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Genotyping results of the Istset of 200 samples using the SNP Array 6.0 platform. Colours are based on every 48
samples analyzed simultaneously as a batch. a. Concentration of purified PCR products for each sample. b. QC call rate for

each sample. c. Overall call rate for each sample, as determined by the Birdseed algorithm using total 198 samples that passed
the default 86% QC criteria. d. Overall call rate for each sample, as determined by the Birdseed algorithm using samples in the

same batch.

(Figure 2d). The concentration of purified PCR products
from batch #1 drastically fluctuated among the 48 sam-
ples (Figure 2a). The CV (standard deviation/average) of
the purified PCR product concentration for batch #1 was
much higher than that for any other batches from the two
sets of 200 samples (Figure 3). The CV of the purified PCR
product concentration is a new indicator to assess experi-
mental quality for each of the running batches, and may
remove the experimental errors occurring on the running
batches prior to hybridization on the GeneChip arrays.

For the 48 samples from batch #1 of the 2" set, the intact
genomic DNA could not be detected clearly when the
samples were electrophoresed on 1.0% agarose gels (Fig-
ure 4). Therefore, these genomic DNAs for batch #1 of the
2nd set may have degraded due to repetitive freezing and
thawing, which led to low-quality genotyping results.

Preparation of the exact amount of intact genomic DNA is
considered to be one of the crucial points for the SNP
array 6.0 platform.

In order to assess the performance of the SNP Array 6.0
platform and the Birdseed algorithm, we mainly used gen-
otyping data obtained from the 15t set of 200 samples
because the 2nd set contained samples in poor condition.

Genotype calling accuracy with "Birdseed" algorithm

The genotype calling accuracy of the Birdseed algorithm
was considered to be improved as the sample number for
determining genotype calls increased. We determined
909,622 genotype calls for 12 samples among 198 sam-
ples with over 86% QC criteria, and used these genotype
calls as a reference. We also determined the genotype calls
of the same 12 samples under 6 different sample sizes,
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Genotyping results of 27 set of 200 samples using the SNP Array 6.0 platform. a. Concentration of purified PCR
products for each sample. b. QC call rate for each sample. c. Overall call rate for each sample, as determined by the Birdseed
algorithm using a total of 191 samples that passed the default 86% QC criteria. d. Overall call rate for each sample, as deter-
mined by the Birdseed algorithm using samples in the same batch.

using 12 samples, 24 samples, 36 samples, 48 samples, 72
samples and 96 samples. To investigate the genotype call-
ing accuracy of the Birdseed algorithm, we compared the
genotype calls determined under 6 different sample sizes
to the reference genotype calls for each of the 12 samples.
We prepared 4 sets of 12 samples from a batch of 48 sam-
ples (Batch #3) and performed the genotype call compar-
ison for each set of 12 samples. Figure 5 shows the average
overall call rate and the average concordance rate for each
set of the 12 samples. The average overall call rate for 4
sets of the 12 samples, which were determined with 12
samples, 24 samples, 36 samples, 48 samples, 72 samples,
96 samples and 198 samples, were 99.84%, 99.86%,
99.84%, 99.83%, 99.79%, 99.75% and 99.71%, respec-
tively. The average concordance rate for the 4 sets of the 12
samples under 6 different sample sizes were 99.47%,
99.75%, 99.80%, 99.84%, 99.86% and 99.87%, respec-
tively. Here, "No Calls" was excluded from the concord-
ance calculation.

Our results showed that the average overall call rate of the
12 samples was almost constant when the genotype calls
were determined with fewer than 48 samples; however, it
gradually decreased as the sample number increased from
48 to 198, which showed a negative correlation with a P
value of 0.0053. In contrast, the concordance rate gradu-
ally increased as the sample number increased, which
showed a positive correlation with a P value of 0.0115.

Removing low-quality samples by adjusting QC criteria

Our results showed that the average overall call rate grad-
ually decreased as the sample number increased, presum-
ably due to low-quality samples included in the genotype
calling with the Birdseed algorithm. Indeed, there was one
sample which had an overall call rate lower than 97%
among the 198 samples with over 86% QC call rate.
Therefore, we applied more stringent QC criteria to
remove the low-quality samples, because a linear relation-
ship was observed between QC call rate and overall call
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rate (Figure 6a). When we applied 95% QC criteria, 189
samples passed the QC criteria and the average overall call
rate improved from 99.58 to 99.65%. By comparing the
overall call rate determined under the 95% QC criteria
with that under the default criteria, 187 of 189 samples
improved by an average of 0.018% in overall call rate;
however, the remaining two samples showed decreased
overall call rate (by 0.76% and 0.12%) (Figure Gb). These
two samples were considered as outliers on the genotype
calling with the Birdseed algorithm and had to be
removed. We repeated the removal of samples until none
had a lower overall call rate than that determined under
the default criteria. A total of 184 samples had an overall
call rate that improved over the one determined under the
default criteria, with an average change of 0.035%. The
average overall call rate for the 184 samples was 99.71%,
which was 0.13% higher than the default QC criteria (Fig-
ure 6¢).

Number of SNPs available for GWAS in the Japanese
population

The genotype calls of 909,622 SNPs were determined with
184 samples after sample filtering with adjusted QC crite-
ria. However, these genotype calls still included inaccurate
SNPs, which could lead to inflation of false positives, pre-

sumably due to systematically miss-called SNPs. There-
fore, SNP filtering was considered to be important for a
reliable and accurate set of genotype calls that avoid false
association signals and false negative signals, allowing
rapid identification of disease susceptibility genetic fac-
tors. We reported that the poorly behaving SNPs were
effectively eliminated with the SNP filtering parameters;
MAF > 5% or 1%, HWE p-value > 0.001 and SNP call rate
> 95% [14]. Here, SNP call rate was defined for each SNP
as the number of successfully genotyped samples divided
by the number of total samples genotyped.

Among a total 0f 909,622 SNPs genotyped using 184 sam-
ples, 590,248 SNPs passed the three SNP filtering criteria
with MAF > 5%, HWE p-value > 0.001 and SNP call rate >
95%, while 661,559 SNPs passed with MAF > 1%, HWE
p-value > 0.001, and SNP call rate > 95%. A total of
180,859 SNPs were observed to be monomorphic in the
Japanese population.

Discussion

The emerging SNP typing technologies have enabled
genome-wide association studies to be conducted with
hundreds of thousands of genotyped SNPs. According to
Affymetrix, the SNP Array 6.0 platform can genotype over

Page 5 of 10

(page number not for citation purposes)

- 158 -



BMC Genomics 2008, 9:431

Mt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 M2

bp

Figure 4

Agarose gel electrophoresis pattern showing
genomic DNA from batch #1 of the 2ndset (Janes 1~
8) and batch #2 of the 279 set (lanes 9-16). Fifty nano-
grams of genomic DNA for each of the sample was electro-
phoresed on 1.0% agarose gels. MI and M2 indicate lambda

DNA digested with Hind lll and 100-bp DNA ladder marker,
respectively.

900 K SNP: markers across the human genome with an
overall call rate of at least 97%, over 99.7% concordant
with the HapMap genotypes, and the Mendelian inherit-
ance consistency for 10 Trios of greater than 99.9% when
performing analysis under the default 86% QC criteria. To
evaluate the SNP 6.0 Array platform and the Birdseed gen-
otype calling algorithm, we genotyped two sets of 200
non-HapMap Japanese samples using the SNP Array 6.0
platform.

When we applied the default 86% QC criteria, 2 samples
out of the 15tset of 200 samples were excluded and the
average overall call rate was 99.58%. There was one sam-
ple with an overall call rate of lower than 97% among the
198 samples. Here, we found a linear relationship
between QC call rate and overall call rate. Therefore, we
applied stringent QC criteria of over 95% in order to
remove the low:quality samples-and found that the aver-
age overall call rate for 189 samples passing the stringent
QC criteria improved to 99.65%. Amongthe 189 samples;
187 samples had higher overall call rates than those deter-
mined under the default QC criteria; however, the remain-
ing two samples showed lower overall call rates (by 0.76%
and 0.12%). When we repeated the removal of samples
until none had a lower overall call rate than the one deter-
mined under the default criteria, none of the remaining
184 samples with an overall call rate lower than 97%. The
average overall call rate of 184 samples was thus improved
t0'99.71%. The decay of average overall call rate may be
caused by some samples that pass the QC critetia, but still
have a'low overall call rate: We can thius improve overall
call rate by removing these samples and adjusting the QC
criteria.

http://www.biomedcentral.com/1471-2164/9/431

One of the crucial points for the SNP array 6.0 platform is
to prepare the exact amount of intact genomic DNA. A 10-
fold excess amount of genomic DNA decreased the overall
call rate of each sample to by about 80% and another
study revealed that samples with less than 50 ng/pl
genomic DNA show low overall call rates [15]. Therefore,
we checked the concentration and condition of genomic
DNA with the NanoDrop quatitation and agarose gel elec-
trophoresis. The SNP array 6.0 platform has three check
points to assess experimental errors prior to hybridization
on. GeneChip arrays. Here, we found that the CV of the
purified PCR product concentration was another critical
indicator prior to hybridization in assessing the perform-
ance of each running batches. We suggest that samples
with a CV value over 0.15 are excluded from the remain-
der of the assay.

The genotype calling accuracy of the Birdseed algorithm
was assessed by comparing the 909,622 genotype calls of
12 samples from amongl198 samples with over 86% QC
criteria, to those of 12 samples determined with six differ-
ent sample sizes; 12 samples, 24 samples, 36 samples, 48
samples; 72 samples and 96 samples. The concordance
rate gradually increased “as the number of samples
increased. The average concordance rate was almost con-
stant over 99.8%, when the genotype calls were deter-
mined with over 48 samples using the Birdseed algorithm.
However, the average overall call rate of the 12 samples
gradually decreased as the sample number increased from
48 to 198. We could explain the reasons why the overall
call rate decreases, and why the concordance rate increases
for these 12 samples in a grouping of samples greater than
48 by means of characteristic properties of the Birdseed
algorithm and minor allele frequency of each SNP. When
the sample number was smaller than 48, all of three clus-
ters: designating AA; AB and BB genotypes: were rarely
observed for the SNPs with low MAF. In such cases, the
Birdseed algorithm would determine the. genotype as. a
single cluster, however, would-ambiguously genotype as
AA, BB and AB (tend to miss-genotype). Therefore, high
call rate and low concordance were observed with the
sample number smaller than 48: In contrast, when the
samplée number was greater than 48, two or three clusters
would be observed for many SNPs: For these SNPs, the
Birdseed algorithm could determine the outlying samples
from each cluster as "No Calls", leading to low:call rate
and high concordance.

We can accurately determine the genotype calls with high
overall call rates by determining the genotype calls with
more than 48 samples, after removing low-quality sam-
ples by adjusting the QC criteria. Our results showed that
the SNP ‘Array 6.0 platform' reached the expected level
reported by the manufacturer, with an average overall call
rate of over 99.5% and an average concordance rate of
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Figure 5

Genotype calling accuracy with Birdseed algorithm. a-d. Genotype calls determined using 198 samples with over 86%
QC criteria were used as a reference. The average overall call rate for the 4 sets of the 12 samples were determined with 7
different sample sizes; 12 samples, 24 samples, 36 samples, 48 samples, 72 samples, 96 samples and 198 samples. The average
concordance rates for the 4 sets of 12 samples were determined by comparison with the reference genotype calls. A negative
correlation with a P value of 0.0053 and a positive correlation with a P value of 0.0115 were shown for overall call rate and

concordance rate by fitting the power-law distribution to the data with least-squares approximation.

over 99.8%. However, about 20% of a total of 909,622
SNPs were found to be monomorphic in the Japanese
population, which is due to SNP selection methods. The
SNPs assayed on the SNP Array 6.0 platform were mainly
selected as observed with high MAF in the Caucasian pop-
ulation. Among a total of 909,622 SNPs genotyped using
the SNP Array 6.0 platform with 184 Japanese samples,
590,248 SNPs passed three SNP filtering criteria; MAF >
5%, HWE p-value > 0.001 and SNP call rate > 95%.
Although the exact number of SNPs within the human
genome remains under discussion, it has been reported
that the genome coverage of the JPT + CHB population in
the Phase 11 HapMap data was 66% using the Mapping

500 K Array set [10]. The genome coverage of the SNP
array 6.0 platform was estimated using the same calcula-
tion and was revealed to be 75% with the 590,248 SNPs
in the Japanese population.

Conclusion

The current Affymetrix SNP Array 6.0 platform enables the
genotyping of over 900 K SNPs with high overall call rate
(over 99.5%) and high concordance rate (over 99.8%).
The number of SNPs available for GWAS in the Japanese
population was revealed to be over 660 K SNPs, all of
which passed the three SNP filtering criteria; MAF > 1%,
HWE p-value > 0.001 and SNP call rate > 95%. GWAS
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Figure 6
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using the SNP Array 6.0 platform has considerable poten-
tial in identifying candidate susceptibility or resistance
genetic loci for multifactorial diseases in the Japanese
population, as well as in other populations.

Finally, the genotyping data of 400 Japanese samples
using the SNP array 6.0 platform will be deposited in a
public database to share with the research community
[16].

Methods

Study sample

Blood samples were obtained from two sets of 200 Japa-
nese individuals in two institutes. Genomic DNA was
extracted from peripheral blood leukocytes using the
QlAamp Blood Mini Kit (Qiagen) according to the manu-
facturer's instructions. All genomic DNA was resuspended
with Reduced EDTA TE Buffer (TEKnova) at 50 ng/ul. This
study was approved by the Research Ethics Committee of
the Faculty of Medicine, The University of Tokyo and
Tokai University. Informed consent was obtained from all
participants.

Genotyping 400 Japanese samples with SNP Array 6.0
platform

The concentration of genomic DNA for all individuals was
measured using a spectrophotometer {NanoDrop ND-
1000; NanoDrop Technologies). For the 1stset of 200
samples, five samples had low genomic DNA concentra-
tions with an average of 41.1 ng/ul ranging from 38.2 to
44.5 ng/ul, and the remaining 195 samples had an aver-
age of 54.8 ng/ul, ranging from 45.0 to 57.8 ng/ul. For the
2nd set of 200 samples, one sample had 39.1 ng/pl and the
remaining 199 samples had an average of 52.7 ng/ul,
ranging from 45.0 to 55.9 ng/pl. ‘For each individual
assayed, 250 ng of genomic DNA was digested with Sty I
and Nsp I (New England BioLabs) by adding 6 ul for the
6 samples with low concentration (five samples for 15tset
and one sample for 2nd set) and 5 pl for the remaining
samples, For two sets of 200 samples, every 48 samples
were simultaneously processed in a single 96-well plate.
After the reaction with restriction enzymes, we followed
the ‘manufacturer's ~ instructions  for - the - Affymetrix
Genome-wide Human SNP array 6.0. The concentration
of PCR products after purification with magnetic beads
(Agencourt Magnetic Beads, Beckman) was measured
using a spectrophotometer (NanoDrop ND-1000). Puri-
fied PCR produicts were diluted 10-fold with TE buffer (pH
8.0) (WAKO) in order to have a suitable concentration for
the spectrophotometer to measure. The genotype calls of
each individual were determined by the Birdseed version
1 genotype calling algorithm, embedded in the software
Affymetrix Genotyping Console 2.0 (Affymetrix). The
number of samples used to determine the genotype calls
varied depending on the examination.

http://www.biomedcentral.com/1471-2164/9/431
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Abstract

Background: A great amount of data has been accumulated on genetic variations in the human genome, but we still do not
know much about how the genetic variations affect gene function. In particular, little is known about the distribution of
nonsense polymorphisms in human genes despite their drastic effects on gene products.

Methodology/Principal Findings: To detect polymorphisms affecting gene function, we analyzed all publicly available
polymorphisms in a database for single nucleotide polymorphisms (dbSNP build 125) located in the exons of 36,712 known
and predicted protein-coding genes that were defined in an annotation project of all human genes and transcripts (H-InvDB
ver3.8). We found a total of 252,555 single nucleotide polymorphisms (SNPs) and 8,479 insertion and deletions in the
representative transcripts in these genes. The SNPs located in ORFs include 40,484 synonymous and 53,754 nonsynonymous
SNPs, and 1,258 SNPs that were predicted to be nonsense SNPs or read-through SNPs. We estimated the density of
nonsense SNPs to be 0.85x10 > per site, which is lower than that of nonsynonymous SNPs (2.1 %1073 per site). On average,
nonsense SNPs were located 250 codons upstream of the original termination codon, with the substitution occurring most
frequently at the first codon position. Of the nonsense SNPs, 581 were predicted to cause nonsense-mediated decay (NMD)
of transcripts that would prevent translation. We found that nonsense SNPs causing NMD were more common in genes
involving kinase activity and transport. The remaining 602 nonsense SNPs are predicted to produce truncated polypeptides,
with an average truncation of 75 amino acids. In addition, 110 read-through SNPs at termination codons were detected.

Conclusion/Significance: Our comprehensive exploration of nonsense polymorphisms showed that nonsense SNPs exist at
a lower density than nonsynonymous SNPs, suggesting that nonsense mutations have more severe effects than amino acid
changes. The correspondence of nonsense SNPs to known pathological variants suggests that phenotypic effects of
nonsense SNPs have been reported for only a small fraction of nonsense SNPs, and that nonsense SNPs causing NMD are
more likely to be involved in phenotypic variations. These nonsense SNPs may include pathological variants that have not
yet been reported. These data are available from Transcript View of H-InvDB and VarySysDB (http://h-invitational.jp/

varygene/).
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Introduction

Genetic variations in the human genome are maintained by a
balance of mutation, sclection and random genetic drift. Some of
the polymorphisms cause phenotypic variations and discascs.
Therefore, many studies have attempted to identify causative
variants of genetic discases and the relationships between genetic
variations and phenotypic effects. Genetic variations within linked
loci are inherited to the same gamete. Based on the linkage of
genetic variations, loci that contain discase-causing genes have

@ PLoS ONE | www.plosone.org

been mapped by using polymorphic markers. At present, about 14
million clusters of genetic polymorphisms have been identified in
the human genome [1]. On average, two haploid genomes are
estimated to differ by one single nucleotide polymorphism (SNP) in
every 12001500 bp [2]. SNPs have been recently used to conduct
genome-wide association studies to find genomic regions that are
susceptible to diseases and phenotypic variations [3,4,5,6]. In this
approach, usually, causative polymorphisms for discases or
phenotypic variations are identified after the identification of
susceptible genomic regions by using SNP markers. Such SNPs are
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called landmark SNPs, and the indirect relationships between
polymorphisms and phenotypic variations were examined to
identify genomic regions where causative genes are located.

Another approach in finding pathological variants is to extract
polymorphisms that alter amino acids in functional genes or affect
gene expression or splicing, using a comprchensive set of functional
clements of the human genome. Several studies have analyzed
nonsynonymous SNPs to predict pathological variants [7,8,9,
10,11,12,13,14]. A large number of nonsynonymous SNPs also
have been examined for associations with diseases[15,16].

Although many pathological mutations have been identified
[17,18], the number of such variants is small compared to the
number of known polymorphisms, and it is still unclear which
polymorphisms have biological effects. In a study of consanguin-
cous marriage [19], it was estimated that cach person has
deleterious alleles that are equivalent to a few lethal genes. Gene-
centric SNP surveys have shown that the ratio of nonsynonymous
to synonymous SNPs is significantly higher in the low frequency
class than in the common frequency class [20,21,22]. These results
suggest that a large fraction of the low frequency nonsynonymous
SNPs are deleterious. T'o understand the molecular basis of the
effects of human genetic variations on phenotypic variations, a
prediction analysis of possible effects of polymorphisms on gene
function in all human genes appears to be needed.

In this study, to detect polymorphisms affecting: gene function,
we analyzed all publicly available polymorphisms in the Single
Nucleotide Polymorphism Database (dbSNP) (build 125) in the
cxons of all 36,712 protein-coding genes that were defined in an
annotation project.of all human genes and. transeripts (H-InvDB
ver3.8)[23,24]. In summary with representative’ transcripts (one
transcript from one gene), we detected 53,754 nonsynonymous
SNPs and 1,417 SNPs causing changes between amino acids and
stop codons. Among possible point mutations in ORFs, nonsense
mutations cause the most drastic changes of gene products. In fact,
several reports have shown that nonsense mutations cause genetic
diseases {25,26,27,28). Truncation of a polypeptide by a
premature termination codon causes a drastic change in the gene
product. Furthermore, it is known that a nonsense mutation can
cause decay of mRNA resulting in the absence of the gene
product. This process, called ‘nonsensc-mediated decay (NMDY
limits the synthesis of abnormal proteins{29,30,31]. On the other
hand, the loss of a termination codon in a transcript also appears
to cause decay of mRNA (referred to as non-stop decay) and thus
to" prevent: translation[32,33]. In_ spite. of the severe effects of
nonsense mutations, the distribution of nonsense SNPs'in human
genes is little understood: In this study, we examined the density of
nonsense. SNPs in-human genes; and showed that nonsense SNPs
exist at a lower density than nonsynonymous SNPs; possibly die to
the more severe effects of premature stop codons than amino acid
changes. ‘About a_ half of nonsense SNPs are predicted to cause
NMD. The correspondence between kiiown pathological variants
and nonsense SNPs suggests' that nonsense’ SNPs' causing NMD
are more likely to be involved in phenotypic variations.

Results

Selection and classification of polymorphisms in exon
regions

We analyzed 9,235,997 polymorphisms (dbSNP build 125} in
the human genome with exon positions and predicted ORFs that
were revealed i our annotation project of human genes (H-
InvDB) (Figure 1). In all of the 36,712 protein-coding loci in the
geénome, we detected 252,555 SNPs and 8,479 insertions” and
deletions (indels) that exist in“exon’ regions of the representative

@ PLoS ONE | www.plosone.org

Distribution of Nonsense SNPs

transcript (one transcript from one gene) {lable 1). The
polymorphisms in the exon regions were further classified
according to the predicted ORFs. We detected 96,164 SNPs
within the ORFs, 51,881 SNPs in the 5"UTR regions and 104,510
SNPs in the 3'UTR regions. Among the SNPs in the ORFs,
40,484 were synonymous and 53,754 were nonsynonymous
(Further " analyses of nonsynonymous SNPs are described in
Results S1.). Most of the indels were detected in the UTR regions.
The ORF regions contained 1,258 SNPs that cause changes
between amino acids and stop codons (Table S1). Of the 1,258
SNPs, 1,183 SNPs were regarded as nonsense SNPs, while 75 were
found to have stop codons as ancestral alleles. We also detected
247 SNPs at termination codon sites, 88 of which were
synonymous. The remaining 159 SNPs were changes between
stop codons and amino acids. After checking ancestral alleles, 110
of the 159 SNPs were inferred to be read-through SNPs, while the
other 49 were inferred to changes to stop codons.

Distribution of polymorphisms in exon regions

Densities of polymorphisms were estimated for 23,717 genes
whose functions are clearly defined or suggested (similarity
category 1111, sec Materials and Methods) and genes annotated
as conserved hypothetical proteins (similarity category 1V). To
estimate. the densitics: of SNPs. for. synonymous,. nonsynonymous
and nonsense: SNPs:in' the. ORFs, we' calculated the numbers: of
potential nucleotide sites for synonymous,. nonsynonymous and
nonsense mutations in the coding regions. The fractions of sites
(%) in the coding regions for synonymous, nonsynonymous, and
nonsense. mutations were estimated to: be 128.5%, 68.1%, and
3.4%; respectively. Of the three types of SNPs, synonymous SNPs
had the highest density; 4.1 %10~ per synonymous site, in ORFs
(Table® 2). The estimated density of nonsynonymous SNP- was
2.1x107 per site (Table 2). The lower density of nonsynonymous
SNPs compared with: synonymous SNPs (51%) is due to the
functional ‘constraint of amino acid changes, and is in"agreement
with previous studies [20,22,34]. However, the ratio of the
numbers of nonsynonymous SNPs to synonymous SNPs per site is
higher in this study compared with: previous studies (32-34%)
[20,21,22], which they focused on specific populations: The higher
ratio of nonsynonymous SNPs in this study may be duc to the fact
that our study is based on pooled data from various populations
world wide; This study includes: many nonsynonymous SNPs that
exist in’ relatively lower frequencies. and “are likely to. be more
population-specific in comparison to synonymous SNPs [20].

Among random nucleotide mutations in ORFs, 3:4% would be
expected to be nonsense mutations; however, the distribution’ of
nonsense SNPs has not been evaluated or reported. The density of
nonsense SNPs was estimated to be 0.85x 1072 per site (Table 3),
which is only 21% of the density of synonymous SNPs, and 40% of
the density of nonsynonymous' SNPs.. The reason for the lowest
density of nonsense SNPs may be that premature stop codons have
more severe effects than amino acid changes.

In the cxons of the 36,712 loci, 8479 indels were detected, and
1,532 of them were found in ORFs. Among the latter; 1,331 are
expected to cause frame shifts; resulting in drastic’ changes: of
proteins. The density of indels in: ORFs was much lower than in
the. UTR regions (Table 4). The lower density of indels in the
5'UTRs than in the 3'UTRs suggests that functional constraint for
insertions and deletions is higher in the 5'UTR regions than in the
3"UTR regions.

Nonsense SNPs
We ‘examined the patterns and the positions of the nonsense
SNPs. There are 23 possible ways to change’ codons” inito- stop
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Figure 1. Analysis of polymorphisms with gene structure. Top: Scheme of analysis pipeline of polymorphisms with gene structure. Bottom:
Screen shots taken from ‘Transcript View’ in H-InvDB that show classified SNPs and their positions (blue bars) in the CASP12 gene.

doi:10.1371/journal.pone.0003393.g001

codons (nine, seven and seven for the first, second and third
positions, respectively), and all 23 were found (Table 5). Nonsense
SNPs were more frequent at the first codon position than at the
second and third positions (p<<0.005, chi-square test). The most
frequent type of nonsense mutation is the change from CGA to
TGA (Table 5), which is a transitional change at CpG mutation
hotspots [35]. However, it is notable that there were frequent
transversional mutations such as GAA to TAA and GAG to TAG.
Our analyses of nonsense polymorphisms revealed that changes
between hydrophilic amino acids and termination codons by
nucleotide changes at the first codon positions were very frequent.

We examined the positions of 1,183 nonsense polymorphisms in
the coding regions. On average, nonsense SNPs were located at
250 codons upstream of the original termination codons. To

Table 1. SNPs and indels in exon, intron and other genomic
regions.

Exon Intron Other genomic regions
SNPs 249,182 3,332,537 5,209,127
Indels 9,742 185,761 249,648

Polymorphisms mapped on single positions were analyzed with 36,712 protein-
coding genes.
doi:10.1371/journal.pone.0003393.t001
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predict whether a nonsense mutation causes nonsense-mediated
decay (NMD) of mRNA, we examined the locations of nonsense
SNPs in the exon-intron structure of the genes (Table 6). As a
result, of the 1183 nonsense SNPs, 581 were predicted to cause
NMD, and thus to prevent translation. The other. 602 cases of
nonscnse SNPs were predicted to result in truncated proteins. For
the cases that truncated proteins are produced, the average
truncation was estimated to be 75 amino acids.

To see which of these nonsense SNPs were known pathological
mutations, we compared them with allelic variants in the Online
Mendelian Inheritance in Man (OMIM) database. Only cight of
1,183 nonsense SNPs (rs17602729 in AMPDI, rs283413 in
ADHIC, 1510250779 in PGAM?2, 1rs17215500 in ACGNQJ,
15497116 in CASPI12, rs2228325 in ACTN3, rs3092891 in RBI
and rs28989186 in BUBIB) matched the variants in the OMIM
database that arc known variants with phenotypic variations
(Table 7). This low value suggests that the biological cffects of most
nonsense SNPs have not yet been reported. Interestingly, each of
the eight cases that matched known pathological variants was
predicted to cause NMD (Table 7).

SNPs that cause read-though of the original termination
codon

Among the 247 SNPs at termination codon sites, 119 SNP-
mRNA pairs were found to be read-through mutations. If the
allele having the stop codon is the ancestral type, the SNP is
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Distribution of Nonsense SNPs

Table 2. Classified SNPs in exon regions.

Effects on translation

All protein-coding genes”

Region Genes in category 1-IV*®

85233 [2.7%10 %/site]
1 {41
46261 [2.1x1073 /sit

ORF Total 96164

7

e} 53754

Nonsynonymous

Unclassified® 398 i

Synonymous 63 88

3'UTR 69691 [3.3x10 /site] 104510

*Representative transcripts in 23,717 genes whose function were defined or suggested (similarity category I-iil) and genes annotated as conserved hypothetical
proteins (similarity category V).

bRepresentative transcripts in all protein-coding genes (36,712) including génes in similarity category -1V plus similarity category V-VII (hypothetical protein,
hypothetical short protein, and pseudogene candidate, respectively).

“Densities of polymorphisms are shown in brackets as average number of polymorphisms per site. The average lengths of the 5'UTR, ORF and 3'UTR regions in 23717
genes were 303.9 bp, 1343.5 bp, and 877.6 bp, respectively. The densities of SNPs for synonymous, nonsynonymous and nonsense SNPs in ORFs were calculated based
on the numbers of potential nucleotide sites for synonymous, nonsynonymous and nonsense mutations in coding regions. The density of nonsense SNPs is shown in

Table 3.
9SNPs causing changes between amino acids and stop cadons.
doi:10.1371/journal.pone.0003393.1002

Table 3. SNPs causing changes between amino acids and
stop. codons.

Table 5. Frequency of each type of codon change for
nonsense SNPs,

Effects on
translation

Genes in category
-1v?

All protein-
coding genes®

Region

Read-through® 28 75

Nonsense® 22 49

*These two gene sets are the same as Table 2.

bpossible read-through SNPs in which alleles coding stop codons were ancestral
type. This may be due to existence of shorter ORFs in the ancestral population.

“Possible nonsense SNPs:in which alleles.coding stop codons were derived
alleles. This may be due to existence of longer ORFs in the ancestral
population.

9The densities of nonsense SNPs in ORFs were calculated based on the numbers
of potential nucleotide: sites for nonsense mutations in. coding regions.

doi:10.1371/journal. pone.0003393.t003

Table 4. insertions and deletions in exon regions:

Genes in category I-1V?

All protein-coding genes”

ORE 1120 {0.035%10: 7] 1532

Total 5225 8479

*These two gene sets are the same as Table 2,

bDensities of polymorphisms are shown in brackets as average number of
polymorphisms per site.

“Three indels were located on both of ORF and UTR.

doi:10.1371/journal.pone.0003393.t004
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TAA

TAG TGA Total

Tst Caa—>Taa = 62 203 748*

162 . Cga—Tga

27 19

25

tTg>tAg + .18

tTa->tAa 18

tTa—tGa 13

3rd tgG>tgA 85 235

Total 264 487 432

1183

Bold letters: show nucleotide changes. by transition:
"P<0.005 by chi-square test.
doi:10.1371/journal.pone.0003393.t005

regarded as a change causing elongation of the polypeptide.
However, an extended polypeptide would be expected only if there
is an additional termination codon downstream. For 108: SNP-
mRNA pairs; an additional termination codon was found in the
3'UTR region. The average extension: was cstimated to be: 29
amino acids.: Interestingly, we found five SNP-mRNA pairs that
have no stop codons in the: 3'UTR at all (The remaining six: SNP-
mRNA pairs do not have 3'UTR regions). For example, the T-to-C
substitution (rs15941) in the DDR2 gene (X74764) is predicted to be a
read-through mutation (from TAG to CGA), and the transcript has
no other stop codon in the 3'UTR region. The frequenicy of this
SNP: is unknown' (it is monomorphic in the four populations in
HapMap project [4]). However, if this polymorphism really exists,
transcripts having this read-through: mutation would not produce a
protein. Another example is the T-to-C substitution (rs17850833) in
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Table 6. Nonsense SNPs and prediction of NMD.

Not for
NMD®

Predicted to

cause NMD? Total

Other nonsense SNPs 573 602 1175

This: prediction is based on that mRNA would be destroyed if a stop codon
occurs in the 5’ side of the boundary, which is 50-55 nucleotides upstream
from the 3’ end of the second to last exon. Here, the nonsense SNPs located in
the 5" side of the boundary; which was set at 50 nucleotides upstream from
the 3’ end of the second to last exon, were predicted to cause NMD.

®This number includes SNPs in genes consisting of only one exon.

P =0.0033 by Fisher'’s exact test.

doi:10.1371/journal.pone.0003393.t006

Table 7. Nonsense SNPs with known pathological effects.

Distribution of Nonsense SNPs

the MFSD3 gene (CR620962), which causes a change from TGA to
CGA resulting in a change to arginine.

Functional bias of genes having nonsense SNPs

To see whether there is any functional bias in genes having
nonsense SNPs, we examined the frequent biological terms in the
genes having nonsense SNPs. We classified the genes having
nonsense SNPs into two categories: genes with nonsense SNPs that
are predicted to cause NMD and genes with nonsense SNPs that
are not predicted to cause NMD. For genes having nonsense SNPs
that would cause NMD (Table 8), the molecular functions that are
most overrepresented included phosphorylation, ATP binding,
iron/calcium- ion binding, nucleotide/RNA' binding ‘and' trans-
porter activity. The localization of these genes was also biased to
the cell membrane and the proteinaceous extracellular matrix. On
the other hand, the genes having nonsense SNPs predicted to not
cause NMD showed less bias in biological function (T'able 9).

Acc# Chr Gene symbol SNP.

M12272 4 ADH1C rs283413

AF000571 11 KCNQT rs17215500

M86407 11

ACTN3

1s2228325

128989186

Variation

Gly78Ter

Arg518Ter
Arg577Ter

Arg194Ter

oMM Biological effects

103730 Parkinson disease

607542

Long QT syndrome 1

102574 Athletic performance

0006468

0005578
0004713

0000166

nucleotide binding

0003723

RNA binding

0005509

calcium jon binding

0016491

0004759

proteinaceous extracellular matrix 8 1.21

protein: tyrosine kinase activity 16 6.46 248

oxidoreductase activity

carboxylesterase activity

AF068760 15 BUB1B 602860 Premature chromatid separation trait and
mosaic variegated aneuploidy syndrome
doi:10.1371/journal.pore.0003393.t007
Table 8. Functional bias of genes having nonsense SNPs causing NMD.
Observed Expected - Ratio of
Top level Gene Ontology no. Gene Ontology gene no.” gene no.” - enrichment P value®

protein amino acid phosphorylation 16 7.28 2.20

2.17x107°

1.56x10

279%1072

10 3.1 322

7.89x1072

16 7.65 2.09

5.76x1073

419%10°¢

5 0.24 2044

doi:10.1371/journal.pone.0003393.t008

@ PLoS ONE' | www.plosone.org

Number of genes with a molecular. function in the 581 genes in which nonsense SNPs.causing NMD were found.
bExpected number of genes that have a biological function in a sample of 581 genes, assuming a proportion of genes with a molecular function in all human genes.
Enrichment of a biological term in the genes for nonsense SNPs was statistically evaluated as a upper probability-in a hypergeometric distribution.
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Table 9. Functional bias of genes having nonsense SNPs not causing NMD.

Gene Ontology
Top level no.

Gene Ontology

0006310 DNA recombination

0042254

Molecular function 0004194 pepsin A activity

Discussion

In this study, we conducted an extensive analysis of human
genome polymorphisms with a comprehensive catalogue of human
genes, and detected more than 50,000 polymorphisms that affect
proteins. The distribution of polymorphisms . showed different
densitics of polymorphisms among the 5'UTR, ORF and 3'UTR.
The density of SNPs was lower in ORFs than in the 5'UTR and
3'UTR. The density of synonymous SNPs in the ORFs was higher
than the densities of SNPs in the UTR regions. The reduction in
density of SNPs in the. UTR regions is consistent that there are
functional constraints on nucleotide changes in UTRs related to the
transcriptional. and. translational. efficiency[22].: The ~density of
nonsynonymous SNPs was much lower than the densities of other
types of SNPs; possibly duc to that the nucleotide changes: with
alteration of amino acids changes are under strong negative selection
[36].. It. was not known how nonsense SNPs are. distributed in
protein-coding regions. Here we showed that the density of nonsense
SNPs is much lower than that of nonsynonymous SNPs. Although
the biological effects of nonsense mutations: appear to: vary widely
depending on their: positions: and: the. genes,  the low density: of
nonsernse SNPs that we found suggests that nonsense mutations have
more disadvantageous effects than nonsynonymous mutations.

While nonsense. mutations: that cause: NMD: result in ‘loss of
function’; nonsense: mutations: that. do not. cause: NMD: produce
truncated: proteins whicli: could have the dominant effects; The
proportion of predicted nonsense SNPs causing NMD in' this study
is in’agreement with a previous study which showed that dbSNP
(build :125) has 1301 nonsense SNPs, about half of which were
predicted. to, result:in: NMD: [37]. In ‘order: to understand  the
biological  effects: of ‘nonsense.: SNPs, it “is. important - to: know
whether they do or do not cause NMD, because premature stop
codons in'a gene can have distinct disease phenotypes depending
on the positions: of mutations [27,38].

The molecular functions that were overrepresented in the genes
having nonsense SNPs included several molecular- functions  that
were: observed  in human-specific pseudogenes[39], such-as- ATP
binding; ‘actin binding, calcium' ion binding; extracellular matrix,
nuclei¢ acid binding and oxidoreductase. This is'm accord with that
nonsense mutations cotitribute to ‘pseudogenization’. It is interesting
that nonsense SNPs causing' NMD were frequently found in genes
that encode: proteins involved in phosphorylation; cell-cell interac-
tion; signal transduction and transport. This may be because changes
m the length of polypeptides” caused by nonsense’ mutations are
under “strong ‘negative ‘selection in’ the - genes involved in’ signal

@ PLoS ONE | www.plosone.org

ribosome biogenesis and assembly

Observed
gene no.?

Ratio of
enrichment

Expected

gene no. P value®

3 0.19

*Number of genes with a molecular function in the 602 genes in which nonsense SNPs causing NMD were found.

bEypected number of genes that have a biological function in a sample of 602 genes, assuming a proportion of genes with a molecular function in all human genes.
Enrichment of a biological term in the genes for nonsense SNPs was statistically evaluated as a upper probability in a hypergeometric distribution.

doi:10.137 1/journal.pone.0003393.t009

transduction or transportation becausc abnormal translation
products could cause dominant effects. Therefore, inactivation of
translation by nonsense mutations in those genes could have milder
effects than changes of the length of polypeptides.

Our results showed a low proportion of matches of nonsense
SNPs with known pathological variants in OMIM, suggesting that
the effects of most nonsense polymorphisms are unknown or not
reported. Furthermore, the correspondence of the nonsense SNPs
to- the OMIM  allelic. variants (Table 6, Table 7) suggests that
nonsense polymorphisms that are subject to NMD are more likely
to be involved in phenotypic variations.

There is a possibility that the nonsense SNPs detected here have
pathological effects, . in” particular, if non-dispensable genes have
nonsense mutations. First, a defect in one gene by a nonsense
mutation or a f{rame-shifting indels causing a premature
termination codon could be a cause of genetic diseases including
complex diseases{40]. Second; there is a. possibility that nonsense
mutations cause recessive lethal alleles that would not be detected
as_causative: variant of diseases. Probably;. focusing on nonsense
polymorphisms.observed in specific populations. would be a good
way. of selection for finding variants with deleterious effects.

The effect of single nonsense SNPs can be compensated by the
products: of other genes having similar functions{41} and the other
splicing isoforms of the gene [42]. Thus, single nonsense SINPs may
not always cause severe phenotypic. effects. In: fact; some nonsensc
SNPswith high allele frequencies were found across populations[43].
There is a report of fixation of an inactive form of caspase 12 by a
nonsense mutation (1497116} in non-African populations[43]; and
this is an example supporting the ‘less is more hypothesis’[44]. This
example “suggests - that - some - of - nonsense: mutations - are - not
disadvantageous ‘and: that: the: increase: of frequency of a nonsense
allele could be driven by positive selection.

Elongation of ' polypeptides . by " read-through mutations. can
affect protein  folding ‘and- aggregation of proteins, which could
affect phenotypic. variations. Furthermore, a read-through muta-
tion . can: cause more: severe - effects: on translation - when: no
additional stop codon follows: Such mutations are subject to ‘non-
stop decay’ [32,33], and would result in no gene product. It has
been suggested that non-stop: decay and-NMD serve to remove
toxic, ‘aberrant proteins [29]: It is: unclear how frequently. such
mutations prevent mRNA from producing proteins.: Therefore, it
would be  quite useful to: be-able: to predict the-effects of various
types of genetic changes on mRNA.

Although: the* present - results  are based on ‘representative
transcripts: (one” transcript for-one: gene), the total. number: of
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SNPs causing changes between amino acids and stop codons in all
the splicing isoforms was much larger (2,234). These variations,
which cause changes in the length of a polypeptide or which
determine whether a protein is translated, may include patholog-
ical variants that have yet not been reported. Therefore, it is
important to examine their presence in human populations.

Materials and Methods

Data of human genetic polymorphisms

As data of genetic polymorphisms of human genome, single
nucleotide polymorphisms (SNPs) and insertions and deletions
(indels) in dbSNP [1] were used in this study. The whole data of
human SNPs and' indels were downloaded” from' dbSNP (build
125). We used all SNPs and indels that were mapped on single
position in the genome, except for ‘large insertions’ in dbSNP.

Data of human genes

The data of human gene structure were obtained from H-InvDB
ver3.8 (http://www.h-invitational jp/), created by the annotation
project of human genes (H-Invitational project) [23,45]. Our analysis
of all human genes that corresponds to H-InvDB (ver 3.8) predicted
36,712 protein coding loci. All protein-coding genes were annotated
and classificd based on similarity to- known- genes as follows;
Category I; Identical to known human protein; Category 11, Similar
to known: protein; Category III, IPR-domain containing protein;
Category 1V, Conserved  hypothetical protein; - Categoty =V,
Hypothetical protein; Category VI, Hypothetical” short protein;
Category VII; pseudogene candidate. We used the following three
kinds of data of the gene structure: 1) genomic location of exons to
the: human - genome " (build * 35),” 2). predicted” ORF: regions in
transcripts, and 3) original and curated cDNA sequernices.

Analysis

1. Analysis of polymorphism with exons and predicted
ORFs.  Selection of polymorphisms on exon regions. We
selected “polymorphisms " exon’ regions ™ by comparing - the
genomic ~positions -of polymorphisms and ' the start” and ‘end
positions of “exons  that were “obtained from mapping’ ¢cDNA
sequences to-the human genome: (Figure 1), Polymorphisms in
introns were also selected in a’same way.

Conversion of genomic position of polymorphism into
nucleotide = position in' ¢DNA  sequence. To analyze
polymorphisms with a predicted ORF, nucleotide: positions: of
polymorphisms in the human genome sequences were converted
into the nucleotide positions: in cDNA sequences.. Because there
could be gaps in the alignmerit of cDNA sequence and the human
genome sequence, the nucleotide position was converted consid-
ering possible gaps in the alignment. When the ¢cDNA sequence
was corrected in” ORF prediction because: of frame-shifting. and
rémaining intron, the nucleotide position’ of SNP was: modified
based on addition or deletion of nucleotides. For a quality control
of polymiorphism data used for classification, we conformed: that
one of the nucleotides in each pair of SNP-alleles: was' the same
nucleotide at the corresponding position in the cDNA sequence.

Classification of polymorphisms with predicted ORF.
Polymorphisms within ORF were classificd according to their effect
onORF. For: SNPs with: two' alleles; alleles in: nucleotide were
converted into ‘alleles in codon’ by adding two other nucleotides in
the codon from ¢cDNA 'sequence.: When ‘a’ cDNA sequence: was
corrected in the annotation process by removing a remaining intron
or by correcting a frameshift error; the corrected ¢cDNA sequence
was used. If these alleles in codon do not contain any stop codon, the
alleles were classified into synonymous and nonsynonymous. In case

@ PLoS ONE: | www.plosone.org

Distribution of Nonsense SNPs

a stop codon is included in the alleles in codon, they were classified
into 1) premature termination (nonsense) codon, 2) read-through of
original stop codon, and 3) synonymous at stop codon site, by
assuming that the ¢cDNA sequence has an ancestral allele. Indels
were classified based on whether they are located in ORF, The indels
within ORF were further classified by whether the insertion or
deletion causes frame shifting in translation.

Inference of direction of nonsense and read-through
mutations. Arcestral alleles were obtained from dbSNP (build 128)
to check direction of mutations for SNPs causing changes between
amino acids and stop codons. For nonsense SNPs in protein-coding
regions, we checked whether the ancestral allele codes amino acids.
In case that the ancestral allele codes stop codon, we do not regard
this SNP as nonsense SNP; but is a read-through mutation assuming
that there was a variant having a shorter ORF. For read-though
SNPs at termination codon site, we checked whether the ancestral
allele codes stop codon. In case that the ancestral allele codes amino
acids, we regard this SNP not as a read-through mutation, but as a
nonsense mutation in a variant having a longer ORF.

Number of sites for synonymous, nonsynonymous and
nonsense mutations. To estimate densitics of synonymous,
nonsyrionymous and nonsense SNPs, the numbers of potential
synonymous, nonsynonymous and nonsense sites by single nucleotide
changes were estimated for the ORF sequences. This is an extension
of estimation of the numbers of synonymous and nonsynonymous
sites[46]; the number of synonymous sites is calculated as the number
of four-fold degenerate sites plus one-third of the number of two-fold
degenerate sites. For 61 codons encoding amino acids, the numbers
of nucleotide sites that would cause synonymous, nonsynonymous
and nonsense mutations by a single nucleotide change were estimated
with'a model of nucleotide charige. Here; the relative occurrence of a
transitional mutation vérsus a transversional mutation () was set to'be
4.0 (the "expected ratio” inthe ‘numbers of  transitional - and
transversional mutations was 2.0). For example of the TTA codon
for leucine, the number of nonsense sites was estimated ‘to be 2.0/
(7+2.0), because two types of transversional mutations at the second
position cause nonsense mutations.

2. Correspondence to known pathological variants. = To
check whether - the polymorphisms: that alter proteiris are’ known
pathological® " variants’ with * phenotypic = effect, 'we  examined
correspondence of SNPs with data of known pathological variants.
We used data of ‘allelic variant’ in the Online Mendelian Inheritance
in’ Man (OMIM) database [18] as’ information of variants with
phenotypic effect: For nonsynonymous and nonsense. SNPs, " their
effects on translation and positions in ORF were compared with the
Qist of alleles” in. OMIM (e.g:’ described “as ““TRP324TER” or
“ALA279THR? for the NGAS gene).

3. Prediction of nonsense SNPs causing NMD. = Some of
nonsense - mutations: cause - nonsensc-mediated - decay: (NMD),
resulting in prevention. of translation. It has been reported that
mRNA would be destroyed if a stop codon occurs in' the 5" side of
the boundary, which is:50=55 nucleotides upstream from the end
of the second to last exon [30;31]. To: predict whether a nonscnse
SNP ‘causes :NMD), we' éxamined whether-a nonsens¢: SNP is
located in- the' 3" side’ of  the boundary; which: was: set- at. 50
nticleotides upstream from’ the end of the second to last exon; in
the exon-intron structure: This method is the same as the method
in' SNP2NMD: [37] when ‘NMD: distarice’ is 50, nucleotides.

5. Functional bias of genes with nonsense SNPs. - For
cach biological term’ from: Gene Ontology: (www.geneontology.
org), a proportion of genes with the biological function in the genes
having nonsense. SNPs was compared with that in all human genes
{representative transcripts in all human genes in H-InvDB ver 5.0),
and the significance of over represenitation of a molecular function

October.2008 | Volume. 3 | Issue 10 | e3393

=170 -



in the genes having nonsense SNPs was cvaluated as the upper
probability of the hypergeometric distribution.

Supporting Information

Results SI  Supplementary results and a table for analyses of
nonsynonymous SNPs.

Found at doi:10.1371/journal.pone.0003393.5001
DOC)

Table S1 Nonsense SNPs and read-through SNPs on represen-
tative transcripts.

Found at: doi:10.1371/journal.ponec.0003393.5002 (4.24 MB
DOC)
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The future of biocuration

To thrive, the field that links biologists and their data urgently needs structure, recognition and support.

Doug Howe, Seung Yon Rhee et al.

The exponential growth in
the amount of biological data
means that revolutionary meas-
ures are needed for data man-
agement, analysis and accessibility. Online
databases have become important avenues
for publishing biological data. Biocuration,
the activity of organizing, representing and
making biological information accessible to
both humans and computers, has become
an essential part of biological discovery and
biomedical research. But curation increas-
ingly lags behind data generation in funding,
development and recognition.

We propose three urgent actions to advance
this key field. First, authors, journals and
curators should immediately begin to work
together to facilitate the exchange of data
between journal publications and databases.
Second, in the next five years, curators,
researchers and university administrations
should develop an accepted recognition struc-
ture to facilitate community-based curation
efforts. Third, curators, researchers, academic
institutions and funding agencies should, in
the next ten years, increase the visibility and
support of scientific curation as a professional
career.

Failure to address these three issues will
cause the available curated data to lag far-
ther behind current biological knowledge.
Researchers will observe an increasing occur-
rence of obvious gaps in knowledge. As these
gaps expand, resources will become less effec-
tive for generating and testing hypotheses, and
the usefulness of curated data will be seriously
compromised.

When all the data produced or published
are curated to a high standard and made
accessible as soon as they become avail-
able, biological research will be conducted
in a manner that is quite unlike the way it is
done now. Researchers will be able to process
massive amounts of complex data much
more quickly. They will garner insight about
the areas of their interest rapidly with the
help of inference programs. Digesting infor-
mation and generating hypotheses at the
computer screen will be so much faster that
researchers will get back to the bench quickly
for more experiments. Experiments will be
designed with more insight; this increased
specificity will cause an exponential growth in
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knowledge, much as we are experiencing
exponential growth in data today.

Data avalanche

Biology, like most scientific disciplines, is in
an era of accelerated information accrual and
scientists increasingly depend on the availabil-
ity of each others’ data. Large-scale sequencing
centres, high-throughput analytical facilities
and individual laboratories produce vast
amounts of data such as nucleotide and pro-
tein sequences, protein crystal structures,
gene-expression measurements, protein and
genetic interactions and phenotype studies.
By July 2008, more than 18 million articles
had been indexed in PubMed and nucleotide
sequences from more than 260,000 organ-
isms had been submitted to GenBank'”. The
recently announced project to sequence 1,000
human genomes in three years to reveal DNA
polymorphisms (www.1000genomes.org) is a
tip of the data iceberg.

Such data, produced at great effort and
expense, are only as useful as researchers’
ability to locate, integrate and access them. In
recent years, this challenge has been met by
a growing cadre of biologists — ‘biocurators’

© 2008 Macmillan Publishers Limited. All rights reserved
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— who manage raw biological data,
extract information from published
literature, develop structured vocabu-
laries to tag data and make the infor-
mation available online® (Box 1). In
the past decade, it has become second
nature for biologists to visit websites to
obtain data for further analysis or inte-
gration with local resources. Our sur-
vey of several well-curated databases
(nine model-organism databases, Uni-
prot and Protein Data Bank) showed
that nearly 750,000 visitors (unique IP
addresses) viewed more than 20 million pages
in just one month (March 2008, Eva Huala,
Peter Rose, Rolf Apweiler, personal commu-
nications).

Despite the essential part that it plays in
today’s research, biocuration has been slow to
develop. To provide a forum for the exchange of
ideas and methods, and to facilitate collabora-
tions and training, more than 150 biocurators
met at two international conferences and cre-
ated a mailing list and a website (www.biocu-
rator.org). These meetings and discussions
have honed in on the three actions, outlined
above and elaborated on below, that must now
be addressed to ensure scientists’ continued
access to the high-quality data on which their
research depends.

Come together

Extracting, tagging with controlled vocabu-
laries, and representing data from the lit-
erature, are some of the most important and
time-consuming tasks in biocuration. Curated
information from the literature serves as the
gold-standard data set for computational
analysis, quality assessment of high-through-
put data and benchmarking of data-mining

47
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algorithms. Meanwhile, the boundaries of
the biological domain that researchers study
are widening rapidly, so researchers need
faster and more reliable ways to understand
unfamiliar domains. This too is facilitated by
literature curation.

Typically, biocurators read the full text of
articles and transfer the essence into a data-
base. For a paper about the molecular biology
of a particular gene, process or pathway, such
information might include gene-expression
patterns, mutant phenotypes, results of bio-
chemical assays, protein-complex membership
and the authors’ inferences about the functions
and roles of the gene products studied. As each
paper uses different experimental and analysis
methods, capturing this information in a con-
sistent fashion requires intensive thought and
effort. Limited resources and staff mean that
most curation groups can't keep up with all the
relevant literature.

How information is presented in the lit-
erature greatly affects how fast biocurators
can identify and curate it. Papers still often
report newly cloned genes without providing
GenBank IDs or the species from which the
genes were cloned. The entities discussed in a
paper, including species, genes, proteins, geno-
types and phenotypes must be unambiguously
identified during curation. For example, using
the HUGO Gene Nomenclature Committee
resource (www.genenames.org), we find that
the human gene CDKN2A has ten literature-
based synonyms. One of those, p14, is also
a synonym for five other genes: CDK2AP2,
CTNNBLI, RPP14, S100A9 and SUBI. To con-
firm the identity of the gene described, cura-
tors make inferences from synonyms, reported
sequences, biological context and bibliographic
citations. This time-consuming and error-
prone step could be eliminated by compliance
with data-reporting standards*”.

Most recent efforts in this direction have
been developed by the com-
munities that produce large-
scale genomics data. The vast
majority of the peer-reviewed
literature does not yet have a
reporting-structure standard.
As publication has become a
mainly digital endeavour, how-
ever, publications and biological databases are
becoming increasingly similar. Properly cross-
referenced and indexed, each could serve asan
access point to the other'’. Such collaboration
between databases and journals would improve
researchers’ access to data and make their work
more visible.

We recommend that all journals and
reviewers require that a distinct section of the
Methods (or a supplemental document) of
all published articles includes approved gene
symbols (which are inherently unstable) and
model-organism database IDs (which do not
change) for genes discussed; nucleotide or
protein accession numbers (GenBank or Uni-
Prot ID) for isoforms of each gene or protein

annotate.”
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“To date, not much
of the research
community is rolling
up its sleeves to

Box 1| The role of biocurators

@® To extract knowledge from published
papers

@® To connect information from different
sources in a coherent and comprehensible
way

@® Toinspect and correct automatically
predicted gene structures and protein
sequences to provide high-quality proteomes
@® To develop and manage structured
controlled vocabularies that are crucial for
data relations and the logical retrieval of large
data sets

@ Tointegrate knowledge bases to represent
complex systems such as metabolic
pathways and protein-interaction networks.
@® To correctinconsistencies and errors in
data representation

@ To help data users to render their research
more productive in a timely manner

@ To steer the design of web-based
resources

@ Tointeract with researchers to facilitate
direct data submissions to databases

discussed; and descriptions of species, strains,
cell types and genotypes used. Examples
of sources for this information are listed in
Table 1. This would accelerate literature cura-
tion, uphold information integrity, facilitate
the proper linkage of data to other resources
and support automated mining of data from
papers. Another model is for authors to
provide a ‘structured digital abstract’ — a
machine-readable XML summary of perti-
nent facts in the article'' — along with a man-
uscript. This approach is in an experimental
phase at the journal FEBS Letters'.

Journals should also mandate direct submis-
sion of data into appropriate databases as a part
of publication. This has been implemented by
the journal Plant Physiology and curators of
The Arabidopsis Information Resource (TAIR)
database". On acceptance of a manuscript, the
corresponding author must fill
outa simple web-based form to
provide appropriate genetic and
molecular information about
the Arabidopsis genes in the
publication. The information
is sent to TAIR for integration
by biocurators, who work with
the authors to ensure that the data reported are
of high quality and accurate.

As this infrastructure develops, we would
like to see authors routinely tagging all aspects
of the data in their publication semantically
using universally agreed tag standards. Exam-
ples of such tags include the National Center
for Biotechnology Information (NCBI) Taxon
1Ds, the Gene Ontology (GO) IDs and Enzyme
Commission (EC) numbers. This information
should be embedded in the electronic versions
of publications or provided in a supplemental
file similar to the crystallographic information
file (CIF) currently required for publication of
acrystal structure. The CIF file is submitted to
the Protein Data Bank (www.pdb.org), which
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offers software to assist in preparation and
validation of such crystallographic data". An
analogous system to help authors identify, tag
and validate the crucial basic information in
their research reports before publication would
accelerate the automated linkage of literature to
key records in existing databases and improve
the accuracy of the published data.

In short, authors and publishers must use the
existing publication infrastructure to facilitate
literature curation much more to the benefit
of all parties.

Community curation

Curation of large-scale genomics and post-
genomics data enjoys no such luxury of ‘an
existing publication infrastructure’ to lever-
age, although emerging standards of data
reporting are promising™ . Sooner or later, the
research community will need to be involved
in the annotation effort to scale up to the rate
of data generation. This transition will require
annotation tools, standardized methods, over-
sight by expert curators and a combination of
social infrastructure, tool development, train-
ing and feedback. Biocurators are especially
important for establishing such an infrastruc-
ture and training to maintain consistency and
accuracy.

To date, not much of the research community
is rolling up its sleeves to annotate. What will
be the tipping point? The main limitation in
community annotation is the perceived lack of
incentive. For example, several model-organ-
ism databases have requested that authors
annotate the genes they publish. This has his-
torically failed for one main reason: contribu-
tions by experts consist of information they
already know, and do not increase the value
of the resource to themselves. A mechanism
tied to career or research advancement may
be required before community curation can
be established as a broadly accepted and pro-
ductive scientific endeavour". Incentives for
researchers to curate data should include new
information or insight for their research inter-
ests, improvement in academic reputation or
impact, career advancement and better funding
chances. Academic departments and funding
agencies should consider community annota-
tion as a productive contribution to the scien-
tific research corpus and a natural extension of
the publication process.

For example, in the Daphnia Genomics
Consortium (http://daphnia.cgb.indiana.
edu) collaboration wiki, a community of
more than 300 contributors took ownership
of annotation of the genome while it was
being sequenced at the Joint Genome Insti-
tute in Walnut Creek, California, and shared
publication authorship as a consortium. Simi-
larly, the International Glossina Genomics
Initiative (http://iggi.sanbi.ac.za) hosted an
annotation jamboree for field workers, pop-
ulation geneticists and molecular biologists
to annotate tsetse fly molecular data as the
sequence information became available. This
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consortium-based publication mechanism is
analogous to that used by other large-scale
scientific projects such as the Sloan Digital
Sky Survey (www.sdss.org). This is a viable
course for communities that lack funding for
dedicated curators, and offers a reward struc-
ture through consortium publication for par-
ticipation and subsequent satellite papers.
The recently launched WikiProfessional Life
Sciences (www.wikiprofessional.org) project
links community curation with research and
reputation gains. WikiProfessional indexed
more than one million authors from PubMed
and comparable numbers of biological con-
cepts from authoritative databases and gener-
ated a simple way for researchers to update the
information'®. Because new potential ‘facts’
are mined from the network of associated con-
cepts, the more accurate and comprehensive a

Table 1| Examples of knowledge-sharing databases

particular concept is, the more chance it will
have of being associated with other relevant
ones, which in turn will lead to more potential
new facts. All the updates researchers make are
immediately publicly visible under their own
name. Similarly, the Gene Wiki project gener-
ated thousands of wiki stubs in Wikipedia for
human genes in an attempt to make it easier
for the community to update the gene pages'”.
Although these wiki-based approaches pro-
vide an infrastructure for contributors to be
recognized, there is not yet a standard prac-
tice for these contributions to be cited like a
publication. It is imperative that the research-
ers, journal publishers and database curators
start building a standard mechanism for citing
annotation data sets.

Allowing anyone with a web browser,
including the general public, to annotate

Species Database URL

Model organism databases

Aedes aegypti VectorBase www.vectorbase.org
Anopheles gambiae VectorBase www.vectorbase.org
Arabidopsis thaliana The Arabidopsis Information Resource  www.arabidopsis.org
Caenorhabditis elegans WormBase www.wormbase.org
Candida albicans Candida Genome Database www.candidagenome.org
Culex pipiens VectorBase www.vectorbase.org
Danio rerio Zebrafish Information Network http://zfin.org
Dictyostelium discoideum dictyBase http://dictybase.org
Drosophila sp. FlyBase http://flybase.org
Glycine max SoyBase www.soybase.org

Homo sapiens

Hordeum vulgare Barley Genetic Stocks Database
Ixodes scapularis VectorBase

Leishmania sp. GeneDB

Mus musculus Mouse Genome Informatics
Oryza sp. Gramene

Paramecium tetraurelia ParameciumDB

Pediculus humanus VectorBase
Rattus norvegicus Rat Genome Database
Saccharomyces cerevisiae

Schizosaccharomyces pombe ~ GeneDB

Solanaceae sp. Sol Genomics Network
Strongylocentrotus purpuratus SpBase

Triticum sp. GrainGenes
Trypanosoma sp. GeneDB

Xenopus laevis Xenbase

Xenopus tropicalis Xenbase

Zea mays

HUGO Gene Nomenclature Committee

Saccharomyces Genome Database

www.genenames.org
http://ace.untamo.net/bgs
www.vectorbase.org
www.genedb.org
www.informatics.jax.org
http://gramene.org
http:/paramecium.cgm.cnrs-gif.fr
www.vectorbase.org
http://rgd.mcw.edu
www.yeastgenome.org
www.genedb.org
http://sgn.cornell.edu
http://sugp.caltech.edu/SpBase
http://wheat.pw.usda.gov
www.genedb.org
www.xenbase.org

www.xenbase.org

Maize Genetics and Genomics Database www.maizegdb.org

Nucleotide, protein and structure databases

All Species GenBank www.ncbi.nlm.nih.gov/Genbank

All Species UniProt www.pir.uniprot.org

All Species Protein Data Bank http://rcsb.org/pdb/home/home.do
Taxonomy

All Species NCBI Entrez Taxonomy www.ncbi.nlm.nih.gov/sites/

entrez?db=taxonomy

Biological databases contain unique identifiers for the unambiguous identification of biological entities (scuh as genes, proteins, species
and chemicals). These identifiers do not change as common biological names do. Authors should consult these databases for stable

identifiers to cite in their publications.
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entries would increase the number of poten-
tial annotators substantially, as pioneered in
several astronomy projects. At Galaxy Zoo
(www.galaxyzoo.org), 80,000 astronomers and
members of the public manually classified the
morphology of one million galaxies in less than
three weeks. An analogous system to allow the
public to contribute to biological annotation
could be just as powerful if presented properly.
For example, one could show a user an image
of an in situ hybridization experiment and ask
them to grade it as ‘not expressed, ‘restricted
expression’” or ‘ubiquitous expression. Even
such basic information, if available for many
thousands of genes, would be useful as first-
pass annotation.

In sum, researchers (and even the gen-
eral public) can be mobilized to provide the
substantial resources needed to address the
immense volume of data, if participation is
appropriately rewarded. In the next five years,
curators, funding agencies and academic insti-
tutions alike must find ways to consider sub-
stantial contributions to community curation
efforts, much like a peer-reviewed publication,
when it comes to issues of promotion, salary,
hiring and funding.

Career path

How can biocuration mature faster as a career?
Biocurators currently streamline submission
to databases, automate curation, standardize
data and facilitate contributions to annota-
tion by research communities interested in the
annotation process. To handle the increasing
volume and types of data, journal publishers
and researchers who generate data will need
to be involved in the curation process and the
roles of biocurators will expand to include
editing and teaching. As biology moves
towards more precise, quantitative science,
biologists also need to adapt to thinking more
quantitatively, systematically and objectively
about their data; biocuration will need to
become an inherent part of research and edu-
cation in biology.

Biocuration requires a blend of skills and
experience, including advanced scientific
research and competence in database manage-
ment systems, multiple operating systems and
scripting languages. This type of background
has typically been garnered through a combi-
nation of self-teaching and on-the-job experi-
ence, which can be narrow and spotty. Happily,
formal education is becoming available. For
example, the Graduate School of Library and
Information Science at the University of Illi-
nois at Urbana-Champaign offers a biological
information specialist master’s degree and a
specialization in data curation'®. Experienced
biocurators must lead the way in establishing
more and better formal training programmes.
In the next 5-10 years, biology curricula
should include courses in biocuration as this
becomes an increasingly common activity
for all biological researchers. And interdisci-
plinary programmes that include courses in
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biology, computer science and information
science will be vital.

Attracting highly qualified individuals into
this field has been challenging. The whole com-
munity must promote scientific curation as a
professional career option. Funding agencies
must assess the impact of curated data and sup-
port the development of innovative curation
methods. To improve the profession, curators
need a forum to share their experiences and
publish their works. Oxford University Press
plans to begin publishing a new journal in 2009
called Database: The Journal of Biological Data-
bases and Curation. This may provide one such
venue for publication of noteworthy advances
in biocuration (www.database.oxfordjournals.
org). Meanwhile, a committee of 20 biocurators
and researchers is forming an International

Authorship

Society for Biocuration (www.biocurator.org/
BiocuratorSociety.html) to make the discipline
more visible and to promote it as an attractive
career path. The official launch of the society is
planned for the third International Biocuration
Meeting next April in Berlin (http://projects.
eml.org/Meeting2009). '
Biology today needs more robust, expressive,
computable, quantitative, accurate and precise
ways to handle data. It is time to recognize that
biocuration and biocurators are central to the
future of the field. @
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