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Figure 3. Changes of the adsorption ratio of protein standards for Seppro®-IgY12 column. (A) Relation of the adsorption ratio to the number of times
the column was used. (B) Correlation of the adsorption ratio for the column with molecular weight of each protein standard using the column treater

one (B-1), 11 (B-2) and 21 (B-3). The open dots show the value for BSA.

direct laser irradiation of the materials could affect the instru-
ment, the positions to be irradiated were the points of the existence
of many matrices on a few column materials. Although several
peaks existed of less than 70,000 m/z in each mass spectrum, the
higher molecular weight peaks (7266, 9689, 14,532 and 29,041 m/
z) appeared in the treated but not in the untreated materials
(Fig. 5). After the materials were washed with acetonitrile, the
higher molecular weight peaks in the treated materials disap-
peared (data not shown). Therefore, the compounds attached to
the material surface should be hydrophobic high-molecular-weight
compounds existing in human plasma.

Two analyses of the column materials surface demonstrated
that the hydrophobic high-molecular-weight compounds in plasma
adsorbed onto the surface of the affinity column materials and
contributed to the changes in the adsorption ability of plasma
protein from immunoaffinity into hydrophobic interactions.
Howevere, further studies are needed to characterize the exact
details of the compounds.

www.interscience.wiley.com/journal/bmc

Copyright © 2008 John Wiley & Sons, Ltd.

Conclusions

To investigate the ability to remove abundant proteins from plasma
by immnoaffinity using the IgY column, FD-LC-MS/MS method
was applied to the long-term test of the reproducibility of the
column. it was demonstrated that the immunoaffinity column
was effective in removing BSA from the protein standards mixture,
but, in addition, removing other proteins in the 18.3-45.0% range.
The results suggested that the proteins of possible biomarkers
could be lost and their quantification made difficult. Moreover,
the specific adsorption of BSA in the protein standards mixture
and of albumin in the control human plasma samples decreased
with an increase in the number of times the column was used
with both samples before its use expired. To examine the cause
of the functional changes of the immunoaffinity, the correlations
between the adsorption ratio for the affinity column and molec-
ular weight of the adsorbed proteins were calculated, and the
column materials surface was also investigated by SEM and
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Figure 4. SEM images of the untreated and 11- and 21-times-treated column material surfaces. Magnification in SEM was controlled in a range

of x 1100-3000 to show the whole picture of the material.
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Figure 5. MALDI-TOF-mass spectrum of the untreated and 11- and 21-times-treated column material surface.

MALDI MS analysis. These data demonstrated the attachment of
the hydrophobic high-molecular-weight compounds in plasma
to the surface, suggesting that on every sample treatment with
the affinity column, the adsorption ability of plasma protein
changed into hydrophobic interactions. Further studies to char-
acterize the attached compounds are required, and the elucida-

tion of the compounds might lead to the improvement of the
affinity column technique and contribute to progress in quanti-
tative plasma proteomics.

Reproducibility is prerequisite for accurate quantitative pro-
teome analysis of clinical samples for biomarker identification
and quantification. For this purpose, it is generally essential to
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prepare protein samples without high-abundance proteins via
specific pre-fractionation techniques to enhance the detection
of low-abundance proteins in plasma, and thus, immunoaffinity
separation is now chosen as a reliable pre-fractionation method.
However, this study indicated that, in quantitative plasma pro-
teomnics studies, it is important to keep in mind the risk of not only
nonselective loss but also functional changes of the adsorption
ability for the immunoaffinity column.
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Abstract

v

Current Japanese and American diets and Japa-
nese diet immediately after the War were con-
verted to laboratory animal diets. As a result,
current laboratory animal diet (CA-1, CLEA)
unexpectedly resembled the diet of Japanese
after the War. This is considered to result in an
under-evaluation of diabetes research using lab-
oratory animals at present. Therefore, changes
in insulin signals caused by current Japanese
and American diets were examined using IRS-2
deficient mice (Irs2-/~ mice) and mechanisms
of aggravation of type 2 diabetes due to modern
diets were examined.

Irs27- mice at 6 weeks of age were divided into
three groups: Japanese diet (Jd) group, American

- diet (Ad) group and CA-1 diet [regular diet (Rd)]

group. Each diet was given to the dams from 7
days before delivery. When the Irs2"/~ mice
reached 6 weeks of age, the glucose tolerance
test (GTT), insulin tolerance test (ITT) and organ

sampling were performed. The sampled organs
and white adipose tissue were used for analysis
of RNA, enzyme activity and tissues. In GTT and
ITT, the Ad group showed worse glucose toler-
ance and insulin resistance than the Rd group.
Impaired glucose tolerance of the Jd group was
the same as that of the Rd group, but insulin
resistance was worse than in the Rd group. These
results were caused an increase in fat accumula-
tion and adipocytes in the peritoneal cavity by
lipogenic enzyme activity in the liver and mus-
cle, and the increase in TNFo of hypertrophic
adipocyte origin further aggravated insulin
resistance and the increase in resistin also aggra-
vated the impaired glucose tolerance, leading to
aggravation of type 2 diabetes. The Japanese and
American diets given to the Irs2~/~ mice, which
we developed, showed abnormal findings in
some Irs27/~ mice but inhibited excessive reac-
tions of insulin signals as diets used in ordinary
nutritional management.

Introduction

v

Type 2 diabetes mellitus appears to be increasing
mainly in the United States, Africa and Asia. In
2000 there were one hundred and fifty million
Type 2 diabetic patients, but they are predicted to
increase substantially to two hundred and twenty
million world-wide in 2010 [37]. Since World
War Il (WWII), type 2 diabetic patients have
increased markedly with dramatic changes of
lifestyle in Japan. Typical changes of the lifestyle
include the increases in high fat diets, sedentary
habits and driving. Especially, the level of fat in
modern Japanese diets increased from 20.0g/day
in 1953 to 59.9g/day in 1995 according to the
nation-wide nutrition monitoring survey in
Japan. In addition, the Japanese population is
predisposed to develop type 2 diabetes due to

insufficient insulin secretion in spite of no pre-
disposition to obesity.

Human type 2DM is characterized by peripheral
insulin resistance and defective insulin secretion
[11,12]. It is known that type 2DM is associated
with disorders of insulin receptor substrates
(IRS), which mediate pleiotropic signals initiated
by receptors for insulin and adipokines
[7,13,24,26,27] secreted from adipocytes. In IRS
family [22,31], IRS-2 deficient (Irs2-/~) mice
develop diabetes presumably due to inadequate
B cell proliferation [14] and increased adiposity
[32] combined with insulin resistance. In fact,
insulin resistance in Irs2~/~ mice is ameliorated,
at least in part, by reducing the adiposity [28].
Therefore, we thought that IRS-2 is the central
signal in glucose homeostasis. Hashimoto et al.
(2006) {5] backcrossed the IRS-2 deficient mice
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Table 1 Conversion from nutrition in human to nutrition contents for laboratory animals.

(a) PN R
Modern American diet" -Modern Japanese diet?) -
. Calorie  Intake weight - . Relative . lnmkg_,ngight‘ elatiy
{kcal/day) value (%)~ (keallday).: " vahue
12409.1-462.9% 1187 1985.1-384.9
" Intake weight - “keal (%) - . - Intake welght
o (glday) olalday) Lo
protein v 94.9-18.2 15.8 81.5-+15.8 16. 69.0~13.
fat 92.7-17.8 34.6 59.9-+11.6 27.2 20,0—-3.8
total weight 85.5-16.4 31.9 56.9—11.0 25.8 19.0-3.6
SFA 31.3-6.0 ‘1.7 16.0—3.1 7.2 4.3-0.8
fatty acid MUFA 35.8-6.9 13.4 20.5-4.0 9.3 6.0—~1.1
PUFA 18.4—3.5 6.9 20.3-3.9 9.2 8.7—1.6 3.8
moisture 298.8—57.4 49.6 280.0—54.3 56.4 403.0—76.0 77.9
- - Modern. Modern Japanese diet CAT
: . Americandlet Japanesedlet - afterWwi . oo
moisture (%) 8.8 100 111 83
crude protein { %) 24.3 22,5 20.2 26.8
crude fat (%) 15.5 10.1 3.9 5.0
crude fiber (%) 5.4 5.2 5.2 34
crude ash (%) 6.4 6.1 6.2 7.6
NFE (%) 39.6 46.2 53.2 48.9
calorie (keal[100g) 395.1 365.0 3289 347.4
fat energy (%) 35.4 24.8 10.7 -
CP energy (%) 24.6 24.6 24,5 -
P USDA data (1994-96)

2) Nation wide nutrition monitoring survey in Japan (1995)
3) Nation wide nutrition monitoring survey in japan (1953)
4 Conversion from human to mice

SFA: Saturated Fatty Acids

MUFA: Monounsaturated Fatty Acids

PUFA: Polyunsaturated Fatty Aclds

(C57BL/6xCBA hybrid background) generated by Kubota etal.
(2000) [14] with C57BL/6]jcl mice to establish an inbred line of
IRS-2 deficient mice (Irs2-!~ mice). As a result, IRS-2 deficient
mice with C57BL/6]Jcl genetic background at the age of 6 weeks
showed profiles compatible with several features of the meta-
bolic syndrome, including hyperglycemia, hyperinsulinemia,
insulin resistance, hypertriglyceridemia, and high FFA when
compared with [RS-2 deficient mice with a C57BL/6 xCBA hybrid
background.

Diets with excessive fat as a load factor, for example more than
30%, have been fed to various models to show the relation of
between type 2 diabetes mellitus and lipid metabolism in many
experiments. However, most regular diets fed to type 2 diabetic
model mice contain about 5% fat in usual breeding, although one
of the factors increasing Japanese type 2 diabetes patients is
high fat diets. Therefore, we converted the nutrient content of
regular diet for laboratory animals to the human nutrient con-
tent on the basis of the nation-wide nutrition monitoring survey
in Japan and the National Research Council in the United States.
As a result, the nutrient content of CA-1 (CLEA, Tokyo, Japan) as
a regular diet became similar to that of the Japanese diet after
the WWIL Conversely, the results of converting the nutrient
content of modern Japanese and American diets to laboratory
animal diets indicated that the fat levels were two or three times

higher than that of regular diet such as CA-1. These differences
of fat levels suggest the possibility of underestimates of experi-
mental results using various diabetic mice and overlooking of
important signals when breeding with regular diets. Therefore,
we produced laboratory animal diets that imitated modern Jap-
anese and American diets, and investigated the effects on char-
acteristics of plasma adipokines, metabolites and enzyme
activities in Irs2~/~ mice.

Material and Methods

\{

Animals

IRS-2 deficient mice generated by Kubota et al. (2000) {14] were
backerossed with the original C57BL/6]Jc] genetic background
(Irs2™/~ mice) for more than 10 generations. Irs2-/~ mice were
prepared by crossing with Irs2™/~ mice, which were used for in
vitro fertilization and embryo transfer. Irs2~/~ mice were divided
to 3 groups, a regular diet (regular diet (Rd) group), Japanese diet
(Japanese diet (Jd) group), and American diet (American diet
(Ad) group) at the age of 4 weeks. These diets were fed to Irs2-/~
mice since the embryos were transferred to pseudo pregnant
MCH (ICR) mice. Irs2~/- mice were housed in Pair Mex 1 (Osaka
Micro system, Osaka, Japan) at the age of 4 weeks, and provided
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with regular and Japanese, and American diets as well as tap
water ad libitum. At the age of 5 weeks, intake rhythm of Irs2~/-
mice was synchronized with two Irs2™/~ mice near the average
intake weight and pattern in each group. The animal room and
specific pathogen-free conditions were the same as previous
study [5]. This study was approved by the Animal Committee of
the Central Institute for Experimental Animals (Permit No.
06023).

Design of modern Japanese and American diets

Calorie levels for laboratory animal diet (390kcal/100g, refer-
enced to NRC, 1995) were based on human Japanese diet after
WWII (Table 1a). Total calories in human Japanese diet after
WWII were taken as a relative value of 100, multiplied by
390kcal/100g for both modern Japanese and American diets.
Calorie levels in nutrient content of each diet were converted to
weight (g)/100g. As a result of these conversions, these diet con-
tents presented two problems, 1) protein level (percentage of
protein calories) was too low, and 2) total levels of protein, fat,
and moisture were too high. We thought that these problems
might induce inferior growth of infants. These problems were
solved by decrease of moisture, increase of protein, and mainte-
nance of fibrous and mineral contents in nutrient combinations.
As a result, the practical combination rates of materials and
nutrient content are shown in Table 1b. The differences between
conversion values and practical combination rates of materials
were calories and moisture to protect the growth of infants. The
nutrient content of regular diet, CA-1, was similar to that of Jap-
anese diet after WWII for laboratory animals, Therefore, we sub-
stituted the Japanese diet after WWII for CA-1 as the control in
this study.

In vivo Glucose Homeostasis and Chemical analysis

At the age of 6 weeks, glucose tolerance test (GTT), insulin toler-
ance test (ITT), and harvests of blood, liver, femoral muscles
(skeletal muscle), white adipose tissue (WAT), and pancreas for
chemical analysis. These protocol and condition were the same
as previous study [5].

Plasma glucose concentrations were assayed by the glucose oxi-
dase method [8]. Plasma triglyceride, FFA, and total cholestercl
levels were measured using commercially available kits (Wako
Pure Chemical Industries, Tokyo, Japan). Plasma insulin was
assayed using immunoreactions according to Arai etal. (1989)
[1]. Plasma TNFa (eBioscience, California, USA), resistin (Adipo-
Gen, Seoul, Korea), MCP-1 (Pierce Biotechnology, Inc., Rockford,
Illinois, USA}, and leptin (Ray Biotech, Inc., Norcross, Gergia, USA)
were assayed by commercially available ELISA kits.

Isolation of cytosol fractions from the excised tissues [33], and
activity assays of hexokinase [34], glucokinase [34], pyruvate
kinase [6], aspartate aminotransferase [18), ATP citrate lyase
[30], fatty acid synthase [4], and malic enzyme [16] were per-
formed as reported previously.

RNA preparation and Quantitative Real-Time PCR

Total RNA was extracted from liver, skeletal muscle, WAT, and
pancreas of Irs2~/~ mice using TRizol reagent (Invitrogen) fol-
lowing the manufacturer is instructions. RNA (Liver: 500ng,
others: 50-100ng) was then reverse-transcribed to cDNA using
Super Script il RNaseH" reverse transcriptase (Invtrogen). Real-
Time quantitative PCR were carried out with the SYBR Premix Ex
Taq™ (TaKaRa) and specific primers for SREBP-1c¢ (Forward: 5’
GGTGTATTTGCTGGCTTGGT 3' and Reverse: 5' ACTAATGGGCCCT-

i [

GATCCTT 3'), PPAR Y 2(Forward: 5' GGTGAAACTCTGGGAGATTC
3’ and Reverse: 5' TAATAAGGTGGAGATGCAGG 3'), GLUT2
(Forward: 5' GGCTAATTTCAGGACTGGTT 3’ and Reverse: 5' TTT-
CTTTGCCCTGACTTCCT 3"), GLUT4 (Forward: 5° TCATTCTT-
GGACGGT TCCTC 3’ and Reverse: 5' AGAATCAGCTGCAGGAGAGC
3') and B actin (Forward: 5 ACGGGCATTGTGATGGACTC 3’ and
Reverse: 5' GTGGTGGTGAAGCTGTAGCC 3') according to the
manufacturer’s instructions. The PCR reactions and detection
were performed on a ABI PRISM 7700 using f actin as internal
control for normalization purposes.

In addition, reverse transcription (RT)-PCR also was performed
to confirm the results of quantitative Real-Time PCR visually fol-
lowed to PCR conditions according to the manufacturer's instruc-
tions. PCR amplification was carried out for 25-35 cycles,
consisting of 95 for 30s, 63.4°C(SREBP-1c), 59.1°C(PPARY2),
64.0° C(GLUT2), 65.0° C(GLUTA4), or 68.0° C(Ractin) for 30-40s,
and 72°C for 5min in 20l of reaction mixture containing
1.5mM Mg?* and Ex-Tac (TaKaRa, Kyoto).

Histological analysis of liver, WAT, and pancreatic
cells

The liver and WAT were fixed in 10% buffered formalin and
embedded in paraffin. Sections of islets were stained with hema-
toxylin and eosin. Immunohistochemistry of pancreatic p cells
was made according to Arai et al. (2008) [2].

Magnetic Resonance Imaging (IMRI)

Mice were scanned using 7T Bruker MRI under isoflurane
anesthesia. Whole-body was imaged for each mouse in accord-
ance with a fat MRI protocol. Parameters for short T;-weighted
spin-echo pulse sequence were: repetition time=310ms, echo
time=14.7ms, slice thickness=1.2mm, field-of-view=2.6%x2.6
{em)?, matrix size=192 x 192, average=6. A fat image region was
evaluated with visual inspection.

Results

v

Body Weights :

Body weights of Rd, Jd and Ad group at 6 wk of age were
20.8+0.4g (Mean+SEM), 22,7£0.5¢g and 22.91£0.5g each. Japa-
nese and American diet increased the body weights of Irs27/-
mice when compared with regular diet (p <0.05-0.01).

Glucose tolerance test

© Fig. 1a shows the results of GTT in Irs2~/~ mice fed modern
Japanese and American diets for laboratory animals. Blood glu-
cose concentrations before and after glucose loading differed
significantly (p<0.05) between the Rd group and Ad group,
although not between the Rd group and Jd group. Thereafter, the
Ad group continued to maintain severly impaired glucose toler-
ance (p<0.05).

Insulin tolerance test

© Fig. 1b shows the results of ITT of Irs2~/~ mice fed modern
Japanese and American diets for laboratory animals. Blood glu-
cose concentrations before insulin injection were already sig-
nificantly higher in the Jd group and Ad group than in the Rd
group (p<0.05). The glucose concentration-lowering effect of
insulin was significantly impaired in the Jd group and Ad group
compared with the Rd group (p<0.05-0.01), suggesting that the
Jd group and Ad group show deterioration of insulin resistance.
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Fig.2 Effects of modern Japanese and American diets on plasma
metabolites in Irs2~/~ mice. (a) Fasting glucose, (b) plasma glucose,
(c) plasma insulin, {d) plasma triglyceride, and (e} plasma cholesterol,
Data are presented as meantstandard error. *: p<0.05, **: p<0.01
(ANOVA and Tukey’s test). )

Plasma metabolites

The Ad group showed increased plasma fasting glucose concen-
tration (¢ Fig. 2a) compared with other groups (p<0.05). How-
ever, plasma glucose (e Fig. 2b) and insulin concentrations
(© Fig. 2¢) in the Jd and Ad groups were increased when com-
pared with the Rd group (p<0.05). Conversely, plasma triglycer-
ide concentrations (© Fig. 2d) in the Jd and Ad groups were
decreased as compared with the Rd group (p <0.05). Plasma cho-
lesterol concentration (@ Fig. 2e) was the same in the Jd and Ad
groups.

Effects of Japanese and American diets on the liver
Expression of SREBP-1c mRNA (© Fig. 3a) in the Ad group was
increased compared with the Rd group (p<0.05). In addition,
expressions of PPAR y 2 mRNA (¢ Fig. 3b) and GLUT2 mRNA
(© Fig. 3c) in the Ad group were higher than in other groups
(p<0.05).

Cytosolic glucokinase (© Fig: 3d), pyruvate kinase (© Fig. 3e),
and PEPCK activities (@ Fig. 3f) were not altered by the differ-
ences of diet. Cytosolic fatty acid synthase activities (¢ Fig. 3g)
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of the Jd and Ad groups were decreased compared with the Rd
group {p<0.05). However, ACL activities (© Fig. 3h) of the Ad
group increased compared with other groups (p<0.05). In addi-
tion, malic enzyme (¢ Fig. 31) of both the Jd and Ad groups also
increased when compared with the Rd group (p<0.05), Cytosolic
aspartate aminotransferase activities (¢ Fig. 3j) of the Ad group
increased (p <0.05), in spite of hepacytes of the Ad group at 6 wk
did not differ from the Rd group by histopathologic examination
(© Fig. 3k).

Effects of Japanese and American diets on skeletal
muscle

Expressions of GLUT4 mRNA (e Fig. 4a) in the Jd and Ad groups
were lower than that in the Rd group (p<0.01).

Cytosolic hexokinase (¢ Fig. 4b), glucose-6-phosphate dehydro-
genase (© Fig. 4b), ATP citrate lyase (@ Fig. 4e) and malic
enzyme (© Fig. 4f) were not altered by differences in diet.
Cytosolic fatty acid synthase (© Fig. 4c) of the Jd group showed
higher activity than in the Rd group (p<0.05).

Effects of Japanese and American diets on WAT
Expression of GLUT4 mRNA ( © Fig. 5a) was not changed in each
group. Expression of PPAR y 2 mRNA (¢ Fig. 5b)in the Jd and Ad
groups was higher than that in the Rd group (p<0.05-0.01).
Both the Jd and Ad groups showed increased plasma TNFax con-
centrations (© Fig. 5¢) compared with the Rd group (p<0.05). In
addition, the Ad group showed increased plasma resistin con-
centrations ( © Fig. 5d) compared with other groups (p<0.05).
However, plasma MCP-1 concentrations (¢ Fig. 5e) were not
altered. On the other hand, both Jd and Ad groups showed
decreased plasma adiponectin concentrations (& Fig. 5f) com-
pared with the Rd group (p<0.05). The Ad group showed
increased plasma leptin concentrations {(© Fig. 5q) compared
with the Rd group (p<0.05). Both the Jd and Ad groups showed
decreased plasma FFA concentrations (¢ Fig. 5h) compared
with the Rd group (p<0.05-0.01).

MRI showed the effects of Japanese and American diets on intra-
peritoneal WAT in Irs2-/~ mice (© Fig. 6a, b). Peritoneal WAT
was accumulated in mice on Japanese and American diets, WAT
around the kidney and testes in the Jd and Ad groups increased
in proportion to fat contents of diets when compared with the
Rd group. In addition, the Jd and Ad groups were corpulent when
compared with the Rd group (¢ Flg. 6c).

Effects of Japanese and American diets on the pancreas
Expression of GLUT2 mRNA ( © Fig. 7a) in the Ad group was the
lowest among all groups (p<0.05). The Jd and Ad groups showed
hyperinsulinemia when compared with the Rd group (p<0.05).
The rates of increases of insulin concentration in each group
after glucose load were the same, but insulin in the Am group at
30min after glucose load was maintained of higher concentra-
tions than that in other groups (p<0.05) (© Fig. 7b). On his-
topathologic examination of Langerhans’ islands, insulin
secretion was observed in all three groups (¢ Fig. 7c).

Discussion

v

Takahashi et al. (1999) reported that fat content in diets causing
impaired glucose tolerance in C57BL/6] mice was a calorie ratio
exceeding 40% [29). Thereafter, high fat diets inducing diabetes
in mouse strains have fat contents usually exceeding 40% and as

Exp Clin Endocrinol Diabetes



,mmb

a 40 - b 70, c 60 T
6.0 | 50
£ 30
3.0 F i
2 . 5.0 s 40 f
5 2 40 3
£ 20 ¢F & g 30 Ff
< = 30 F =
2 8
2 < 20}
10k 2.0
10 b 10 F
0.0 0.0 0.0
SREBP-1c PPARr2 GLUT2
Bactin B actin Factin
d 15 ¢ € 300, f 500
53 ok I
22 1.0 92 200 g 200
© o5 o S o SV
¥ £ 3 £ BE
g =g e
2E HE & E 200 §
8% 05 835 105 &3
CE & £ 100
0.0 0.0 0.0
g 80 h o o0 p
= I -
_ T —_ —_
& 60} g 90 £5 %00 |
za zg g8
2o 2 o @ o
GE 40t TE 6of EE 600 |
nE S E RE
2E RE 5E
3 5 83
£ 20} £ 30} S E 300 F
£ £ Z£
0.0 0.0 0.0
b 15000 ¢ k
=
2
»E 1000.0 |
2o
BE
5 E
= 5000 F
£
£
0.0 Regular diet (Rd) group
[ Regular diet (Rd) group E)Japanese diet (Rd) group @ American diet (Ad) group

Fig.3 Effects of modern Japanese and American diets on RNA expression and lipogenic enzymes of liver in 527/~ mice. mRNA expressions are (a) SREBP-
1c, (b) PPARy2, and (c) GLUT2. Lipogenic enzymes are (d) glucokinase, (e) pyruvate kinase, (f) PEPCK, (g) FAS, (h) ACL, (1) malic enzyme, and (j) AST.
(k) Hepatic histopathologic examinations show regular diet group (Left) and American diet group (Right).

Hashimoto H et al. Japanese and American Diets Cause Deterloration of Insulin... Exp Clin Endocrinol Diabetes

- 463 -

This is a copy of the author's personal reprint



is a copy of the author's personal reprint

ihis

—1

a s § b c
5. * 180 ¢ g 40 p
M ! g _
0 8§
— A=
-5 8 30
10 £E 2o |
P - R - = g -
£ z 8 120 52
> Py @£
< 83 SE 20t
4 2E g8
< 05} 23 60 £ £
@ Q, —
TE v 2 10pk
= 82
_g 8
0.0 0.0 Y 00
GLUT4
Bactin
d e f
407 100 120 ¢
— -~ 80} —
I g £8
] 8 2% 8ol
za ZE g0 g5 ®
g zg © T
2e 201 sE R E
< _\g &52'*_‘:: 4.0 35 40
[+] [=3 = e "
[}
g 1op E 50l 28
0.0 0.0 00

[ Regular diet (Rd) group

Japanese diet (1d) group

Bl American diet (Ad) group

Fig.4 Effects of modern japanese and American diets on RNA expression and lipogenic enzymes of skeltal muscle in 2™/~ mice, mRNA expression is
(a) GLUTA. Lipogenic enzymes are (b) hexokinase, (c) glucose-6-phosphate dehydrogenase, (d) FAS, (e) ACL, and (f) malic enzyme.

high as 60% [10] in many cases. These diets have much higher fat
contents than the usual Japanese diet (Jd) and American diet
(Ad) at the moment. The reason for this is that diabetes is diffi-
cult to induce in mice when compared with humans and there
are major differences in lipid metabolism. However, we have
doubts about experiments performed to date using excessively
high fat loads. Indeed in Japan in recently years, the people's diet
is said to be becoming westernized but continuous daily intake
of a diet equivalent to the mouse diet with more than 40% fat
content is not usual in Japan or the United States. The effects of
the insulin signals obtained from this excessively high fat load
are very end-stage and cannot be applied to humans. In research
on obesity and diabetes, ob/ob mice [15] and db/db mice are
used [35]. Blood sugar levels in these mice are not less than
400mg/dL, which is the same as that in the NOD mouse [3}, a
type 1 diabetes mouse model. Therefore, the insulin signais
caused by the former high fat diets in strain mice and mutant
mice, which were ob/ob and db/db, were highly excessive and
terminal disease state. Diabetes in the Irs2~/~ mouse is mild
compared with that in the obfob mice [15] and db/db mice [35]
and it is a model that approximates latent diabetes. The results
of feeding with Jd and Ad to these Irs2-/~ mice included an
increase in intraperitoneal lipids and hypertrophy of adipocytes

caused by high expression levels of liver and muscle derived
lipogenetic enzyme, hepatic SREBP-1c {10] and fat PPAR-y2
[9,17]. The TNFa secreted as a result causes central deteriora-
tion of insulin resistance. This condition induces a decrease in
glucose uptake by the pancreas and impaired glucose tolerance
due to resistin from fat. The difference in impaired glucose toler-
ance in the Jd and Ad groups appears to be caused by SREBP-1c,
PPAR-y2, GLUT2, ACL and resistin. Resistin is considered to have
direct action on impaired glucose tolerance in the Ad group. For
FFA, the values in the ]Jd and Ad groups were lower than those in
the Rd group together with those of the triglycerides, which was
a highly interesting result. The same phenomenon was observed
in a comparison of Irs2~/~ mice at various ages [5]. At six weeks
of age, hypertriglyceridemia and hyper-FFA-emia were more
common than in the wild type, but at 14 weeks of age, they were
lower in Jrs27 mice than in the wild type. This phenomenon at
14 weeks of age appeared to be caused by deterioration of the
disease state at 14 weeks of age [5]. However, where did the trig-
lycerides and FFA that disappeared from the blood go? Since the
body weights were significantly increased in the Jd and Ad
groups when compared with the Rd group, distribution of vis-
ceral fat was observed by MRI, and visceral fat was found to
increase in proportion to the degree of the fat load in the diet.
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The shift of fat from the blood to the peritoneal cavity was a
phenomenon observed in Irs27/~ mice when a greater fat load
was applied. Although this is just a hypothesis, the defect of the
IRS-2 gene related to SREBP-1c is associated with inhibition of
fat distribution and fat accumulation is predominantly shifted to
the peritoneal cavity. Visceral fat accumulation and hypertrophy
of adipocytes were assumed to be caused by expression of

PPARY2 in the fat. Because of phenomena characteristic of Irs2/~
mice, it was clear that FFA is not always essential in insulin
resistance and TNFa plays the main role. When PPAR-y2 and
SREBP, which hold the key to increased fat and obesity, were
compared between the Ad group with the most serious diabetes
among the three groups and reports on high lipid loads in mouse
strains to date, the expressions of both genes increased and the
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same signal effects were found. The same results were obtained
as compared with ob/ob mice [20,23} and db/db [21,36] mice in
which diabetes is caused by a different gene. Even when exces-
sive fat loads and excessive diabetes models are not used, it is
possible that the same results as reported in the past for SREBP-
1c and PPAR-Y2 will be obtained by loading Irs2~/~ mice with the
American diet from the perinatal period. Glucokinase in the liver
of a mixed background of wild type, C57BL/6] and DBA/2 mice
used by Shiota et al. (2001) showed increased activity on a high
fat diet [25]. In a report by Rossmeisl et al. [19], activities of
PEPCK in the liver and GLUT4 in the fat of C57BL/6] mice were
lowered by a high fat diet. In the present study, they did not
show any changes in the Rg, Jd or Ad and the results for hepatic
glucokinase and PEPCK and fat GLUT4 were different from those

in reports to date. Results of experiments on high fat load with a
calorie ratio in excess of 40% show excessive reactions for these
parameters. In a past report showing high expression of PPAR-y2
[9] in the same way as in the present study, fatty liver occurred
due to the high fat diet, but in the present study, AST in the Ad
group was higher than that for Rg but no signs of fatty liver were
observed in a histological examination of the liver. Since young
mice at the age of 6 weeks were used in this study, it was inevi-
table that fatty liver was not observed, but mice are unlikely to
develop fatty liver.

The Japanese and American diets given to the Irs2-/- mice,
which we developed, showed abnormal findings in some Irs2-/~
mice but inhibited excessive reactions of insulin signals as diets
used in ordinary nutritional management compared with high
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fat diets to date. They each showed characteristic pathophysiol-
ogy. Therefore, we recommend the use of these diets in ordinary
nutritional management since the results obtained in Irs2~/-
mice given the Japanese diet or American diet in the present
study were similar to the results obtained in humans.
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Adiponectin, one of the insulin-sensitizing adipokines, has been shown to activate fatty acid oxidation in
liver and skeletal muscle, thus maintaining insulin sensitivity. However, the precise roles of adiponectin
in fatty acid synthesis are poorly understood. Here we show that adiponectin administration acutely sup-
presses expression of sterol regulatory element-binding protein (SREBP) 1c, the master regulator which
controls and upregulates the enzymes involved in fatty acid synthesis, in the liver of +Leprd/+Lepr®® (db/

Keywords: db) mouse as well as in cultured hepatocytes. We also show that adiponectin suppresses SREBP1c by Adi-
2;3523:’};;2ms poR1, one of the functional receptors for adiponetin, and furthermore that suppressing either AMP-acti-
Adiponectin vated protein kinase (AMPK) via its upstream kinase LKB1 deletion cancels the negative effect of
SREBP1c adiponectin on SREBP1c expression. These data show that adiponectin suppresses SREBP1c through
Fatty acid synthesis the AdipoR1/LKB1/AMPK pathway, and suggest a possible role for adiponectin in the regulation of hepatic
AMPK fatty acid synthesis.

© 2009 Elsevier Inc. All rights reserved.

In the pathogenesis of insulin resistance, fat accumulation in li-
ver, or hepatic steatosis, is of great importance. Steatosis can devel-
op as a result of decreased lipid oxidation and increased lipid
synthesis. SREBP1c is a critical transcription factor that controls
and upregulates the enzymes inveolved in fatty acid synthesis such
as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)-1 in
the liver [1-4]. SREBP1c is constitutively upregulated in obese
insulin-resistant animal models [5,6], while deletion of SREBP1c
in obese model mice ameliorates hepatic steatosis [6]. These data
clearly indicate that accelerated lipid synthesis in the liver contrib-
utes to the development of hepatic steatosis at least in rodent
maodels, and that SREBP1c could play critical roles in the pathogen-
esis of fatty liver and the metabolic syndrome.

Adiponectin, whose expression and plasma concentration are
inversely correlated with obesity and insulin resistance and type
2 diabetes [7-10], activates AMPK and peroxisome proliferator-

* Corresponding author, Address: Department of Metabolic Diseases, Graduate
School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655,
Japan. Fax: +81 3 5689 7209.
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0006-291X/$ - see front matter © 2009 Elsevier Inc. All rights reserved,
doi:10.1016/j.bbrc.2009.02.131

activated receptor (PPAR) o, thus increasing fatty acid oxidation
in the liver [11-13],

It has previously been reported that adiponectin prevents the
development of alcohol-induced steatosis, and also ameliorates
fatty liver disease in Lep®®/Lep®® mice [14]. These were attributed
to increasing fatty acid oxidation as well as suppressing fatty acid
synthesis by adiponectin. However, given the possibilities that im-
proved insulin sensitivity by adiponectin treatment could second-
arily affect fatty acid metabolism in the liver, and that central
adiponectin signaling interferes with hypothalamic leptin signal-
ing [15,16], it remains unclear whether adiponectin directly sup-
presses lipid synthesis.

Therefore, the current study is designed to more precisely elu-
cidate the role of adiponectin in hepatic fatty acid synthesis. Here,
we show that adiponectin directly suppresses SREBP1c via the Adi-
poR1/LKB1/AMPK pathway in hepatocytes. The data presented
here have revealed an unknown function of adiponectin in the reg-
ulation of SREBP1c,

Materials and methods

Generation of recombinant adiponectin. Bacterially expressed
murine adiponectin was prepared as described previously [12].
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Fig. 1. Intraperitoneal administration of adiponectin acutely suppresses SREBP1c and its downstream molecules. The total RNA was extracted from the liver of db/db mice 4
or 8 h after adiponectin administration. Each bar represents the mean + SE (n=9, P <0.05),

Animals. Female +Lepr®[+Lepr®® (db/db) mice were purchased
from Japan CLEA. For the immunoblot and gene expression analy-
sis, the mice at the age of 7 weeks were fasted overnight and then
injected with 3 pg/g body weight (BW) of recombinant adiponectin
intraperitoneally. At 4 or 8 h after injection, their livers were re-
moved. The mice homozygous for a conditional floxed allele of
LKB1 (hereafter LKB1°'* mice) were generated as described pre-
viously [17]. The female LKB1'°/'°* mice were subjected to experi-
ments at the age of 7 weeks. The Animal Care Committee of the
University of Tokyo approved the animal care and experimental
procedures. .

Quantitative real-time PCR. The total RNA was extracted from the
liver or cultured cells by using an RNeasy kit (QIAGEN). cDNA was
prepared by Tagman Reverse Transcription Reagents (Applied Bio-
systems). Quantitative real-time PCR was performed with ABI
Prism by using PCR Master Mix Reagent (Applied Biosystems), Lev-
els of mRNA were normalized to those of cyclophilin mRNA. The
sequences of the probes and primers used are as follows; SREBP1¢c
fwd:AAGCTGTCGGGGTAGCGTC, rev: GAGCTGGAGCATGTCTTCAA,
probe:ACCACGGAGCCATGGATTGCACATT; cyclophilin fwd: GGTCC
TGGCATCTTGTCCAT rev: CAGTCTTGGCAGTGCAGATAAAA, probe:
CTGGACCAAACACAAACGGTTCCCA. The primers and probes of the
other genes examined were purchased from Applied Biosystems.

Cells and cell culture. Fao cells were cultured in 6 cm dishes
(CORNING) with RPMI1640 medium containing 10% (vol.jvol.) fetal
bovine serum (GIBCOQ) and 50 units/ml of penicillin/streptomycin.
After equilibration with serum free medium overnight, the cells
were incubated with 25 pg/ml of adiponectin.

Transfections and luciferase assays of SREBP1c promoter activity.
Luciferase reporter plasmid harboring 2.6 Kbp of 5'-flanking region
of mouse SREBP1c exon 1 subcloned to pGL2 basic vector was
kindly provided by H. Shimano, Tsukuba University, Tsukuba, Ja-
pan, Fao cells placed onto a 24-well plate (CORNING) were trans-
fected with 1 pg of the luciferase reporter plasmid and 0.02 pg of
Renilla luciferase plasmid with HSV-TK promoter (phRL-TK, Pro-
mega) by using Lipofectamine 2000 (Invitrogen). On the 4th day
after overnight starvation, the cells were stimulated with reagents.

Luciferase activity was measured by the Dual-Luciferase Reporter
Assay System (Promega) according to the manufacture's protocol.

Generation and infection of adenoviruses. The adenoviruses
encoding siAdipoRs were generated according to the manufacture’s
protocol (TaKaRa Biotechnology). The sequences of target genes
were; siAdipoR1, GACGATGCTGAGACCAAAT; siAdipoR2, CCCGACT
CITCTCTAAATTG. An adenovirus encoding shRNA sequence for
GFP was used for their control. The adenovirus encoding a domi-
nant negative mutant of AMPKo1 subunit, Cre recombinase and
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Fig. 2. Adiponectin stimulation acutely suppresses the mRNA expressions involved
in fatty acid synthesis in Fao cells. Fao cells are incubated with adiponectin for 2 or
8 h. Each bar represents the mean+SE. (n=9, P <0.,05). For luciferase assay, Fao
cells transfeced with the reporter plasmid were incubated with adiponectin and
40 pM of insulin. Each bar represents the mean £ SE (n= 3, "P <0.005).
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LacZ were prepared as previously described [12,17]. The mice were
injected with the adenoviruses at a dose of 4 x 10° PFU/gBW for
AdipoR knockdown, or at a dose of 0.9 x 10*2 PFU/body for LKB1
gene deletion. On the 7th day, the mice were subjected to the
experiments,

Immunoprecipitation and tmmunobiottmg The liver lysates were
extracted with the homogenization buffer [18]. A total of 7 mg of
liver protein for adipoR1 and 15 mg of liver protein for AdipoR2
were immunoprecipitated with 0.5 pg of the respective antibodies
(prepared by IBL Japan). The samples were prepared with Laemmli
buffer without boiling. Fao cells were lysed with buffer A [18]). The
lysates or the precipitates were subjected to Western blotting by
using antibodies for AdipoRs, AMPK (Cell Signaling Technology)
and phosphoAMPK (Cell Signaling Technology). The blot was de-

tected by using a chemiluminescence (ECL) system (Roche Molec-
ular Biochemicals).

Statistical analysis. Statistical analysis was performed by 2-sam-
ple t-test assuming unequal variances or paired 2-sample t-test for
means. Statistical significance was accepted at P<0.05 unless
otherwise indicated.

Results and discussion

Adiponectin suppressed the expression of SREBP1c in the liver of db/db
mice

We used db/db mice to evaluate the effects of adiponectin on
hepatic lipid metabolism. These mice not only show obesity and
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several characteristics of the metabolic syndrome {19], but also
possess some additional advantages; the hyperinsulinemic and
hyperglycemic phenotypes make it feasible to observe the direct
effects of adiponectin on fatty acid metabolism, apart from the pos-
sible secondary changes in the metabolic parameters {1-3,20]. Fur-
thermore, adiponectin could interfere with the central leptin
signaling [16], which substantially affects fatty acid metabolism
in the liver [21,22]. Thus, db/db mice, which lack the leptin recep-
tor, are appropriate for us to rule out the possible involvement of
the interactions between these two adipokines. In the first place,
we administered recombinant adiponectin to db/db mice intraper-
itoneally. The administration of adiponectin caused significant
suppression of SREBPic mRNA at 4h in the liver (left panel,

A

M. Awazawa et al./Biochemical and Biophysical Research Communications 382 (2009) 5156

Fig. 1). At 8 h, the mRNA expressions of ACC-1 and SCD-1, the genes
involved in fatty acid synthesis and regulated by SREBP1c expres-
sion, were also reduced (right panel, Fig. 1). The suppression of
these genes was not attributed to the changes in the plasma insulin
or glucose concentrations, both of which remained unchanged dur-
ing the entire time course as expected (data not shown).

Adiponectin suppressed the expression of SREBP1c and lipogenic
enzymes in Fao cells

Next we stimulated Fao cells, a well differentiated hepatoma
cell line [23] with adiponectin. Adiponectin suppressed the expres-
sions of SREBP1c in a time-dependent manner (upper left panel,
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Fig. 4. Inhibition of AMPK phosphorylation abolishes SREBP1c suppression by adiponectin. (A, upper panel) Gene deletion of LKB1 was performed by adenovirus-mediated Cre
expression in LKB1°¥'*% mice, The panels show the representative blot and quantification of the phosphoAMPK/AMPK intensity of immunoblot analysis. Each bar represents
the mean + SE (subjects, n = 5; control, 11 =4; 'P<0.05). (A, lower panel) The mRNA expression of SREBP1¢ was measured 4 h after adiponectin treatment under LKB1 gene
deletion. Each bar represents the mean £ SE (n =5 except for the Cre-treated control mice, where the number of mice is 4, *P < 0.05). (B, upper panel) The Fao cells were
incubated with adiponectin under adenovirus-mediated overexpression of LacZ or DN-AMPK. The panels show the blot of the phosphoAMPK/AMPK. (B, lower panel) The
mRNA expression of SREBP1c was measured in the Fao cells after 8 h incubation with adiponectin. Each bar represents the mean + SE (n=3, 'P<0.05).
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Fig. 2), and of other lipogenic genes such as ACC-1 and FAS at 8 h
(right panel, Fig. 2). Next we conducted the reporter assay by using
the plasmid harboring putative promoter region of SREBPlc
(—2600-0 bp). In Fao cells, adiponectin significantly suppressed
the SREBP1c promoter activity at 4 h (lower left panel, Fig. 2), con-
sistent with the decrease in its mRNA expression. These in vitro as-
says strongly suggest that adiponectin directly suppresses the
expressions of SREBP1c and its downstream enzymes in
hepatocytes.

Adenovirus-mediated gene transfer of siAdipoR1 upregulated SREBP1c
expression in the liver of db/db mice

Next we examined whether adiponectin suppressed SREBP1c by
its functional receptors; AdipoR1 and AdipoR2. AdipoR1 has been
reported to be ubiquitously expressed in various tissues, while Adi-
poR2 relatively abundant in the liver [13]. We constructed adeno-
viruses encoding siRNA for AdipoR1 and AdipoR2, and examined
which receptor was responsible for the suppression of SREBP1c,
Adenovirus-mediated gene transfer of siAdipoR1 and siAdipoR2
caused robust suppression of the respective receptor in the liver
of db/db mice (left panels, Fig. 3A and B), With AdipoR1 suppressed,
the expression of SREBP1c mRNA was significantly upregulated,
and the SCD-1 mRNA expression also tended to be increased (right
panel, Fig. 3A). There were no differences in the plasma glucose lev-
els between the two groups (70.8 £ 7.0 vs. 72.8 + 4.4 mg/dl, n=13,
P=0.81). The plasma insulin concentration tended to be higher in
the siAdipoR1-treated mice, though the difference did not reach a
statistical significance (3221 + 814.4 vs. 5378 + 1041 pg/mi, n =13,
P=0.102). On the other hand, the suppression of AdipoR2 did not
alter SREBP1c expression in the liver, while the expressions of
ACO and glucokinase (GCK) were significantly reduced (right panel,
Fig. 3B), These results indicate that the suppression of SREBP1¢ by
adiponectin is mediated by its functional receptor, and that Adi-
poR1, not AdipoR2, could account for the action. These are consis-
tent with our recent report, showing that AdipoR1 knockout mice
and AdipoR1/R2 double knockout mice showed elevated hepatic
SREBP1c expression, while AdipoR2 knockout mice did not {24].

Adiponectin suppressed SREBP1c expression via activating AMPK in
hepataocytes

Next, we investigated the mechanisms whereby adiponectin
suppressed SREBP1c. It has been reported that adiponectin acti-
vates AMPK via AdipoR1 [12,24). 5-aminoimidazole-4-carboxam-
ide-1-B-p-ribofuranoside (AICAR), a pharmacological activator of
AMPK, suppresses SREBP1c in hepatocytes [25], while the disrup-
tion of LKB1, one of the major upstream kinases of AMPK, caused
a nearly complete loss of AMPK phosphorylation in the liver and
led to significant elevation of the lipogenic genes |17]. These data
prompted us to investigate whether adiponectin suppressed
SREBP1c in hepatocytes via LKB1/AMPK pathway. LKB1 disruption
in the liver was conducted by injecting an adenovirus expressing
Cre recombinase to LKB1'*°* mice, which led to robust inhibition
of the basal AMPK phosphorylation (upper panel, Fig. 4A). LKB1
deletion led to elevated basal SREBP1c expression, and completely
abolished the adiponectin-induced suppression of SREBP1c (lower
panel, Fig, 4A). We also overexpressed the dominant negative mu-
tant of AMPKa1 subunit (DN-AMPK) in Fao cells, and confirmed
that the adiponectin-induced suppression of SREBP1c was abol-
ished (Fig. 4B). These data suggest that adiponectin suppresses
SREBP1c expression through the pathway composed of AdipoR1,
LKB1 and AMPK, and also show that the AMPK activation by adipo-
necctin necessitates LKB1 as its upstream kinase.

What are the implications of SREBP1c suppression by adipnec-
tin? Under physiological conditions, plasma glucose and insulin

stimulates SREBP1c expression and fatty acid synthesis in the fed
state, whereby excess energy is stored in the form of triglycerides
in the liver. In our observation, plasma adiponectin concentration
and the expressions of AdipoRs are elevated in the fasted state
(unpublished data), suggesting that adiponectin action is physio-
logicaily more potent in the fasted state. Accordingly it is hypoth-
esized that the suppression of SREBP1c by adiponectin could
minimize excess energy storage in the liver in the fasted state,
thereby allowing peripheral tissues to efficiently utilize the lipids
as an energy source.

In contrast, under pathological conditions, the low expression of
adiponectin and its receptors is thought to contribute to the path-
ogenesis of insulin resistance and the metabolic syndrome [8-
11,26). As shown in the current study, the attenuated action of
adiponectin leads to upregulated SREBP1c expression, which is
supposed to be one of the causal factors of fatty liver and insulin
resistance. Interestingly, fatty acid synthesis is rather increased
due to the compensatory hyperinsulinaemia, despite the downreg-
ulation of many insulin actions [5,27]. Our data suggest that the
decreased adiponectin action could also, at least in part, contribute
to the development of this paradoxical increase in SREBP1c expres-
sion and hepatic lipid accumulation in obesity-induced insulin
resistance, although the precise elucidation awaits further
experiments.

In summary, we here report for the first time that adiponectin
suppresses SREBP1c expression in hepatocytes via AMPK activation
through AdipoR1. The possible regulation of fatty acid synthesis by
adiponectin, together with enhanced fatty acid oxidation, could be
one of the mechanisms whereby adiponectin maintains insulin
sensitivity.
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Rimonabant has been shown to not only decrease the food
intake and body weight but also to increase serum adiponec-
tin levels. This increase of the serum adiponectin levels has
been hypothesized to be related to the rimonabant-induced
amelioration of insulin resistance linked to obesity, although
experimental evidence to support this hypothesis is lacking.
To test this hypothesis experimentally, we generated adi-
ponectin knock-out (adipo(—/—))ob/ob mice. After 21 days
of 30 mg/kg rimonabant, the body weight and food intake
decreased to similar degrees in the ob/ob and adipo(—~/~)-
ob/ob mice. Significant improvement of insulin resistance
was observed in the ob/ob mice following rimonabant treat-
ment, associated with significant up-regulation of the plasma
adiponectin levels, in particular, of high molecular weight
adiponectin. Amelioration of insulin resistance in the ob/ob
mice was attributed to the decrease of glucose production and
activation of AMP-activated protein kinase (AMPK) in the
liver induced by rimonabant but not to increased glucose
uptake by the skeletal muscle. Interestingly, the rimonabant-
treated adipo(—/—)ob/ob mice also exhibited significant
amelioration of insulin resistance, although the degree of
improvement was significantly lower as compared with that
in the ob/ob mice. The effects of rimonabant on the liver
metabolism, namely decrease of glucose production and acti-
vation of AMPK, were also less pronounced in the adipo(—/-)-
ob/ob mice. Thus, it was concluded that rimonabant amelio-
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rates insulin resistance via both adiponectin-dependent and

adiponectin-independent pathways.

The prevalence of obesity has increased dramatically in
recent years (1, 2). It is commonly associated with type 2 diabe-
tes, coronary artery disease, and hypertension, and the coexist-
ence of these diseases in subjects has been termed the metabolic
syndrome (3). There is a demand for effective and safe anti-
obesity agents that can produce and maintain weight loss and
improve the metabolic syndrome.

The newly discovered endocannabinoid system, consist-
ing of the CB-1 (cannabinoid type-1) receptor and endoge-
nous lipid-derived ligands, contributes to the physiological
regulation of energy balance, food intake, and lipid and glu-
cose metabolism, through both central orexigenic effects
and peripheral metabolic effects (4-11). The endocannabi-
noid system is overactivated in genetic animal models of
obesity (4, 6), and the selective CB-1 blocker, rimonabant,
produces weight loss and ameliorates metabolic abnormali-
ties in obese animals (12, 13). Patients with obesity and
hyperglycemia associated with type 2 diabetes exhibit higher
concentrations of endocannabinoids in the visceral fat and
serum, respectively, than the corresponding controls {14).
Rimonabant has been shown to produce substantial weight
loss and reduction of waist circumference and also improve
insulin resistance and the profile of several metabolic and
cardiovascular risk factors in diabetic as well as nondiabetic
obese patients (15-18).

Adiponectin is an adipokine that is specifically and abun-
dantly expressed in the adipose tissue and released into the
circulation, which directly sensitizes the body to insulin (19,
20). Administration of recombinant adiponectin to rodents
increases the glucose uptake and fat oxidation in muscle, reduces
hepatic glucose production, and improves whole body insulin sen-
sitivity (21-23). Adiponectin-deficient (adipo(—/—)) mice exhibit
insulin resistance and glucose intolerance (24, 25). Previous stud-
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