein to hepatic venules,
thereby restoring intrahepatic circulatory pathways. Such
interconnecting vessels provide relatively low-volume,
high-pressure venous drainage and as a resulf; portal vein
pressure increase. Such distortions in blood flow contribute
to- portal hypertension.

Progressive loss of hepatic architecture impairs hepatic
function; leading to hepatic insufficiency which manifest as
coagulopathy, renal failure, and  hepatic . encephalopathy.
Hepatocellulat carcinoma frequently: complicates: cirrhosis,
particularly cirrhosis ‘resulting from: chronic: hepatitis' B
and C.

Liver cells in innate immune response

The liver has a number of important functions in systemic
and local host defense including both mnate and adaptive
immunity, ‘and inflammatory- reaction. The organ is per-
fused with antigen-rich blood from the gastromtestinal tract,
cytokine-rich - blood from the spleen, and oxygen-: and
metabolite-rich blood from the systemic artery through a
network of sinusoids. The parenchymal cells (hepatocytes)
secrete acute-phase proteins such as C-reactive protein, anti-
ocl-antitrypsin, ceruloplasmin, or haptoglobin in response to
1L-6 secreted from Kupffer cells, thus controlling systemic
and ‘local inflammatory . reactions. Each of the non-
parenchymal cells plays important role m normal physiology
and homeostasis; and also participates in systemic as well as
1 local inflammation and immune response [39].

Innate immunity can: detect infection through pattern-
recognition  receptors (PRRs) such as Toll-like receptors
(TLRs) that recognize specific structures called pathogen-
associated molecular. patterns (PAMPs) that are expressed
by invading pathogens [21]. There are many different cell
types m the liver which express a variety of TLRs:
parenchymal cells and non-parenchymal cells which
mclude biliary epithelial cells; sinusoidal endothelial cells,
Kupffer cells, hepatic stellate cells, hepatic dendritic cells,
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NK cells, and NKT cells [56, 57]. TLRs are the key
components of the innate immune system, which activate
multiple inflammatory pathways and coordinate systemic
defense agamst pathogens. In addition to TLRs, cytoplas-
mic pattern-recognition receptors, such as nucleotide-
binding oligomerization domain (NOD)-like receptors and
the RNA helicase family can detect microbial components
that enter the cell’s cytoplasm and mduce innate immunity
[34]. The best-defined PAMPs mclude LPS found on
Gram-negative bacteria- and peptidoglycan found on
Gram-positive bacteria.

Kupffer cells

Kupffer cells reside within the lumen of the liver sinusoids;
therefore, they are the first cells to be exposed to materials
absorbed from the gastrointestinal tract [46]. These cells are
resident macrophages of the liver and constitute 80~90% of
the: tissue macrophages: presenting in the body.. Kupffer
cells are the principal liver cells for phagocytosis, antigen
presentation, and - production. of pro-inflammatory cyto-
kines. Activation. of Kupffer cells by pathogenic agents
results i the ‘release of mflammatory. mediators, growth
factors, and reactive  oxygen species. (ROS) [8]. This
activation appears to be required for the normal physiolog-
ical functioning of the liver, such as removal of or tolerance
to : pathogens, ‘as well as in acute hepatic injury -[66].
Understanding: the role of Kupffer cells in these diverse
responses ‘is a key to understanding mechanisms- of liver
physiology-and pathology.

Kupffer cells express a variety TLRs; which participate
in liver injury.-The TLR4 protein has been detected on
Kupffer cells and is likely involved inuptake and clearance
of endotoxins, production of cytokines; and ROS. Expres-
ston of functional TLR2 has also been reported in Kupffer
cells ‘and activation of TLR2 leads to production of
pro-inflammatory cytokines: [42]. Kupffer-cell-derived
cytokines play a key role in modulation of other cells. In
response to: LPS, Kupffer cells produce TNF-o and IL-10;
which downregulate receptor-mediated antigen uptake and
MHC class IT expression on LSEC and DCs and decrease T
cell activation [55]. Kupffer cells are mvolved in the
pathogenesis of liver injury through the release of biolog-
ically active substances. Activated Kupffer cells are: the
major source of inflammatory - mediators including cyto-
kines, superoxide, nitric oxide, eicosanoids, and chemo-
kines [52], while in the non-mnflamed liver,. Kupffer cells
secrete anti-inflammatory mediators, such as IL-10, endog-
enous prostanoids and TGF-f [26]. Activated Kupffer cells
exposed to pro-inflammatory mediators such’ as. LPS:or
bactertal - products, secrete  pro-inflammatory cytokines
(TNF-a, IFN-«), chemokines (MCP-I, IL-8) and reactive
oxygen/nitrogen species: which contribute to-liver injury
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[61]. Kupffer cells also stimulate profibrogenic response
by production of TGF-$1, matrix metalloprotenases,
platelet-derived growth factor, and ROS. Since Kupiffer
cells are the first cells to encounter gut-derived toxins
mchuding LPS, they are adapted to respond less to LPS,
which 1s called “LPS tolerance” under the physiological
environment.

Hepatic stellate cells and other liver sinusoidal cells

Hepatic stellate: cells: (HSCs) are located in' the space of
Disse and ‘are- the prmcipal cellular sources: for: the
production of extracellular matrix proteins, such as collagen
type I, III, and IV m the liver. Upon TLR4 ligation, TLR4-
signaling induces upregulation of pro-mflammatory mole-
cules meluding chemokines (CCLZ, CCL3, .and CCL4) and
adhiesron molecules (VCAM-1, ICAM-1; and E-selection).
TLR4 signaling also enhances profibrogenic signaling such
as TGF-f signaling [58].

LSECs express TLR4; and TLR4 signaling induces
production of TNF-o:and ROS. Innate immune response
i LSEC 1s also modulated by “LPS tolerance”, Other cell
types mvolved m innate immunity in the liver are hepatic
dendritic cells (DC); plasmatoid DC (pDC) and conven-
tional DC: (cDC), liver NK cells; and NKT cells. Hepatic
DC are professional antigen-presenting cells (APC) in the
liver. pDCs are also the principal cells producing IFN-a 10
response tothe ligands for TLR7 and TLRY, while cDC
produces TNF-« and IL-6 m response to TLR4, TLR7, and
TLRY [56, 57].

Hepatocytes and biliary: epithelial: cells (BEC) express
almost all TLRs at mRNA and protein levels. The ligation
of TLR4 and 2 on both hepatocytes and BEC by LPS and
lipopeptides, respectively, induces TLR. signaling through
NFEk B and p38/c-jun N-terminal kinase (JNK) resulting m
pro-mflammatory cytokine production such as TNF-x,
1L-6, IL-12 [14, 56, 57, 72].

TLRs and liver diseases

The mterplay between TLRs and their exogenous and/ot
endogenous TLR ligands 1s involved in pathogenesis of
vartous liver diseases [56, 57]. Since the liver is constantly
exposed to microbial products from the enteric microflora
that are catried through the portal circulation, wmnate
mmmune tesponse to TLR ligands 1s normally regulated
partly through the modulation of TLR signals, namely
“fiver tolerance” [49, 56]. Therefore, a breakdown of this
“liver tolerance” and/or excessive activation of TLR
signaling may possibly be involved m: the pathogenesis of
various  chronic  mflammatory  liver: diseases -such as
alcohol-mduced liver diseases, non-alcoholic steatohepatitis

(NASH), hepatic fibrosis, 1schema/reperfusion liver myury,
hepatocellular carcinoma (HCC) and hepatic autoimmune
disorders mcluding autoimmune hepatitis (AIH), primary
biliary cirrhosis (PBC), and primary sclerosing cholangitis
(PSC).

Alcohol-induced liver injury

Excessive alcohol intake injuries mtestinal epithelial barrier
causmng mcreased - mtestinal permeability followed. by
elevated LPS levels in: the portal: circulation: {51]. The
LPS then actrvates TLR4 on Kupffer cells to produce pro-
inflammatory : cytokines, such: as TNF-«.. leading to
hepatocyte damage. Chronic alcohol consumption upregu-
lates hepatic TLR{, TLR2, TLR4, TLR6, TLR7, TLRS,
TLRY, and CD14 mRNA expression and sensitizes to. the
corresponding TLR ligands to enhance TNF-« production
(12} *

NASH

NASH 1s characterizéd by lipid- accumnulation: m- hepato-
cytes and mflammatory cell mfiltration, which  leads to
hepatic - fibrosis. : In- methionme/choline-deficrent (MCD)
diet-induced ' animal model of NASH; TLR4-signaling,
and Kupffer cells play pivotal roles in the pathogenesis of
NASH [54). The loss of TLR4 attenuates hepatic lipid
accumulation: and hepatic fibrogenic markers, - such: as
collagen «l and TGF-f1 in MCD diet-induced steato-
hepatitis, indicating the importance of TLR4 m: NASH
{57).

Hepatic fibrosis

Hepatic fibrosis results from chronic liver ijury, which 1s
caused by a variety of liver diseases including viral
hepatitis, autoimmune hepatitis, cholestasis (PBC, PSC),
alcohol-induced liver injury, and NASH. In these diseases,
TLR4 signaling is considered to imtiate fibrogenesis by
inducing pro-mflammatory and profibrogenic cytokines of
Kupffer cells, which then activate HSCs. Endogenous CpG-
DNA from damaged hepatocytes activates HSCs to produce
collagen via TLRY, while endogenous DNA also provides a
stop signal for migrating activated HSCs as soon as they
sense apoptotic DNA [65]. CD14, LBP, TLR4, and Myd88
are critical for hepatic fibrogenesis mduced by bile duct
ligation and CCly m mice [58]. The mjection of TLR3
ligand poly-1:C mhibits HSCs activation mediated by IFN-
v from NK cells, which attenuating hepatic fibross.
Chronic ethanol consumption abolishes this anti-fibrotic
effect of TLR3, implying the mechanism by which alcohol
mduces liver fibrosis [57]. The genetic determinant for liver
fibrosis s recently identified on TLR4 SNP [11].
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In a mouse model of AIH mduced by lymphocytic
choriomeningitis virus infection, TLR3, but not TLR9
signaling, plays a critical role in development of hepatocyte
damage and inflammation via IFN-a/f3, TNF-a, and
CXCL9 induction [33]. However, there has been no
evidence for involvement of TLR signaling m the develop-
ment of -human AIH. Multiple conditions can: cause
sensitization to - endotoxin-induced: liver  mjury including
drugs, toxins;  metabolic factors, and pathogens. This
sengsitization - via. upregulation- of TLRs: is- mediated by
bone-marrow derrved: immune cells: but ‘not: by liver
parenchymal cells [19].

PBC

Monocytes from PBC patients appear to be more sensitive
to the ligands for TLR2, TLR3, TLR4, TLRS, and TLRY,
producing higher levels of pro-inflammatory. cytokines,
particularly IL-1p3, IL-6, IL-8 and TNF-« [40]. In PBC
patients, B: cells are characterized by high expression of
TLRY, namely CpG, stimulating B cells ‘to significant
production ‘of ‘immunoglobulin: M and anti-mitochondrial
antibodies, indicating that occurring: hyper-responsiveness
of B cells via TLR9 accelerate B-cell-mediated autoimmu-
nity; in PBC [25, 44). The mcreased expression of TLR3
and type I IEN mRNA is found in both the portal tract and
parenchyma of PBC-diseased livers derived from early-
stage PBC patients; indicating the involvement of TLR3-
type I IFN signaling: pathway m the pathogenesis of PBC
[62]. The marked mcrease of TLR3 proteins in small bile
ducts of PBC-diseased: liver indicate the involvement of
TLR3 in pathogenesis of the bile duct damage in PBC,
although the real endogenous ot exogenous ligand for
TLR3 is still unknown in PBC (Fig. 4) [47]. The expression

Fig. 4 Expression of TLR3 on mtrahepatic biliary epithelial cells
normal and PBC livers. TLR3 1s strongly expressed on mtrahepatic
biliary epithelial cells 1n vivo, especally at sites of ductular reactions,
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of TLR4 is also mcreased mn PBC-diseased livers [64].
These observations strongly indicate the involvement of
TLR signaling in the pathogenesis of PBC.

PSC

PSC is characterized by progressive inflammation and
fibrosis of the medium to large-sized hepatic bile ducts.
High frequency of anti-BEC antibodies presence is found
and the binding of anti-BEC antibodies to BECs induce
production: of pro-inflammatory cytokines and upregulation
of TLRs.. BECs expressmg: higher levels: of TLR4: and
TLERO respond to therr ligands mteraction by production of
higher levels of inflammatory cytokines, thus léading: to
destruction: of BECs:in PSC [7, 24].

In addition to the liver diseases mentioned above, TLR
signaling - is also-‘considered to- be: invelved in the
pathogenesis: of 1schemia/reperfusion - liver injury,: liver
regeneration, and development of HCC.

In conclusion, adequate: strength of TLR - signaling
mduces “beneficial” responses;:such ‘as microorganism
clearance, regeneration, protection: from cell death, and
adjuvants for vaccination; whereas excessive TLR ‘sighal-
ing triggers “harmful’ responses; such as suppression: of
regenerative responses, - chronic  inflammation, “necrosis,
fibrosis; and mduction of autoimmune liver diseases [50].
In order to identify the molecular target for the treatment
of liver diseases, further studies are needed to clarify the
role: of innate immunity in:the pathogenesis of. these
conditions.

Liver cells in hepatic inflammation

In the course of hepatic inflammation, where hepatocytes
are the main target of immune-mediated destruction, non-

in livers from patients with PBC (b), whereas TLR3 1s very weakly
expressed 1n normal liver (a) (Ref. [47])
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parenchymal liver cells contribute to pro-inflammatory and/
or immunomodulatory functions. With distinct mode of
actions, 1.e., secretion of lymphocyte chemotactic factors,
ability to support adhesion and to promote onward
mugration, antigen: presentation, and T cell nstruction,
these cells. exert substantial influence on mflammatory
settings, as well as on basal normal state, where continual
immuno-surveillance 1s i operation by professional
immune cells.

Hepatocytes

As hepatocytes are indeed the mayor cell type m the liver,
they ‘mght represent. primary - modulators: of hepatic
immunity, especially m the setting of chromic liver injury,
whete - ion~mjured: hepatocytes | in - close: proximity are
predisposed  to ‘inflammatory. mediators as bystanders. A
line of evidence may support this idea [67]. Wiegaed et al.
[67] recently: demonstrated. that MHC-II expressmg hep-
atocytes mduced Th2-biased differentiation of uncormmitted
CDA4+T cells, and that suppressed the ability of previously
differentiated Th1 to secrete IFN-y. in.vitro. Accordingly, m
vivo, they found that MHC-IL expression by hepatocytes
was assoctated with impawred IFN-y response and mmparred
lymphocytic choriomeningitis virus clearance [67]. MHC-II
expressinig hepatocytes in inflamed milieu may have strong
influence on the chronicity of hepatitis, by instiucting
infiltrating CD4+T cells to differentiate into a less inflam-
matory phenotype [67]. Application of immunomodulatory
propetties of hepatocytes is still challenging. Recent report
clearly described that ectopic expression of neural auto-
antigen myelin basic protein (MBP) in the liver, either m
liver-specific MBP transgenic mice or in fransient gene
transfer in wvivo, induced protection from autormmune
necro-inflammation in a mouse model of multiple scletrosis,
via generation of MBP-specific CD4+ CD25+ Foxp3+
Tregs [38].

Sinusoidal endothelial cells

Lymphocyte recruitment to the liver, especially within the
hepatic sinusoids, is characterized by special features: in
addition to the classical endothelial adhesion molecules,
such as mtercellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1), other adhe-
sion teceptors appear to play more specific roles for
Iymphocyte recrurtments to hepatic sinusoids [59]. These
non-classical adhesion molecules in the LSEC mclude
certain scavenging receptors, such as mannose receptor
and: common lymphatic endothelial and vascular endothe-
lial receptor-1 (CLEVER-1), VAP-1, a 170 kDa homodi-
meric glycoprotein that has monoamme oxidase activity,
and CD44. CXCL9-11 and CXCL16, chemokines, secreted

not only by LSEC but also by mflamed cholangiocytes and
hepatocytes, and subsequently presented on sinusoidal
endothelia, are also required for recruitment/adhesion of
lymphocytes and transmugration across LSEC [59].

LSEC are specialized organ-resident APC, contributing
to peripheral immune tolerance. With scavenger activity,
they have been reported to have capacity to present
exogenous antigens on both MHC-II and MHC-I molecules
to CD4+ or CD8+T cells, respectively. Diehl et al. [6]
recently demonstrated that cognate mteraction with naive
CD8+T cells induced tolerogenic maturation of LSEC,
characterized by the increased expression of co-inhibitory
B7-HI1: in- contrast to dendritic: cells (DC), tolerogenic
maturation of LSEC was  cell-autonomous, not controlled
by exogenous mediators (such as TGF-§, IL-10). Toleriza-
tion of CD&+T ¢ells by matured LSEC is a unique, non-
deletional process, dependent on B7-H1/programmed death
I (PD-1) interaction.

HSC and activated liver myofibroblasts

HSC perform potent APC function for stimulation of CD4
+/CD8+T cells as well as NKT cells. Accordingly, mode of
antigen’ presentation of HSC' was demonstrated to: be
through either MHC-IUMHC-I,: or CD1d, the latter of
which presents lipid - antigens. Additional work in mice
clearly confirmed that antigen presentation by HSC
promoted protection against Listeria monocytogenes mfec-
tion' in the liver. IFN~y iduced amplification of APC
proteins;. along with B7-H1 production, m turn . adds
immunomodulatory functions to HSC, giving rise to B7-
H1 dependent. T cell apoptosis 11 mice. HSC transdifferen-
tiates. mto. activated liver myofibroblasts: (aLMF) through
the interaction with inflammatory. cells, resulting i trans-
formation into prominent fibrogenic.cells m the liver [68].
Holt et al. [18] recently observed that aLMF played a direct
role in regulating the infiltration. and positionmg. of
lymphocytes: through G-protein coupled receptor-
dependent and -independent fashion in vitro, apparently
relevant in chronic liver disease. In murine models of liver
fibrosis, apoptosis of aLMF by macrophages is followed by
spontaneous - resolution “of inflammation. Very recently,
senescent aLMF ‘in murine liver were demonstrated to
exhibit ‘gene expression profile  consistent with reduced
secretion “of extracellular matrix ' components;: enhanced
secretion of extracellular matrix-degrading enzymes; and
enhanced immune surveillance [29].. Consequently; senes-
cent alLME were poised for selective target of natural killer
cells, resulting in fibrosis reversion with aLME cleatance.
Finally, stellate-cell-mediated T cell instruction was pro-
posed by Winau et al. {68]. HSC plays a pivotal role in
vitamin A homeostasss, storing vitamin: A and converting
retinol into retinoic acid; Generation of induced regulatory
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T cells from naive CD4+T cells in the perphery is
dependent on retinoic acid as well as on TGF-3. Contrarily,
retinoic acid inhibits the TGF-R/IL-6-mducing differentia-
tion of inflammatory TH-17 cells [68]. Taken into account
that HSC are capable of producing retinoic acid, TGF-§3,
and IL-6, it is plausible to have a scenario that HSC play a
vital role in the instruction of regulatory T lymphocytes m
the liver.

Biliary epithelial cells

Biliary epithelial cells that line the intrahepatic biliary tract
are the primary site of mnate immunity agamst microbials
in bile. We reported that unstimulated conditioned medium
of human cholangiocytes” in vitro “were 'already" rich' in
multiple - humoral factors; including ELR+CXC - chemo-
kines, such as’ IL-8/CXCLS, growth-related  oncoptotein
(GRO), epithelial neutrophil chemoattractant-78 (ENA-78),
known chemoattractants with wide range of non-leukocytic
activities [27]. Moreover, human  cholangiocytes were
found to be permissive in TLR2, 4, and 3 dependent
pathways in Vvitro, the former of which caused mcrease in
the secretion of 'IL-6, ‘monocyte: chemotactic - protein-1
(MCP-1), and 1L-8, upon activation with LPS' or LTA,
respectively [72].

Biliary epithelial cells in immunological inflammation

Several - hepatobiliary diseases, especially. PBC and PSC,
appear to be mediated by a breakdown of self-tolerance, 1n
which the immune reaction occurs against autoantigens
expressed on biliary epithelial cells. PBC is one of the
organ-specific autoimmune diseases chatacterized by appeat-
ance of autoantibodies specific. for epitopes of 2-oxo-acid
dehydrogenase multi-enzyme complexes of mitochondria and
histologically chronic non-suppurative destructive cholangitis
(CNSDC). Liver-mnfilirated mononuclear cells (LMNC)
around small bile ducts are believed to destroy BECs. On
the other hand, PSC may be mediated by an imumune response
against endothelial cells of the peribiliary capillary plexus,
with sécondary reactions to BEC antigens.

Cell populations within and around BECs in PBC

Cytokines produced: by lymphocytes infiltrating ‘around
CNSDC are closely associated with the progression of bile
duct mjury:in PBC because BECs bear several cytokine
receptors against interleukin (IL)-4, IL-6, mterferon (IFN)-
v, and- tumor - necrosis factor (TNF)-ec [13]. In addition,
BECs themselves also produce TNF-« and IL-6. It has been
demonstrated that T cells are the predominant cell type of
the inflammiatory cells within the portal tracts in PBC [28,
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70]. Moreover, m the development of cholangiopathy, the
infiltration of immune cells within the biliary epithelial
layer and the direct adhesion between BEC and immune
cells are key events leading to cell-mediated cytotoxicity
and - apoptosis of BECs {15; 71]. A number of pro-
inflammatory cytokines are known to be elevated in the
local portal tract microenvironment i PBC, contributing to
development of chronic inflammatory reaction around the
bile ducts, and BECs, as well as immune cells, actively
participate in this inflammatory process. Immunoreactivity
and autoimmunity are regulated at least by three different
types of CD4+ helper T cells; Thl, Th2, and Th17 subsets,
principally subdivided by distinctive cytokine production
and effector functions. Thl cells which secrete IL-2, IFN=~y,
involved in- the cell-mediated response provide: help to
cytotoxic CD8+T lymphocytes; activate natural killer cells,
and produce delayed hypersensitivity reactions. In contrast,
Th2 clones secrete 1L-4 and IL-10, while Th17 cells which
produce IL-17 are now considered as commanders. for
autoimmunity - [3]. The presénce of predominant Thl
cytokine profile is demonstrated in PBC [2]. Cytokine
profiles ‘determined primarily from: stimulated peripheral
blood and liver-derived T lymphocytes may be misleading
for defining a- Th1/Th2 cytokine profile in PBC [37, 41]..In

GCP-2/CXCL6

GRO-o/
CXCL1

IL-8/
CXCLS8

Fig. 5 Cytokines and chemokines produced by cultured BEC. BECs
were studied under basal conditions for 48 h; thence cell-free culture
supematants were analyzed by a protein array kit to evaluate 174
different protemns simultaneously. Unstimulated cells produced detectable
amounts of GRO-o/CXCL1, ENA-78/CXCLS5, GCP-2/CXCL§, and IL-
8/CXCL8 (Ref. [27,60])
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situ hybridization study reveals that IFN-y mRNA-
expressing mononuclear cells are more commonly detected
primarily around damaged bile ducts i PBC livers than
IL-4 mRNA-expressing cells and that the level of IFN-y
mRNA expression 1s highly correlated with the degree of
portal inflammatory activity [16].7 A recent study has
reported that CD8+ and CD4+ (in particular, CD4+CD28-)
T cells are markedly increased as mtraepithelial lymphocytes
withm damaged bile ducts ' m PBC {20]. Since these unique
CD4+CD28-T cells proliferate m target tissues of autoim-
mune diseases and are associated with Thi/Th2 balance m
the regulation. of spontaneous  autoimmune - diseases by
possessing high expresston of IFN-y and aufo-reactive and
cytolytic function, CD4+CD28-T cells may be involved in
the pathogenesis of autormmune-mediated bile duct damage
of PBC [22; 36}

Additionally, with these three CD4+T cells (Thl, Th2,
and Th17), regulatory T cells must be mentioned. Regulatory
T cells have two types; natural occuring CD4+CD25+Foxp3
+T cells and acquired IL-10-producing Th3 cells. Autoim-
munity will: occur when regulatory ‘T cells decrease func-
tionally or numerically. Recently, it is reported that natural
oceurring regulatory T cells are decreased around CNSDC in
PBC [32]:

Chemokine and bile ducts

Leukocyte migration  depends on: existence of a chemo-
attractant gradient created by a large family of molecules
known as chemokines. Because of their role m mflamma-
tion, chemokines and their receptors ate known to play a
crucial part 1n directing the movement of mononuclear cells
throughout. the body, engendering the adaptive immune
response and contributing to the pathogenesis of a variety
of diseases [4]. The migration and accumulation of
leukocytes 1 the target organs are a critical step mn the
pathogenesis of autoimmune diseases [43, 45].

Chemokines provide ‘a sustained inflammatory bridge
between innate and acquired immunity [31]. BECs are one
of the sources of chemokines, and BECs spontaneously
produce GRO-«/CXCL1; ENA-78/CXCL5; GCP-2/
CXCL6, 1L-8/CXCL8 (Fig. 5) [27, 60]. Fractalkine
(CX3CL1), consisting of a membrane-bound form and'a
soluble chemotactic form; is produced by several epithelial
cells ‘and 1s associated with cell adhesion and the chemo-
attractant for 1ts receptor (CX3CRI1)-expressing cells such
as CD8+ and CD4+T cells: .In PBC, the expression. of
CX3CL1 15 upregulated 1 njured bile ducts of PBC, and
the CD4+ and CD8+ Iymphocytes expressmg CX3CR1 are
found in portal tracts and within the biliary epithelial layer
of injured bile ducts:

Defense against invading pathogens by cells of the
innate immune system involves the rapid recognition: of

conserved PAMPs through members of TLR protem family
[30, 35]. BECs locate m the pathway from the gut to the
liver and constitutively express transcripts encoding several
TLRs [5, 72]. Moreover, the expression levels of TLR-3
and -4 are high m the portal tract in PBC [62, 64] and
stimulation with TLR3, BECs mnduce MIP-1o/CCL3, MIP-
1a/CCL4, RANTES/CCLS, and IP-10/CXCL.10.

It is reported that damaged BECs 1 PBC and, to a lesser
degree and frequency, i other hepatobiliary diseases,
expressed HLA DR antigens {48], and that the bile ducts
in PBC liver tissues frequently expressed increased levels
of CD40 associated - with apoptotic BECs [1]. There were
also some studies dealing with the differences of surface
markers of BEC from PBC patients by immunohistochem-
ical studies [63]. It was previously found that IFN-y
stimulates BECs to express. HLA DR [23],-and it is now
shown that TLR3 ligands stimulate BECs: to express HLA
DR and CD40, indicating that the cultured circumstance of
special condition makes BECs to change to the PBC
phenotype. It is now suggested. that PBC does not occur
as a result by changed BECs, but BECs would change as a
result of the developing PBC [60}]:
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1) JR%E - 20T - T8
1. CEBTRORERRE

CHIFFRY A VA (HCV) OFMlg~DE$d HCV
B2 8 223 BCD8LLAFET ALV ETHS ER
& 3N A8, £ O scavenger receptor class B type
I (SR-B1) % claudin-1 (CLDN1) & Vo /zigE 4 v o8
JHHE5TAIENRENS. EBIT2009FICR T
occluding (OCLN) 28 HCV EERICAT R TH B Z &8
oo BEHEREWS &IZCLDNL E OCLN
& & b I tight junction ICFAET 55 FTH Y, HCV
PN S L 7R OMBR~OR ) ARIEET
HHEEZLNTCVE S5ITCD8L & OCLN i3 HCV
BROBERBEGICHES T2 FTHAILLRENT
Vs Z)Z)

HCV OFehtBREDNHALT A 7-0121%, BEOHRE
BT LORENRRETH A, i, HCV.Ic X A HAR
FOMBBEIHL M SN, $42bb, HEFO
HCV RNA O—#IZ PAMP & LT RIGI R TLR ICE0/%
SNE RIGLICERIN V7 FMEIPSI 24 LT
AEREDA ¥ ¥ =7 zax (IFN) ¥ 7 F Ve G
H.EESNAIEN R IFN Ve 7 7 <& LT Jak
STAT “ 7T VEEEIL L CIEN NS BT OREE
5. Lh L, HCV NS3/4A protease i3 IPS-1 = M3
FTHILTIEN Y7 VEEEL IFN EEZ IR 5.
F72, HCV a7 & 37 1ICFEE NS SOCS3 i Jak:
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Fig. 1. Schematic diagram depicting the mechanisms underlying the hepatic 1ron ac-

cumulation induced by HCV

HCV:mduced ROS reduces hepcidin transcription through the inhibited binding of
CHOP and/or STAt3 to the hepcidin promoter, and/or stabilization of HIF that is

negative hepadin regulator.

HCYV,; hepatitis C virus; ROS, reactive oxygen species; HDAC, histone deacetylase;
CHOP, C/EBP homology protein; C/EBP; CCAAT/enhancer-binding protein; HIF;
hypoxia inducible factor; STAT, signal transducer and ‘activation of transcription;

FPN, ferroportin

STAT ¥ 7 FVZEBELTIFNEERETORREZW
HIL: NSS5A #3713 IL-8DEEELEL, BES
CIEN DS BETFORBE LIS ESHZ L TIFN O
A NVARREZ MG SI S, BIZIE, NSFAR E2 7.~
N7 1Z PRKRICKEA LT PKR OBRER 2T 52
ETIEN DA WA S 237 BRI R 2 HES 52,
HCV IEBLEIOR L2 & ) R4 2B CIEE O HAR
EEREHTLEEZOND.

HCV ORI A O R E T, BREA F
VAKEERREEHSTWA HCV AT F 3271
I havFY 7T RBE LUEERR L EE UFIRICHRIL
AL AEBIERETY. 351213 TNFa ® SOCS-3
%4\ L 7= insulin receptor substrate (IRS) OIHIZ X
B4 v A VIEFIHEOITE, MTP #Hl%° SREBP1 Ji#
2 & B FERRIEE, hepcidin DEEIHIZ 5 L2 8kER
RERFIERIL, CEFRICHEN R TI ZE

T (Fig. D7, ChooRmBIEIFREL DECEEL
THY, E6KIENRIA % =7 20 Y (PEGIFN) -
YNEY v (RBY) BERBREOERDRICOZELS
ZAHIENHESNTYS, HL, WHSER &Y
AWAREE OBRIZOWTRRE—EOHERICES
ThWhw
Consensus Statement I:

4 2R G TEE N L i PEG-IFN - RBV
GERE D MG RANR & Blidid 5. (Level 2a, Grade C)

COEHI CHIFROBERFITRBICHLLILS
hoodhbd, BERETFHERY A VABREOHET
PR R 72 O FRHEALOFHIECH 5. Foli Tl elas-
tography % H\W 7z IR B IR LOFM S 2 3
TwAEH, PEEORMIEOFTMIIRZEETHS.
[FEHAL DM O 22 D W IFERILERP ? WO E
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Table 1 Factors associated with sustained virological response to 48-week pegin-
terferonribavirin combination therapy in patients infected with HCV genotype 1b,
identified by multivaniate analysis (n=114) 1V

Factor Category

Risk ratio (95%
confidence interval)

Amno acid substitution
m core region

LDL cholesterol 1: <86
(mg/dL) 2> 86
Gender 1: male
2: female
ICG R15 (%) 1. <10
2:.>10
vGTP 1< 109
2: > 109
Ribavirin dose (mg/kg) 1. <110
2:>110

1: double wild
2: non-double wild

1
0.102 (0.022-0474) 0.004

1

12.87 (2.177-76.09) 0.005
1

0.091 {0.017-0.486) 0.005
1

0.107 (0.017-0.678) 0.018
1

0.096 (0.0011-0.819) 0.032
1

5173 (1.152-23.22) 0.032

RIS LT SEO7 39—y FOEF T 74% O
BRF LN,
Consensus Statement 2:

FFRBIERIE T A W R EIEDIGHRE BT 316 E
HEF & UCHHBED BHEIL DI (staging) BEE
TH B, staging DFFIC IZHFERFHIZRS LS.
(Level 1,. Grade C)

2. T INIER LIREE

CHIFAOZHICIZHCVRNAOHIR E LB IE, w
A WAE, E (genotype) DREVNEETHS. &5
12 HCV RNA BEFOERIC OV TH A RHMRIHS
hTWa, TS ORFIE CRFFRICHT 5 IFN #iE
(RBV O HEELED) OWENRO TR ICE
BEThbH. T4 VABOWEEIL, 2000 ELET > 7
a7 HCV B= # —EPFHW ST & 7248, 2007 4£K
POERENOEHBEHOMUEL ¥ V% b D realtime
PCREZHVWLHENTRE 2o TS ZOXH R
B AL WAEL Y 4V DE (genotype X 721 serotype)
DOREZ IFN BEOMETF R BER O 7 A VA
Bhhbi LR ZERESS VY.

T A VAOBEFERE, £& LT genotype 1b Bl
YA WATE LR S Tws, IEN B 5B
% NSHA 222209-2248 (interferon sensitivity determin-
ing region : ISDR)fBIRD 7 I / BB REDTRRIIFRIC
BiRT A EPHELPICRo7. HCVJ O7 3 BRES

Table 2 Effect of the IFN treatment on the annual
incidence of hepatocellular carcinoma in each fibro-
sis staging

Control "~ IFN-treated
All SVR  non-SVR

Patients 490 2400 789 1658
Staging

F1 045% 0.08% 011% 007%
F2 1.99% 054% 010%  0.78%
F3 5.34% 1.95% 1.29%. - 2.20%
F4 7.88% 416% 049%  532%

Data were adopted from IHIT study!®

HlE LT ISDR © 7 3/ BERHI L WA, IFN
HARIETO SUR BRSV I EBHEIhTnsY,
ELIHERFEOELRTSH %S, PEGIEN L RBV fEH#%
A8 HEE) BT L ISDR OEREIIFIETFINC
E%‘VC\&) Z) 10).
Consensus Statement 3:

ISDR DZE R, IEN 3 ¥ /=1t RBY & D%
ICHU}5 SVR IZBIFT 6 DT, iBEICHE T R&ET
&5, (Level 2a, GradeB)

2612, HCV Core $BO T 3 /BEROARE (70
ZHE L BHOER)IPEGIEN & RBV SR ED

—790 -
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WEARICEFRT A 2 LARE S (Table DY K
Eo#HETD Core HED 70 FH O T I/ BB
TANVAERICERT 5 2 LATRSNLD.
Consensus Statement 4:

Core #AlED 70 BH, 91 ZHD 7 3 7 BiB#3, IFN -
RBY i/ I£IC B} 5 SVR, NVR IZB#Fd 570,
TBIERTICHE T RETHB. (Level 2a, Grade B)

F 7> NS5A FEI5? 2a2334-2379 (IFN/ribavirin resis-
tance determining region, IRRDR) @7 I / BEEEHK
7% PEG-IFN - RBV SRR OGERRICHRT 5 L v
IREDH LY. SOIHRBGEETHL T T —E
FHEHICIE, NS3HEBOBETERNTWEICERT S
EHEINRTYS, —F, BELOBRTIE, Core
FEHOT I BEROFEL NS3EE O KEED B
BT BEVIREDIRENTVEY, CNHDORICH
LT, EHLMETPLETHS.

3. BB L IFN AEENR (S#E, PNALT £2&80)

CRIZMIF4D 60~80% FEHILTHESINTVS
A3, BIMBIF R DN IR ETE I L
%L, T BERCEELEBZELILPS
W72 CEUEMIF RO BRIUCIEIAHEZ JA % . I
B < HOV I L7238 2B L 2Rk ORE T,
HCV BB 2 ROEGTFRICS 2 2B %
, 0EFELBBLAEATHS L IFRMELOER
SWEICLET A E LTV, Z OREE, RILEH
FEEITBVTIITFS 20 £~30 EORB THEENE
BL, P30 E~40 EORBTHEELHET L L V)
bOEOREL BERBENSKE (BHET 2. —7,
C BB ROIHMEOERE L IFEORE L OO
FELEERIIZORITRINTEY, DAFEIC
B BIFHEDERRIREIL 5~8% X5 (Table 2)9.
DY, UTFToarkrFAhnBohil.
Consensus Statement 5:

DHEDIFREBEDEFERBEERIRE DS,
5~8% THBI L eERBLTHEEINZENTNET
#5. (Level 2b/3, Grade B)

C RUBMFSBE OB LOREREITEICL D £
LE B ThHBA, Poynard T B EREO C HBEgH
263 D E RIF R LE R DS 0.133 (stage) TH S
L 3#j& L, Shiratori Y 5® 3 [IHIC 010 (stage) TH
BELTWAS ALT BiRIEE O C BB ABEE CIE
ML DER T X 5 IR T, 5 F R O HIROMHEL

50 % 11 % (2009)

WCEE R P o T AHES, ERFHMEIERRD
35005 (stage) THholeTHHMENDHY. &k
T, 7ha—NERDIHNCH, FHHE~O#HDER
e, FIERME, 4 v A0 ViERPHEDS C BUIEHIT KD
FEMEL 2R ET ARTFTH Y, AEFBEOUEIE
BTHbHLENTVE.

PIET & ) B ALTEOS WL CIEEE T -
72h%, ALT E2%40 TU/1 BUF o C BHEMRFJ T iE
ALTEE RBRIEET S LR SN EBOR
RO T, C IBHFABEOMIE ALT fEid 301U/
IDTICEROBBEEERET NI TH S,
Consensus Statement 6:

WFEEPRED =021k ALT % 301U Bl FICfR#oN
ZCH5. (Level 2a, Grade A)

72, bHETC BB JBE TN 5 [FN HE
PIET o T2 EDERBLE S OBBEVENZHT
WBDY, EHBICHENRIET S EPHMON,
BERTOIF G ORMLERS], BEE, BHCITES
BOYAT BN EHHE SN TW5. BurnoS 5%
FE R L ER OEF R ITIEEHH O
3BD 1 TEH BN KK, 066% THAHZ LRRLT.
Consensus Statement 7:

C ZUBPENT R IR B T W L HTED R 2

V=Y IREBEEITINETHS. IFN B CTENH
FonTdD, FICHBHLERD, mie, BUEEET
ZRTRIED Y R 2 5555 <, SERIR 2 EHRE W - [E5~ —
H— ek BRENFIEHERLETHSB. (Level 2b,
Grade A)

C RUBMRF ST B30 4 IV RFE T3 Peg IFN -
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