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Fig. 5A-D. Representative adipose differentiation-related protein (4 DRP) immunostaining of liver tissue in mice injected with
LPS intraperitoneally. Mice were injected with several doses of LPS intraperitoneally and then killed at several time points.
Liver tissues were stained with ADRP antibody. Time-course {A) and dose-response (C) effects of LPS on ADRP protein
expression on the liver are shown. B High-power view of liver tissue (ADRP immunostaining) 24h after LPS (30mg/kg) injec-
ton. D Time-course effect of LPS on ADRP mRNA expression in the mouse liver, Mice were injected with a 30 mg/kg dose of
LPS intraperitoneally and then killed at several time points. ADRP mRNA expression in the liver was examined by real-time
polymerase chain reaction (PCR). Each data point represents the mean + SEM of five animals. *P < 0.01, compared with

conirol

lipids, we recently demonstrated increased expression
of ADRP in [atly liver in patients as well as in ob/ob
and normal mice fed a high fat diet.” In addition. it has
been very recently reported that an ADRP antisense
oligonucleotide reduced liver steatosis in ob/ob and
diet-induced obese mice,"™ and protection against fatty
liver was observed in mice lacking ADRP,"” strongly
suggesting that ADRP plays a key role in the develop-

ment of liver steatosis. The present study showed that
LPS induced liver steatosis that was accompanied by
increased expression of ADRP, indicating that upregu-
lation of ADRP expression is a common molecular
event during lipid accumulation in the liver, whatever
its cause or mechanism.

Next, we investigated the mechanism by which LPS
induces lipid accumulation in the liver in mice. Recent
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studies have established a role for hepatic PPARY in
the development and maintenance of steatosis in the
liver."* Upregulation of the PPARY gene in the liver
should result in steatosis, whereas lipid accumulation
should be prevented by downregulation of the PPARY
gene in hepatocytes.” >’ We therefore tested the hypoth-
esis that PPARYy is involved in LPS-induced lipid accu-
mulation in the liver. PPARY mRNA expression in the

* . LPS
D conirol
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Fig. 6. Tumor necrosis factor (TNF) oo mRNA expression in
the liver was examined by real-time PCR 2, 6, or 12h after
administration of 30mg/kg LPS to mice. Each data point rep-
resents the mean & SEM of five animals. *P < 0.01, compared
with control
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liver was potently inhibited by LPS. Beigneux et al.?®

. have shown that PPARy mRNA in the liver is drasti-

cally reduced by LPS in hamster” in agreement with
the present data. These results led us to conclude that
PPARYy is not implicated in the formation of lipid drop-
lets in the liver by LPS.

PPARa also plays a key role in liver steatosis.*”
PPARw is abundantly expressed in the liver, where it
functions as a lipid sensor and recognizes and responds
to the influx of fatty acids by stimulating the transcrip-
tion of PPARa-regulated genes.”*" These include genes
encoding for mitochondrial, peroxisomal., and micro-
somal oxidation systems.” In conditions of increased
demand for fatty acid oxidation, PPARo-null mice fail
to upregulate fatty acid oxidation systems in liver with
which to oxidize influxed fatty acids, and they develop
liver steatosis.” ™ Administration of PPARw agonists to
rats not only prevents the development of methionine-
and choline-deficient diet-induced steatohepatitis but
also reverses steatohepatitis.””** PPAR« expression in
the liver was rapidly and potently suppressed by LPS in

Table 1. Time-course effect of LPS on SREBP-I mRNA
expression in the mouse liver

SREBP-1/18rS

Time (h) control LPS
2 175012 1.68 £ 0.08
6 212+0.14 210+ 0.11
12 2.01 £0.13 .70+ 0.15

Values are means + SEM (n = 5)
LPS, lipopolysaccharide; SREBP-1, sterol regulatory element binding
protein 1

Fig. 7. Time-course change of mRNA
expression of peroxisome proliferator-
activated receptor (PPAR) o, PPARY,
and retinoid X receptor (RXR) o which
are known to be transcription factors
involved in lipid accumulation. Mice were
injected with 30mg/kg LPS intraperitone-
ally and then killed at several time points.
mRNA expression of PPARu, PPARY,
and RXRa in the liver was examined by
real-time PCR. Each data point repre-
sents the mean  SEM of five animals. *P
< 0.01. compared with control

. LPS
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this study, as previously shown by Tai et al.” Consider-
ing this evidence, the present results suggest that
reduced expression of PPAR« in the liver may play a
role in lipid accumulation caused by LPS.

LPS also inhibited the hepatic expression of RXRe,
another nuclear hormone receptor. Because heterodi-
merization with RXRa is crucial for the action of
PPAR0.™ the reduction of hepatic RXRo expression
alone or in association with PPARo may be a mecha-
nism for inhibiting the expression of multiple genes
for lipid oxidation. The fact that decreased expression
of transcription factors such as PPARo and RXRa
occurred within 2h after the LPS challenge supports
the hypothesis that repression of those transcription
factors plays a vital role in the accumulation of lipid in
the hepatocytes caused by LPS. Because lipid accumu-
lation was observed 12h after LPS injection, LPS may
suppress PPARc and its heterodimers, causing lipid
accumulation in the liver through inhibition of PPARw-
targeted genes for fatty acid oxidation. as described
below.

Fatty acid oxidation

M. Ohhira et al.. ADRP and liver steatosis by LPS

Fig, 8. Time-course change of mRNA
expression of several enzymes that play a
role in fatty acid synthesis or lipid oxida-
tion in the liver: fatty acid synthase,
stearoyl-CoA  desaturase, acetyl-CoA
carboxylase, enoyl-CoA hydratase, acyl-
CoA dehydrogenase, and carnitine palmi-
toyl transferase-1. Mice were injected
with 30mgrkg LPS intraperitoneally and
then killed at several time points, mRNA
expression of the above enzymes in the
liver was examined by real-time PCR.
Each data point represents the mean *
SEM of five animals. *P < (.01, compared
with control

Accumulation of lipids in the liver can result from
either stimulation of lipid synthesis or inhibition of lipid
oxidation. With regard to lipogenesis, de novo fatty acid
synthesis in the liver is regulated by transcription factors
such as SREBP-1c and PPARY.® In this study, LPS
inhibited expression of both these transcription factors
in the liver, strongly suggesting that LPS-induced liver
steatosis did not result from increased lipogenesis. In
fact, our results showed that genes responsible for lipo-
genesis in the liver were not upregulated by LPS, further
indicating that increased lipogenesis is not involved in
LPS-induced liver steatosis.

Disruption of fatty acid oxidation can also account
for excess lipid storage in the liver.! Some of the key
enzymes of fatty acid oxidation systems in liver are
regulated by PPARa.” In the present study, LPS
potently inhibited expression of PPARa and its target
genes, including enoyl-CoA hydratase, acyl-CoA dehy-
drogenase, and carnitine palmitoy! transferase-1, which
are involved in fatty acid oxidation in the liver, indicat-
ing that reduced expression of PPAR plays a vital role
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in LPS-induced lipid accumulation in the liver through
inhibition of fatly acid oxidation.

Wolfe et al.™ have demonstrated that sepsis and
endotoxins increase hepatic very low density lipopro-
tein (VLDL) production. Several reports have demon-
strated that an increase in hepatic VLDL production by
sepsis or endotoxins may be caused by an increase in
the reesterification of plasma fatty acids derived from
the stimulation of lipolysis."* These findings suggest
that an influx of fatty acid into hepatocytes might be
involved in LPS-induced lipid accumulation. As clearly
shown in the present study, LPS potently increased
expression of TNFo mRNA in the liver. The increase
in TNFo. expression and reduced adipose tissue weight
observed in this study after LLPS administration suggest
that lipolysis tollowed by an influx of fatty acids into
hepatocytes might be involved at least in part in the
observed hepatic fatty accumulation. Moreover, it has
been reported previously that increased expression of
TNFa induces lipolysis and hepatic lipid accumulation
through downregulation of PPAR« expression in the
liver,"*

Fatty acids undergo beta-oxidation in the mitochon-
dria.! Some investigators have demonstrated abnormal
mitochondrial function after endotoxic shock.* There-
fore, we speculate that LPS may disrupt mitochondrial
function, and that this disruption might play a role in
the lipid accumulation in the liver, possibly through the
inhibition of lipid oxidation. Further studies should be
performed to address this possibility.

In summary, our results suggest that LPS induces
transient lipid accumulation and expression of ADRP,
a lipid droplet surface protein, in the liver through
inhibition of fatty acid oxidation by downregulation of
PPARuw-related genes.
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Abstract

There are several cofactors which affect body iron
metabolism and accelerate iron overload. Alcohol and
hepatic viral infections are the most typical examples for
clarifying the role of cofactors in iron overload. In these
conditions, iron is deposited in hepatocytes and Kupffer
cells and reactive oxygen species (ROS) produced
through Fenton reaction have key role to facilitate
cellular uptake of transferrin-bound iron. Furthermore,
hepcidin, antimicrobial peptide produced mainly in the
liver is also responsible for intestinal iron absorption
and reticuloendothelial iron release. In patients with
ceruloplasmin deficiency, anemia and secondary iron
overload in liver and neurodegeneration are reported.
Furthermore, there is accumulating evidence that fatty
acid accumulation without alcohol and obesity itself
modifies iron overload states. Ineffective erythropoiesis
is also an important factor to accelerate iron overload,
which is associated with diseases such as thalassemia
and myelodysplastic syndrome. When this condition
persists, the dietary iron absorption is increased due to
the increment of bone marrow erythropoiesis and tissue
iron overload will thereafter occurs. In porphyria cutanea
tarda, iron is secondarily accumulated in the liver. -

© 2007 WJG. Ali rights reserved.
Key words: Iron overload; Cofactors; Alcohol; Chronic
hepatic C; Non-alcoholic steatohepatitis; Insulin

resistance; Hepatoceliular carcinoma

Kohgo Y, Tkuta K, Ohtake T, Torimoto Y, Kato 1. Iron
overload and cofactors with special reference to alcohol,

hepatitis C virus infection and steatosis/insulin resistance.
World 7 Gastroentero/ 2007; 13(35): 4699-4706

INTRODUCTION

In hereditary hemochromatosis, patients having HFE
trait are moze susceptible to iron overload when cofactors
such as alcohol, hepatitis viruses, and abnormal potphyrin
metabolism ate present. Even in the absence of hereditary
hemochromatosis, there are several conditions associated
with secondary iron overload in which iron deposition
is rather mild". For example, in alcoholics and patients
with chronic hepatitis C, intrahepatic iron is increased
and liver injury is accelerated, followed by development
of fibrosis, cirrhosis and hepatocellular carcinoma
(HCC). In addition, abnormal copper metabolism and
several causes for iron-loaded anemia are also important
cofactors which influence the background iron ovetload.
Furthermore, there is accumulating evidences that fatty
acid accumulation without alcohol and obesity itself
modifies insulin resistance through iron™ and fibrogenesis
of the liver™. In this review, the role of cofactors on
iron overload will be discussed in three categories such
as alcohol, hepatitis C virus infection and steatosis with
obesity, the most common cofactors in liver iron overload.

COFACTORS AFFECTING BODY IRON
METABOLISM AND IRON OVERLOAD

There ate several factors which affect body iron
metabolism and accelerates iron overload. Table 1 lists
cofactors and disease conditions which are known to
accelerate hepatic iron accumulation independent from
responsible genes for hereditary hemochromatosis.
Alcoholic and hepatic viral infections are the most typical
examples for clarifying the role of cofactors in iron
overload. In addition, abnormal copper metabolism and
several causes for iron-loaded anemia such as thalassemia
and myelodysplastic syndrome are also important factors
which influence the background iron ovetload. When this
condition persists, the dietary iron absorption is increased
due to the increment of bone marrow erythropoiesis™ and
tissue iron overload will occur thereafter. These patients are
usually anemic in spite of increased body iron stotes (iton-
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loaded anemia), and require frequent blood wansfusions,
which further exaggerate secondary iron overload, in
which conditions of new oral iron chelators are effe(_nvel I
In patients with ceruloplasmin deficiency, anemia and
secondary iron ovetload in liver and neurodegeneration
are reported[(". Furthermore, there are accumulating
evidences that fatty acid accumulation without alcohol
and obesity itself modifies iron overload states, Ineffective
erythropoiesis is also an important factor to accelerate
iron overload. This condition is associated with diseases
such as thalassemia, aplastic anemia, and myelodysplastic
syndrome. In porphyria cutanea tarda, iron is secondarily
accumulated in the liver and phlebotomy and oral iron
chelators are effective as well as in hemochromatosis.

ALCOHOL

Alcohol is one of the most important cofactors to modify
ot enhance iron accumulaton in the liver. Excess intake
of alcohol induces alcoholic liver diseases (ALD) such as
fatty liver, fibrosis, hepatitis, and cirrhosis, in which iron
ovetload is frequently associated”. By Perls’ iron stain,
excess iron accumulation was found in hepatic tissues with
ALD, but nof in any normal hepatic tssues'”. In ALD, iron
is deposited in both hepatocytes and reticuloendothelial
(Kupffer) cells. In advanced cases of ALD, which is also
called as “alcoholic siderosis”, the reticuloendothelial
iron deposition is dominant. In earlier stages of ALD
such as fatty liver and fibrosis, iron deposition is mild
and is preferentally present in hepatocytes rather than in
Kuptfer cells, which finding is more frequently observed
in ]apanese patients who have mild clinical phenotype
comparing with those in US™. I

The reactive oxygen species (ROS) produced play
an 1mp0rtant role in the development of ALD". The
expression of 4-hydroxy-2-nonenal (HNE)-protein
adducts, which is a lipid peroxidative product is increased
in oxidized heparocvtcb . Chronic alcohol ingestion in
experimental animals is assomated with oxidative stress as
reflected by increased hepatic levels of lipid peroxidaton
products such as malondialdehyde and HNE, both of
which have been implicated in hepan(, fibrogenesis in
the intragastric ethanol infusion model"”. Furthermore,
lipid peroxidation producrs induce gene expression of
procollagen o-1 (I) and increase collagen producnon
by several folds in cultured hepatic stellate cell™.
human ALD, there is a positive correlation between iron
deposition and histological intensity of HNE-protein
adduct’™. As shown in Figute 1, the distribution of
HNE-protein adducts and iron granules appeared to be

www.wjgnet.com
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Figure 1 lron staining and immunohistochemical staining of 4-hydroxy-2-nonenal-
modified protein {(HNE-protein) adducts in human alcoholic liver disease. The
jocalization of HNE-protein adducts and iron in hepatocytes appeared to be
identical {from ref. 14 with some modifications).

identical, suggesting that iron may be associated with
the production of HNE-protein adduct. As hepatic iron
is visualized by Petls’ reaction as an insoluble protein-
bound iron such as hemosiderin, this form of iron may
be inactive for the production of ROS. But, the free
iron responsible for Fenton reaction should be present
close to the protein-bound iron, and may be involved in
the production of HNE-protein adducts. Thete are two
pathways to generate ROS through ethanol metabolism.
Oxidation of ethanol by alcohol dehydrogenase to form
acetaldehyde, which is subsequently oxidized to acetate and
ultimately carbon dioxide and watet. Duting the oxidation
process of acetaldehyde involving aldeh} de oxidase
and xanthine oxidase, superoxide (Q2) is produced™,
In addition, cytochrome P450 is involved in the
metsbolism of ethanol, in which ROS ate also generated
in microsomes''?, Among ROS, hydroxy radical (OH) is
most potent, which is produced via Fenton reaction in
the presence of free iron and the resulted OH can easily
cause cell damage by oxidizing lipid, proteins, and nucleic
acids. In an intragastric infusion mouse model of ALD,
supplementation of carbonyl iron ad\anced eri-venular
fibrosis to bridging fibrosis and cirrhosis'"". Oxidative
stress atising from hepatocytes and macrophage activates
hepatic stellate cells by increasing the production of
cytokines such as transforming growth factor-§ (TGFp),
duectl) ot indirectly. The dietaty iron supplementdnon was
associated with increased NF-«B activation"™, and the up
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regulation of NF-gB responsive proinflammatory genes
such as IL-1p, TNFo, and MIP-1™,

In advanced cases of ALD, iron is accumulated more
prominently in Kupffer cells than in hepatocytes, mainly
due to repeated endotoxemia and hyper-cytokinemia of
TNFa and IL-18"". These cytokines induced hepatic
uptake of transferrin iron & wtro™ and ix wiro™. In mild
cases of ALD, iron is preferendally stained in hepatocytes,
rather than in Kupffer cells, suggesting that hepatocyte is
the main site of early iron storage in the hver. However, it
is not clear why iron is accumulated in liver parenchymal
cells of alcoholics in such conditions. Two possibilities
can be drawn: one is the increased uptake of iron in
hepatocytes, and another is the increased iron absorption
through hepcidin, which is a newly found antimicrobial
peptide, and is a negative regulator of iron absorption
and reticuloendothelial iron releases™. Hepatocytes have
several pathways for iron uptake. Iron in serum is usually
bound to transferrin and iron-bound transferrin is taken
up via transferrin receptor (TIR) with high affinity or via
other unknown mechanism with greater capacity, but low
affinity independent of high affinity receptor’™". There
are two molecules of transferrin recepror: transferrin
receptor 1 (TfR1) and transferrin receptor 2 (TfR2). TER1
has a high affinity to serum transferrin and considered
to be functional, while the function of TfR2 is not clear
yet, even though the TfR2 gene is responsible for genetic
hemochromatosis™®. In normal hepatocytes, TER2 is
constitutively expressed. But, TfR1 is down-regulated,
suggesting that TfR1 does not contribute to the steady
state hepatic iwon uptake. Recently, Wallace ¢f a/ teported
that homozygous TfR2 knockout mice had no TfR2
associated with typical 1iron overload, and there was no
upregulation of hepcidin mRNA, suggesting that TIR?2 is
tequired to iron regulated expression and is involved in a
pathway to HFE and hemojuvelin®, Tn addition, DMT1
may be involved when serumn iron concentration exceeds
transferrin iron binding capacity™. It is noteworthy
that TfR1 is regulated by cellular iron levels or oxidative
stresses post-transcriptionally and it is possible that ethanol
may augment TER1 expression by producing oxidative
stresses. According to immunohistochemical investigation,
TfR1 expression was increased in hepatocytes in 80% of
hepatic tissues with ALD, but was not detected in any
normal hepatic tissues™ . It is noteworthy that the mean
duration of abstinence of patients who demonstrated
positive TfR1 expression in hepatocytes was significantly
shorter than that of patients who demonstrated negative
TER1 expression.

Ethanol exposure in the presence of iron to the
primary cultured-hepatocytes demonstrated an increase
of TfR expression, and this augmenration was suppressed
by the inhibitor of alcohol dehydrogenase, 4-methyo
prrazole, but enhanced by a inhibitor of acetaldehyde
dehydrogenase, cyanamide, suggesting that ethanol
metabolite acetaldehyde itself is involved for the induction
of TfR1 by ethanol™. By functional uptake assay
using *Fe-transferrin, the additional ethanol exposure
increased transferrin-iron uptake into hepatocytes, while
non-transferrin-bound iron (NTBI) uptake™ was not
increased. It has been reported that TfR1 expression was

1 Immmmlogxcal ‘modification (Immunologlml escape of HCV)
Deu:ease ol '1'111 acuvm,'

up- regulated both wanscriptionally”™ and posttranscriptio
nally™, This regulation is induced either by iron deficiency
state or oxidative stress such as H2O:2 and nitric oxide via
iron regulatory protein, IRP™. 1n addition to the direct
cell toxicity, acetaldehyde produces free radicals™" and free
radicals modify IRP activity™™!.

Body iron homeostasis is strictly regulated by a balance
between the processes such as dietary iron absorption in
enterocytes, iron transport by transferrin in circulation,
iron utilization and storage in bone marrow and liver.
The increase of intestinal iron absorption was one of the
mechanisms of the hepatic iron deposition in alcoholics”™”
In patients with hereditary hemochromatosis, serum
pro-hepcidin is lower than that of normal controls,
suggesting that i 1ron absorption is increased in spite of
high iron storage™. It is speculated that down-tegulation
of hepcidin might be one of important factors for
pathogenesis of iron overload in ALD®. Serum pro-
hepcidin concentration in ALD was significantly lower
than that in healthy subjects, and pro- hepcidin/ ferritin
ratios in ALD were lower than healthy subjects™. In the
ethanol-loaded mouse model which has a mild steatotic
change, the hepcidin mRNA and protein expression
were significantly lower than that of control. In addition,
alcohol-loading might disrupt the sensing signal of
inflammatory cytokines, and then down-regulate hepcidin
expression, following the increased iron absorption from
small intestine. Recently, the mechanism of hepcidin
downzregulation by alcohol has been elucidated: a decreased
hepcidin expression in mouse liver is accompanied with
an increase of DMT1 and ferroportinl, and a decrease of
hepcidin promoter activity and DNA-binding activity of
CCAAT/enhancer-binding, protein o (C/EBPg)™".

HEPATITIS C VIRUS INFECTION

Hepatitis C virus infection is one of the most common
disorders in liver diseases involving chronic hepatitis,
cirthosis, and hepatocellular carcinoma (HCC). Table 2
summarizes the effect of iron on hepatitis C virus
mnfection. In the Third National Health and Nutrition
Examination Survey, HCV infection is significantly
associated with higher serum levels of ferritin and iron

in the US populationm]. The mean serum levels of
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ferritin and iron were significantly higher among subjects
with HCV infection than among subjects without liver
disease™!. In addition, serum ferritin levels were directly
and significantly correlated with serum levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and y-glutamyl transpeptidase, whereas plzitelet counts were
inversely correlated with serum ferritin. It is also found
that lipid peroxidative products such as malondialdehyde
are increased in hepatic tissues with CH-C™. In 1994, an
initial report was published that phlebotomy was effective
in improving the serum ALT level in patients with CH-C™
and a national prospective study confirmed the results™,
Since then, it was repotted that hepatic iron accumulation
in CH-C predict a respoase to interferon (IFN) therapy'™,
and phlebotomy before and during IFN therapy improved
virological and histological response to short-term
IFN therapy evaluated at the end-of-treatment™™. This
observation is reasonable considering the finding that
oxidative stress impairs intetferon alpha signal by blocking
JAK-STAT paﬂlwaym. The standard therapy for hepatitis
C is now a combined therapy of interferon-a and
ribavirin, in which padents with viral response to treatment
seemed to develop higher soluble transferrin receptor
levels™ with decline in serum iron and ferritin than non-
responders, revealing intracellular reduction of iron store
depending on the result of treatment including hemolytic
reaction by ribavitin”"!. This is an interesting observation
that decrease of iron status may be an additional effect
of the combination therapy with intetferon and ribavirin.
Moreover, HFE murations are also associated with
increased sustained virologic responses by antiviral long-term
treatment, while it is well known that HFE mutations are
associated with increased iron loading™. However, some
reports suggest that iron depletion was unable to trigger
interferon response, so that there are conflicting data.
It should be further investigated whether hepatic iron
content modify the response to intetferon’™"

From these observations, iron and related molecules
seem to be key factors in the hepatocytes to influence
the disease condition of CH-C, and also development of
cirrhosis and maybe hepatocellular carcinoma. Clinical
data on phlebotomy on CH-C generally indicates that
phlebotomy does not influence the viral load in vivo.
On the other hand, in vitro study on HCV replication
is controversial: iron promotes HCV translation by up-
regulating expression of the translation initiation factor
eIlF3 by reporter assay” ", whereas iron suppresses HCV
replication by inactivating the RNA polymerase NS5B™.

As previously described, hepatocytes have two iron
uptake systems, transferrin-mediated and nontransferrin-
bound iron-mediated pathway. Transferrin and TIR1
are molecules involved in the classical pathway of
cellular iron uptake, but are faintly expressed in normal
hepatocytes, and is down-regulated in iron-loaded hepatic
tissues with hemochromatosis. Concerning the post-
transcriptional regulation of TfR1, two mechanisms are
postulated through the activity change of IRP which is
already mentioned. In CH-C, TfR1 expression was up-
regulated and DMT1 expression was down-regulated
in the condition of hepatic excess iron accumulation,
suggesting that regulation of DMT!1 expression is iron-
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dependent, but that of TiR1 expression is iron-independ-
ent in CH-CP1 In patients with CH-C, serum values of
inflammatory cytokines such as IL-1p, IL-6, and TNF¢
have been reported to be high in comparison with those
in normal controls. In addition, TER1 was up-regulated by
IL-1B, IL-6, and TNFgq in HepG2. Administration of IL.-6
augments hepatic uptake of transferrin-bound iron ("Fe),
and this is mainly mediated through hepatocytes, but not
through Kupffer cells. These results suggest that the up-
regulation of TiR1 expression in CH-C might be caused
by increase of inflammatory cytokines that proceeded
from HCYV infection, although there is a possibility that
the components of HCV themselves may mduce TfR1
exptession directly or indirectly.

Like wise, the up-regulated TfR1 might act as a key
molecule for hepatic excess iron accumulation in CH-C;
however, there are several candidate molecules which
cause this condition. For instance, each mutant of HFE,
TfR2, hepcidin, hemojuvelin and ferroportinl (also known
as Iregl or MTP1) with substitution of amino acid causes
the similar phenotype of hemochromatosis. That is, these
facts indicate that at least 5 molecules are involved in
the familiar hemochromatosis”™, In hepatocytes, TfR2
ptedominantly expresses in the normal condition®™ and
the disruption of TfR2 gene caused the hepatic iron
overload, a phenotype of hemochromatosis, suggesting
that TfR2 should also have important role in hepatic iron
metabolism®”. This receptor might act as a sensot of iron
status because hepatic TfR2 protein level was increased in
iron loaded rats and was decreased in iron deficient rats.
Recently, Takeo et al reported that in CH-C TfR2 protein
expression is increased parallel with ferroporthﬂm,
although the meaning of this TfR2 elevation is still to be
elucidated!®™,

In addition, there was a significant correlation of
hepcidin mRNA expression in the liver with hepatic iron
concentration and serum ferritin, but did not correlate
with ALT, AST, HAI, or viral load. In inflammatory
conditions, hepcidin is regulated transcriptionally by
IL-6"" and TL-1B"" independent of liver iron content. It is
notewotthy that, in contrast to other inflammatory states,
hepcidin mRNA expression in the liver was independent
of markers of inflammation in hepatitis C, suggesting that
iron stores in patients with hepatitis C regulate hepcidin
expression, and that iron loading in chronic hepatitis C is
not due to inappropriate hepcidin expressionmi]. However,
there is still a controversial result concerning the hepcidin
metabolism in chronic hepatitis C that serum pro-hepcidin
is down—regulatedm. The role of hepcidin in chronic
hepatits C seems to need further consideration.

The role of iron on the hepatocellular carcinoma
{HCC) development in patients with chronic hepatitis C
is another major concern. In primary hemochromatosis,
iron could be involved in the development of HCC
in associated with cirrhosis, suggesting a strong link
between heavy iron overload and HCC development.
In cases of chronic hepatitis C, it is also known that
HCC are developed 20 to 30 years after the infection
of hepatitis C virus through the progression of the
disease from chronic hepatitis and cirrhosis. In Long-
Evans Cinnamon (LEC) rat, an animal model of human
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Wilson disease which spontancously developed hepatitis
and liver fibrosis, HCC is frequently developed after the
rats have recovered from initial fubminant hepatitis and
subsequent liver fibrosis. This is considered to relate to
progressive iron accumulation in the animal®™, and iron
depletion prevents their development of hepatic cancer™™.
Even though the iron deposition in chronic hepatitis C
is mild compared with that in hemochromatosis, iron
may be an independent factor on the rsk of HCC. It is
teported that liver fibrosis is a favorable environment of
proliferation of cancer cells by releasing transforming
growth factor B, and there is a strong link between hver
fibrosis and liver iron deposition. In clinical trials of
phiebotomy, the hepatic content of 8-OH deoxyguanosine
is decreased and fibrotic score is improved. An important
issue in hepatocaricinogenesis in chronic hepatitis C is
the closely related sustained production of ROS during
inflammation and fibrosis. Moriya ef o/ reported that HCC
developed in HCV core transgenic mice after the age of
16 mo, and showed high hepatic lipid perosidation levels
in old (mote than 16 mo) core transgenic mice, than in
control™. However, the association of HCV transgenic
mice, and HCC development disappeared with advanced
passaging of animals, suggesting that HCC development
in HCV transgenic mice cannot be simply explained by
HCYV infection, but requires additional cofactors. A recent
study by Furutani ¢ 4/ clearly showed that hepatic iron
ovetload induces HCC in transgenic mice expressing HCV
polyprotein””. Transgenic animal carrying full length
polyprotein-coding tegion (core to NS5B, nts 342-9378)
by using pAlb promoter/enhancer was fed with excess
iron diet. After 6 mo feeding, the transgenic mice showed
marked steatosis and increased 8 hydroxy-2'deoxyguanosine
content in association with the hepatic iron accumulation.
Twelve months after feeding, 45% of transgenic mice
developed hepatic tumors including HCC. It is noteworthy
that the steatosis does not accompany with inflammation
but a remarkable ultrastructural alteration of mitochondria
associated with decreased degradation activity of fatty
acids.

STEATOSIS AND INSULIN RESISTANCE

Nonalcoholic steatohepatitis (NASH) 1s a clinical entity
characterized by the development of histopathological
changes in the liver that are neaxly identical to those
induced by excessive alcohol intake, but in the absence of
alcohol abuse; the presence of macrovesicular steatosis
and mixes mflammatory infiltrate associate with varying
amounts of Mallory’s hyaline, glycogenated nuclei,
and focal hepatocyte ballooning degeneration. Clinical
features of NASH include obesity, hyperlipidemia,
diabetes mellitus, and hypertension. In US population,
approximately 25% is obese, and at least 20% of the obese
individuals have hepatic steatosis. Thus, non-alcoholic
liver disease (NAFLD) is the most common cause of hiver
dysfunction, and it 1s believed that NASH becomes a cause
of cryptogenic cirrhosis and hepatocellular carcinoma
(HCC). In patients with homozygote of HFE-related
hemochromatosis, obesity and steatosis affect liver disease
progtession, and will be cofactors for iron overload. There

15 one study of Australia that showed that the prevalence
of abnormal genotype of HFE in NASH is 31%
compared to a normal prevalence of 13% in the general
population, sugget that excess iron might be unportant. A
study on North American subjects showed similar results
that the prevalence of the HFE gene mutation associated
with hereditary hemochromatosis are increasing in patients
with NASH™, In the study dealing Japanese NASH
patients, who had no HFE gene mutations, a significant
staining of liver iron and increased level of thioredoxin,
a marker of oxidative stress in addition to the increase of
serum ferritin, was observed.

As diabetes and obesity were background conditions
of NAFLD, and is thought to be a mitial triggering factor,
insulin resistance is now considered the fundamental
operative mechanism. Insulin resistance is probably the
"first step” in NASH, and a close corzelation between
insulin resistance and iron is speculated. Even though
it is not still clear whether secondary iton accumulaton
increases insulin resistance, or vice versa, oxidative stress
may be the elusive "second" hit of possibly multiple
steps in the progression of steatosis to fibrosing
steatohepatitis' . This may be duc to the activation of
stellate cells™,

Because hepatic iron promotes oxidative stress, it
seems that iron is a contributory cofactor in NASH. This
proposal is strengthened by an association with hepatic
fibrosis with NASH™ and was confirmed by measuring
serum markers of oxidative stress” ", Excess hepatic
iron also occur in insulin resistance-associated iron
overload (IRHIO), characterized by hyperferritinemia
with normal to mild increases in transfettin satutation.
There is an interesting clinical study that venesections
and restricted diet are effective in patients with IRHIQO™,
As in IRHIOQ, restriction of dietary calories, fat and iron
improved NAFLD in addition the decrease of levels of
serum aminotransferases and ferritin””. It seems that
the simultaneous disorder of iron and glucose and/or
lipid metabolism, in most cases associated with insulin
resistance, is responsible for persistent hyperferritinemia
and identifies patients at risk for NASH®™., However, it is
still unclear why iron is deposited in IRHIO and NAFLD.
There 1s an interesting report by Bekri 7 &/ that there is an
increase of hepcidin in adipose tissue of the severely obese
but of liver, suggesting that severe obesity itself cause
hypoferremia due to the overproduction of hepcidin in the
adipocytes””. This finding may explain the hypoferremia in
severe obese patients, but does not show the mechanism
of hepatic iron deposition in IRHIO and NASH. Further
studies are needed to clarify this issue, including an
increase of transferrin iron influx into hepatocytes in
NAFLD.

In patients with NASH, increased transferrin saturation
correlated positively with the severity of fibrosis in
univariate analysis, although it became insignificant when
age, obesity, diabetes, and AST/ALT ratio were controlled.
A recent study showed improvement in insulin sensitivity
with the use of venesection in 11 patients with NASH.
Biweekly phlebotomy untl serum ferritin concentration
became lower than or equal to 30 ng/mL reduced mean
serum ALT activity without a significant change of
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Figure 2 Postulated schema of liver damage occurred by alcohol, HCV infection,
obesity and insulin resistant. A common pathway through steatosis/oxidative stress
may be responsible for the development of fiver fibrosis and carcinogenesis by
iron.

body weight, suggesting that iron reduction therapy by
phlebotomy will be one of the promising therapies for
NASH™, although this approach cannot be implemented
without extenstve review.

The natural history of NASH is still unclear, but
some patients follow advanced liver fibrosis progressing
to cirrhosis and sometimes HCC™. It is also known that
diabetes increases the risk of hepatocellular carcinoma
in US™ Further studies are needed to clarify this issue,
especially the relation between hepatocarcinogenesis from
mild iron accumulation in NASH.

As shown in Figute 2, a common pathway through .

steatosis/oxidative stress may be present for the develop-
ment of liver fibrosis and carcinogenesis by iron.
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Hepcidin Is Down-Regulated in Alcohol Loading

Takaaki Ohtake, Hiroyuki Saito, Yayoi Hosoki, Mitsutaka Inoue, Shigeki Miyoshi, Yasuaki
Suzuki, Yoshinori Fujimoto, and Yutaka Kohgo

Background: It is common for alcoholic patients to have excess iron accumulation in the liver,
which may contribute to the development of alcoholic liver disease (ALD). However, the mechanism
of hepatic iron uptake in ALD is still obscure. Recently, a novel iron-regulatory hormone hepcidin
was found that suppresses the absorption of iron from the small intestine and the release of iron from
macrophages. To elucidate the contribution of hepcidin toward the hepatic excess iron accumulation
in ALD, we examined whether alcohol loading affects hepcidin expression both in ALD patients and
in an ethanol-fed mouse model.

Methods: Serum prohepcidin concentration was quantified by enzyme-linked immunosorbent
assay. Hepatic hepcidin-1 and hepcidin-2 mRNA expressions in mouse liver were evaluated by quan-
titative real-time reverse-transcriptase polymerase chain reaction method. The protein expression of
prohepcidin in mouse liver was examined immunohistochemically by rabbit antimouse prohepcidin
antibody. .

Results: Serum prohepcidin concentration in ALD was significantly lower than that in healthy
subjects (p<0.001). Especially, serum prohepcidin concentrations were decreased in the patients
whose serum ferritin value was high. In the ethanol-fed mouse model, hepatic hepcidin-1 mRNA
expression was significantly lower than that in control (p = 0.04). Prohepcidin was expressed in the
cytoplasm of hepatocytes of mice liver tissue sections, and its expression was decreased after ethanol
loading.

Conclusion: Alcohol loading down-regulates hepatic hepcidin expression and leads to the increase
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of iron absorption from the intestine.

Key Words: Ethanol, Hepcidin, Iron, Alcoholic Liver Disease.

LCOHOLIC LIVER DISEASES (ALD) are charac-

terized by fatty liver, fibrosis, and hepatitis, and
excess iron is frequently accumulated in the liver tissue
(Brissot et al., 1981). In a rat model, a prolonged ethanol
loading induced hepatic iron overload (Valerio et al,,
1996). Concerning the pathogenesis of ALD, the produc-
tion of reactive oxygen species (ROS) through ethanol
oxidation is considered to play an important role. Among
ROS, hydroxy radical (OH ™) is the most potent oxidant,
which is produced via the Fenton reaction in the presence
of free iron. The resulting hydroxy radicals can easily
cause damage to cells by oxidizing lipid, proteins, and
nucleic acids. In an intragastric infusion model of ALD,
supplementation of carbonyl iron advanced perivenular
fibrosis to bridging fibrosis and cirrhosis (Tsukamoto
et al., 1995). The dietary iron supplementation was associ-
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ated with increased nucleating factor-xB (NF-xB) activation
(Xiong et al., 2003), and the up-regulation of NF-xB-
responsive proinflammatory genes such as interleukin-18
(IL-18) and tumor necrosis factor-a (TNF-a) (French,
2001). Furthermore, oxidative stress arising from hepato-
cytes and macrophage may activate hepatic stellate cells by
increasing the production of cytokines such as transform-
ing growth factor-f (TGF-f), directly or indirectly
(Tsukamoto et al., 1995). We also reported that the local-
ization of 4-hydroxy-2-nonenal (HNE)-protein adducts,
which are produced by free radical, and iron in hepato-
cytes appeared to be identical to ALD (Ohhira et al.,
1998).

Concerning the mechanism of hepatic iron accumu-
lation in ALD, we have reported the up-regulation of
transferrin receptor 1 expression in hepatocytes by habit-
ual alcohol drinking (Suzuki et al., 2002). This clinical
finding was supported by our experimental model showing
the induction of transferrin receptor 1 by ethanol in rat
primary hepatocyte culture (Suzuki et al., 2004). Thus, the
transferrin-mediated uptake of iron is one of the key
factors related to excess iron accumulation in hepatocytes
(Kohgo et al.,, 2005). Another important mechanism is the
increase of iron absorption from the intestine in chronic
alcoholic individuals, but this mechanism is still unknown
(Duane et al., 1992). Recently, iron regulatory hormone,
hepcidin, which is originally found as a circulating
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antimicrobial peptide produced by hepatocytes and whose
expression is regulated by inflammatory stimuli and iron
loading, was found to act as a suppressor of iron absorp-
tion in the small intestine (Ganz, 2003; Krause et al.,
2000; Park et al., 2001). Hepcidin-deficient mouse has a
phenotype similar to human hereditary hemochromatosis
(Nicolas et al., 2001). This peptide expression was down-
regulated in hereditary hemochromatosis that is mainly
caused by the increase of iron absorption (Bridle et al.,
2003). Therefore, it is possible that the down-regulated
hepcidin is one of the important factors in hepatic iron
overloads including ALD. However, the level of hepcidin
expression in ALD is still unknown. In this study, we
firstly evaluated serum prohepcidin level in patients with
ALD. We then investigated the expression of both hepatic
hepcidin mRNA and prohepcidin protein in an ethanol-
loaded mice model.

MATERIALS AND METHODS
Subjects

Serum samples were obtained from 9 healthy individuals and 47
patients with ALD. Alcoholic liver disease consisted of 11 fatty liver,
8 hepatitis, 16 liver fibrosis, and 8 liver cirrhosis in Asahikawa Med-
ical College Hospital and Furano Hospital of Hokkaido Social
Service Association. The diagnosis of ALD was according to the
Diagnosis Criteria for Alcoholic liver injury, established by the Tak-
ada Group in Japanese Ministry of Education (Takada et al., 1993).

Informed consent for this clinical research was obtained from all
healthy individuals and patients. We ensured that patients had no
infection of hepatitis B and C virus.

Measurement of Serum Prohepcidin Concentration

The serum prohepeidin concentration of each sample was quanti-
fied by a sensitive enzyme-linked immunosorbent assay (ELISA;
DRG instruments GmbH, Marburg, Germany) (Kulaksiz et al.,
2004; Taes et al., 2004).

Acute Ethanol-Loaded Mouse Model

Studies were approved by the Animal Experiment Committee,
Asahikawa Medical College. Care of mice, animal experiments, and
all reports were carried out in accordance with the rules and guide-
lines of the Animal Experiment Committee, Asahikawa Medical
College. Twelve-week-old male C57BL/6 mice (Charles River Japan
Inc., Yokohama, Japan) were housed in a 12-hour light/dark cycle
(light on 7 am), temperature 22 °C, and allowed ad libitum access to
diet and water in the Animal experiment unit, Asahikawa Medical
College. Mice were loaded with 25% ethanol every 12 hours orally
using a sonde and a 1 mL syringe. The amount of loaded ethanol was
increased gradually from 5 to 10 g/kg every day. Mice were killed 24
hours after final ethanol loading on day 4. Mice were anesthetized
with diethyl ether. Blood was collected by a cardiac puncture to
measure serum alanine aminotransferase (ALT). Liver samples were
obtained for analyses for histology and quantitative real-time PCR
study. Samples for RNA isolation were immediately stabilized
in RNAlater RNA Stabilization Reagent (QIAGEN, Hilden,
Germany) for storage.

Biochemical Analysis

Mouse serum ALT was measured by the GOT GPT CII test kit
(Wako, Osaka, Japan). ‘

3S

Histopathologic Evaluation

Liver tissue samples were fixed in 10% formalin buffer, embedded
in paraffin, and cut. Tissue sections were stained with hematoxylin
and eosin (H&E).

RNA Isolation and First-Strand cDN A Synthesis

Total hepatic RNA was isolated from small pieces of liver (20-30
mg) using the QTAGEN RNeasy Mini Kit (QIAGEN). RNA was
reverse transcribed using the RETROscript (Ambion Inc., Austin,
TX). From each mouse, 1 ug of total RNA was mixed with 2 uL. of
Random decamers and nuclease-free water in a total volume of 12
uL and heated at 80°C for 3 minutes. The mixture was then chilled
on ice and incubated with 2 uL 10X reverse transcriptase (RT) buff-
er, 4 uL ANTP mix, 1 yL RNase inhibitor, and 1 pL. RT, at 44°C for
60 minutes. The reaction mixtures were further incubated for 10
minutes at 92 °C. The cDNA was stored at —30°C until used for
real-time PCR.

Quantitative Real-Time PCR

Mouse hepatic hepcidin-1 and hepeidin-2 mRNA expressions and
albumin mRNA expression were evaluated in an ethanol-loaded
mouse model by the quantitative real-time RT-PCR method. The
sequences of primer sets were Hepcidin 1: sense was 5'-CCTATCTC
CATCAACAGATG-3', antisense was 5-AACAGATACCACACT
GGGAA-3', Hepcidin 2: sense was 5'-CCTATCTCCAGCAAC
AGATG-¥, antisense was 5'-AACAGATACCACAGGAGGGT-%,
and albumin: sense was 5'-CTCAGGTGTCAACCCCAA-3', anti-
sense was 5'-TCCACACAAGGCAGTCTC-3' (Mazur et al., 2003;
Nicolas et al., 2001). For internal control, 18s ribosomal RNA of
primer sets (Ambion) was used.

A LightCycler system (Roche Diagnostics GmbH, Penzberg, Ger-
many) was used for quantitative PCR. The PCR profile for Hepcidin
consisted of the following steps: 95°C for 10 minutes to activate
FastStart Taqg DNA polymerase; 45 cycles each consisting of 95°C
for 10 seconds, 55°C for 5 seconds, and 80°C for 10 seconds. For
data analysis, the comparative Ct method was used.

Immunohistochemical Study

Frozen tissue sections from mice liver were fixed in 4% parafor-
maldehyde/PBS and endogenous peroxidase activity was quenched
using 0.3% hydrogen peroxide in methanol. Sections were then
blocked with 2% nonimmune goat serum (DakoCytomation, Car-
pinteria, CA) in 3% BSA/PBS followed by incubation with 1:100
diluted affinity purified rabbit antimouse prohepcidin antibody
(Alpha Diagnostic Intl. Inc., San Antonio, TX) in 3% BSA/PBS,
overnight at 4 °C, After washing, sections were incubated with 1:200
diluted biotinylated goat antirabbit antibody in 2% goat serum, and
the 3% BSA/PBS ABC-horseradish peroxidase method (Vecta-
stain® Elite ABC kit, Vector Laboratories, Burlingame, CA) and
3,3-diaminobenzidine substrate (DAB Substrate kit, Funakoshi,
Japan) were used for detection of antibody according to the
manufacturer’s instructions. Sections were counterstained with
hematoxylin QS (Vector Laboratories). Antibody specificity was
confirmed using rabbit nonimmune IgG (DakoCytomation).

Statistical Analysis

The results are expressed as means £ SD. Student’s t-test or
Welch’s test was used for statistical analyses of serum biochemical
analyses, serum prohepcidin concentration, mouse hepcidin-1, hep-
cidin-2, and albumin mRNA expressions. Differences in values were
considered to be significant when P value <0.05.
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RESULTS
Measurement of Serum Prohepcidin Concentration in ALD

Biochemical analyses of sera in all clinical subjects were
performed. Values of serum ALT, y-glutamyltranspepti-
dase (GGT), and ferritin of subjects with ALD were higher
than those of healthy subjects (respectively, p =0.003,
p<0.001, p<0.001 for each comparison) (Figs. 1A-1C).
From these data, we confirmed that liver dysfunction and
iron overload existed in subjects with ALD.

Serum prohepcidin concentration was measured by
using an ELISA system. We performed measurement of
serum prohepeidin concentration 3 times using this system
and confirmed that the results were reproducible. The
serum prohepcidin concentration of healthy subjects and
ALD were 1,570 4260 and 710 + 540 ng/mL, respec-
tively, showing that the serum prohepcidin concentration
in ALD was significantly lower than that in healthy sub-
jects (p<0.001; Fig. 2A). No significant correlation was
found in our samples of ALD between prohepcidin and
ferritin (Fig. 2B). Prohepcidin/ferritin ratios of healthy
subjects and ALD were 13.4 + 7.5 and 4.8 = 5.8, respect-
ively, showing that the prohepcidin/ferritin ratio in ALD
was significantly lower than healthy subjects (p<0.005;
Fig. 2C).
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Fig. 1. Biochemical examination of clinical subjects with alcoholic liver
disease (ALD). The values of serum alanine aminotransferase (ALT) (A),
y-glutamyltranspeptidase (GGT) (B), and ferritin (C) of subjects with ALD were
higher than those of healthy subjects (control). Respectively, p=0.003,
p<0.001, p<0.001 for each comparison.
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Fig. 2. Evaluation of serum prohepcidin concentration in alcoholic liver
disease (ALD). Serum prohepcidin concentration in ALD was significantly
lower than that in healthy subjects (p<0.001) (A). No remarkable correlation
between serum.prohepcidin levels and serum ferritin levels was observed in
our samples of ALD. Empty circles indicate healthy subjects; filled circles
indicate ALD (B). The prohepcidin/ferritin ratio in ALD was significantly lower
than that in healthy subjects (p<0.005) (C).

Hepcidin Expression in the Ethanol-Loaded Mice Model

In the ethanol-loaded mouse model, there was a mild
steatotic change in hepatocytes of ethanol-loaded mice
with H&E staining. However, there was no inflammatory
cell infiltration and necrosis in both lobular and portal
regions. (Fig. 3) There was no visible iron deposit in liver
tissue by Prussian blue staining under this condition (data
not shown). There was no difference in serum ALT level
between control and ethanol-loaded mice. Hepatic albu-
min mRNA expression of ethanol-loaded mice was found
to be half of the control using the quantitative real-time
PCR method (p =0.045; Fig. 4). In this mouse model,
there is a significant metabolic change of lipids and pro-
teins, although there was no significant cytotoxicity for
hepatocytes.

Mouse hepcidin has 2 homolog named as hepcidin-1 and
hepcidin-2, but only hepcidin-1 can act as iron-regulatory
hormone. Mouse hepcidin-1 mRNA expression in liver
tissue of ethanol-loaded mice was significantly lower than
that of control (p = 0.04). Hepcidin-2 mRNA expression
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Fig. 3. Histological findings of mouse liver on alcohol foading. There was a mild steatotic change in hepatocytes of alcohol-loaded mice with hematoxyiin
and eosinstaining. However, there were no inflammatory cell infiltration and necrosis in both lobular and portal regions (B). (A) Liver tissue of control mouse.

Magnification: x200.

in liver tissues of alcohol-loaded mice was also lower than
that of control (p = 0.07; Fig. 5). It is noteworthy that the
down-regulation of hepcidin mRNA was more significant
than that of albumin mRNA, suggesting that the down-
regulated hepcidin mRNA expression was not a result of
only the overall decrease of protein synthesis as shown in
that of albumin. Next, we investigated the protein expres-
sion of prohepcidin by an immunohistochemical study.
Hepatocytes of control mice show prohepcidin expression
in the cytoplasm as reported previously (Wallace et al.,
2005). Prohepcidin was expressed in the cytoplasm of
whole intralobular hepatocytes of mice liver tissue sec-
tions. Compared with the control, the prohepcidin stain in
hepatocytes of ethanol-loaded mice was decreased (Fig. 6).
Consequently, the expression of hepcidin in both mRNA
and protein level was down-regulated by ethanol loading.

DISCUSSION

In ALD, hepatic iron overload is a well-known phenom-
enon (Brissot et al., 1981). Actually, in this study, serum
ferritin values of patients with ALD, which reflects the
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Fig. 4. In an alcohol-loaded mouse model, there was no difference in
serum alanine aminotransferase between control and alcohol-loaded mice
(A). However, hepatic albumin mRNA expression of alcohol-loaded mice was
half that of control (p = 0.045) (B).

body storage iron, were significantly higher than those of
healthy subjects in addition to the elevations of serum
ALT and GGT. However, the mechanism of hepatic iron
overload in ALD has not been elucidated well. Concerning
the mechanisms of hepatic iron overload, we must
consider both hepatic and intestinal factors in iron metab-
olism. We have already reported the implication of hepatic
up-regulation of transferrin receptor 1 expression in
hepatic iron overload of ALD as a hepatic factor (Suzuki
et al., 2002, 2004). As another important factor, the
increase of iron absorption in the small intestine of
chronic alcoholic patients has been reported, but this
mechanism is unknown (Duane et al., 1992).

Iron regulatory hormone, hepcidin, which is encoded in
the HAMP gene and is produced in hepatocytes, sup-
presses the absorption of iron from the small intestine and
the release of iron from macrophage. Moreover, hepcidin
is regulated by inflammatory stimuli and iron loading to
hepatocytes (Ganz, 2003). The detailed mechanism of the
function of hepcidin is still unclear. An inverse relationship
has been observed between hepcidin levels and ferroportin
levels, which is an iron exporter present on the surface of
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Fig. 5. Mouse hepcidin-1 mRNA expression in liver tissue of alcohol-load-
ed mice was significantly lower than that of contro! (p = 0.04) (A). Hepcidin-2
mRNA expression in liver tissues of alcohol-loaded mice was lower than that
of contro! (p = 0.07) (B).
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Fig. 6. Immunohistochemical analysis for prohepcidin in the liver with alcohol loading. Whole intralobular hepatocytes of control mice show prohepcidin
expression in the cytoplasm (A). However, that in hepatocytes of alcohol-loaded mice was decreased compared with control (C). (B) and (D) were incubated in

preimmune rabbit IgG as negative control. Magnification: x400.

enterocytes and macrophages. Nemeth et al. (2004a) dem-
onstrated hepcidin bound to ferroportin in tissue culture
cells, resulting in the internalization and degradation of
ferroportin, leading to a decrease of export of cellular iron.
In brief, hepcidin should be up-regulated in hepatic
iron overload to prevent iron overload by decreasing iron
absorption. However, in the liver of patients with
hereditary hemochromatosis related to the HFE gene or
transferrin receptor-2 gene mutation and that in an animal
model, hepcidin was down-regulated despite significant
hepatic iron overload (Bridle et al., 2003; Kawabata et al.,
2005; Nemeth et al., 2005; Nicolas et al., 2003; Pietrangelo
et al., 2005; Wallace et al., 2005). In hemochromatosis,
iron absorption is increased, and then hyperferremia
occurs, and excess iron is accumulated in parenchymal
cells of the liver, pancreas, heart, and muscle, etc. As
hepcidin is considered to be a key molecule for primary
iron overload, there is another possibility that secondary
hepatic iron overloads including ALD also may be caused
by secondary dysfunction of hepcidin expression.

It is very difficult to quantify the level of hepcidin
peptide in a sample, because active hepcidin peptide is 25

amino acid sequence including 8 cysteines that form 4
disulfide bonds, and has a hairpin amphipathic structure
(Hunter et al., 2002). There is no report about a convenient
method for quantification of an active form of hepcidin
peptide, except Western blot analysis (Dallalio et al., 2003;
Nemeth et al., 2003). Instead, the ELISA system for quan-
tification of prohepcidin, which is a proregion sequence of
an inactive form, has been reported (Kulaksiz et al., 2004).
In this study, we used this ELISA system and investigated
the concentration of prohepcidin in subjects with ALD as
a precursor form. It was reported that urinary hepcidin
excretion was positively correlated with serum ferritin,
reflecting the increase of hepcidin production in
iron-overloaded livers in patients with iron overload,
infections, or inflammatory diseases (Nemeth et al.,
2003). It is noteworthy in this study that the serum pro-
hepcidin level in ALD was more suppressed than healthy
subjects. Furthermore, serum prohepcidin concentrations
were especially decreased in some patients, whose serum
ferritin value was high, as seen in patients with untreated
hereditary hemochromatosis. As a ratio of serum pro-
hepcidin and serum ferritin (prohepcidin/ferritin ratio) has
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been shown to have excellent performance in estimating
iron metabolism condition in hereditary hemochromatosis,
we adapted this formula for ALD. In patients with ALD,
our study showed that a prohepcidin/ferritin ratio was also
significantly lower than healthy subjects as seen in patients
with primary hemochromatosis. Therefore, we speculate
that down-regulation of hepcidin might be one of the
important factors for pathogenesis of iron overload in ALD.

To confirm these clinical data, we further investigated
whether ethanol loading suppressed the expression of
hepcidin in liver tissue using a quantitative real-time PCR
system. Hepcidin mRNA expression in the liver of an
alcohol-loaded mouse was decreased. Concerning the
pathological findings of this alcohol-loaded mouse liver
tissue, hepatic steatosis was present that is compatible with
the early stage of ALD frequently observed in human
alcoholic individuals. Accumulation of small lipid droplets
in hepatocytes was observed in this acute alcohol-loaded
mouse model. However, there was no infiltration of
inflammatory cells and necrosis of hepatocytes. As the
serum ALT level was also in the normal range, the cyto-
toxicity to hepatocytes by alcohol loading in this model
could be ignored and alcohol-induced liver injury by more
than a moderate degree did not occur in this model. It is
also noteworthy that there is no visible iron deposit in liver
tissue by Prussian blue staining, suggesting that hepcidin
down-regulation may be an early event of ALD before
a significant iron deposition occurs in the liver. It is note-
worthy that the down-regulation of hepcidin mRNA was
more significant than that of albumin mRNA, suggesting
that the down-regulated hepcidin mRINA expression was
not a result of only the overall decrease of protein synthe-
sis as shown in that of albumin. However, we have to be
careful while concluding that the down-regulation of
hepatic hepcidin mRNA in this alcohol-loaded mouse
model is specific for ethanol at this time.

Concerning the localization of prohepcidin in hepato-
cytes, previous studies have suggested that prohepcidin is
expressed in the nucleus (Pigeon et al., 2001). However,
hepcidin was detected in the cytoplasm of HepG2 cells,
whereas in liver tissue sections hepcidin expression was

_observed in the basolateral membrane of hepatocytes
(Kulaksiz et al., 2004). Recently, Wallace et al. (2005)
demonstrated that prohepcidin localized to the secretory
pathway, primarily the Golgi apparatus in liver cells
and tissues. We could also demonstrate that prohepcidin
is expressed in the cytoplasm of whole intralobular hepa-
tocytes of mice liver, confirming Wallace’s finding.

Regulation of hepcidin expression is still unclear.
Hepcidin expression is up-regulated by inflammatory stim-
uli (Nicolas et al., 2002) and iron loading (Mazur et al.,
2003). Furthermore, proinflammatory cytokines (e.g.,
IL-6, IL-1; Lee et al., 2005; Nemeth et al., 2004b) were
formerly reported as inducers for hepcidin. The mouse
genome contains 2 highly similar hepcidin genes: hepcidin
1 and hepcidin 2. Although hepcidin-1 is key molecule of
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iron metabolism, hepcidin-2 does not act on iron metabol-
ism like hepcidin-1, which may act only as an effector mol-
ecule for innate immunity (Lou et al., 2004). In this study,
both hepcidin-1 and hepcidin-2 were down-regulated. So
change of stimuli of cytokines through alcohol metabolism
is considered to be the main mechanism of down-
regulation of hepcidin expression by ethanol loading
rather than change of stimulus of iron.

Stimulation of IL-6 or IL-1 up-regulates hepcidin
expression both in vitro and in vivo, whereas TNF-¢
down-regulates it (Lee et al., 2005; Nemeth et al., 2004b).
We measured the serum IL-6 and TNF-« concentration of
ethanol-loaded mice by an ELISA system. However, there
was no difference in these cytokines between control and
ethanol-loaded mice (data not shown). Kupffer cells derive
cytokines in liver tissue to play important paracrine roles
in hepatocytes. Actually, it is reported that the mRNA
level of cytokines in isolated Kupffer cells from a rat model
of ALD have changed and the cytokines have important
roles in the pathogenesis of ALD (Kamimura et al., 1995).
However, it is noteworthy that in depleted Kupffer cells by
liposome-encapsulated clodronate, iron, and inflammation
are able to induce hepcidin gene expression independently
of Kupffer cells (Lou et al., 2005; Montosi et al., 2005).
Therefore, hepatocytes might play a key role in the regu-
lation of hepcidin gene expression by sensing iron and
inflammatory signals. Alcohol loading might disrupt
the sensing signal of inflammatory cytokines. Then, it
might down-regulate hepcidin expression, following the
increased iron absorption from the small intestine. Further
studies are needed to clarify these issues.
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