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FIGURE 1. Schematic representation of our previous model. The
cells are surrounded by a bath of source material with a constant
concentration. After a division, the cells are connected to one
another by forming cell bridges. Thus, the cells are connected to
one another as a one-dimensional chain.

computation using QE are given in Section 4, which describes algebraic relations
between the proliferation and transition rates. In Section 4.2 and 4.3, these rela-
tions are used to show that the cell-type order conservation rule plays a key role
in high cell-type diversity.

2. Overview of previous model

In this section, we give a brief overview of our previous work [22], which is the
basis of the construction and analysis of the model in this paper.

In a multi-cellular organism, a single cell — an egg — correctly develops into a
prospectively determined pattern. This morphogenesis is robust against environ-
mental perturbations, and the same pattern is always generated from eggs of a
particular species. In other words, recursive production is repeated. At the same
time, the developmental process in a multi-cellular organism produces a variety of
cell types. The compatibility of these two points is surprising, because ‘recursive
production’ is the reproduction of the same pattern of an individual cell, while
‘cell-type diversity’ is the existence of various patterns, namely, various cell types,
within an individual. The question we addressed in our previous work was the se-
lection of initial cells to allow for compatibility between recursive production and
cell-type diversity.

We present our previously developed model of a multi-cellular organism in
Figure 1. Within each cell, catalytic and auto-catalytic chemical reactions maintain
the cell itself and synthesize some chemicals for the cell membrane. Our numer-
ical results indicated that, by starting with an initial object consisting of both
the chaotic cell type with diverse chemicals and the regular-dynamics cell type
with less chemical diversity, the recursive production of a multi-cellular organism
with cell-type diversity has been realized. As illustrated in Figure 2, starting with
the two cells corresponding to I1 and I, the regeneration pattern corresponding
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FIGURE 2. Regeneration of cell-type sequence, which was ob-
served in [22]. The cell differentiates from I; to I5 sequentially.
Starting with I 75, patterns without non-contiguous numbers,
such as Iy [1 IsI3131415 15, are eventually produced. Thus, no con-
tiguity will disappear during the development process.
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FIGURE 3. Schematic representation of our model. Cell differen-
tiation proceeds as follows: [y — I — -+ — I,.

I, I, Ins

to I1I»... I, is eventually produced. Here, such regeneration phenomena can be
described as the following rewriting rule, named a cell-type order conservation rule:

Iifj ""’IiIi-}-l"'Ij—lea Iin _’IjIj—l"'Ii—f-lIi (_7 >’L+1) (21)

This rewriting rule appears as interaction terms in the IL-system in the next
section.

3. Present model

In this section, we present a simple model of a multi-cellular organism in which
the cell lineage can be represented as a line, that is, only sequential differentiation
occurs. Our model is schematically illustrated in Figure 3. We assume that cell
differentiation starts with an initial type, I3, and then the cell differentiates into
several intermediate types Iy — I3 — --- — I, 1 before differentiating into the
final type, I,,. The proliferation and transition rates of cell type ¢ (1 <14 <n) are
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defined as follows:

LI; p;
I — Iiyy pigr1 1<i<n),

I; 1—1p5i — Dist1

L. I, »p
L, — { 7 Pen 3.1
\ { Pl (3.1)

with 0 < Pii < 1 (1 <i< TL), 0< Piit+1 < 1 (1 < i<n),Pi,i+pi,i+1.<1 (1 < z'<n)‘
After the rewriting rules above are once applied, the following rewriting rules are
once applied: Iin s [iI,;+1 s Ij_llj, Ij],; — Ij[j_l . -Ii+1f,; (j > 1+ 1), which
describe interactions between cells. We repeat this manipulation. These rules are
termed cell-type order conservation rule as mentioned in Section 2.

4. Results and discussion

4.1. Analysis of the growth matrix in the stochastic l-system

Now, we calculate the growth matriz M of the two contiguous cell types I;I;, I; 1;1,
I;y1I; (1 < i < n), which enables us to estimate the expected composition of
LI, (k= £-1,¢,£+1) at step m. It should be noted that the other two contiguous
cell types (e.g., I;];+3) never appear at any step according to the cell-type order
conservation rule. Although we could use the growth matrix concerning more than
two cell types, the simple growth matrix with the two contiguous cell types suffices
in this work.

If we start with Iy, then the composition at step m can be calculated by
the following formula:

(1,0,0,..)M™. (4.1)

Here, we have studied the case with n = 3, showing the existence of three
cell types. Let A, B and C denote 11, I and I3, respectively, in the following. The
growth matrix M is then:

1st to 4th column:

2p1,1+(1—p12)? (I—-p12)pie (1 —p12)p12 Py
P11 l1—pi2 0 p1,2 +P2,2 — P1,2P2,3
P1,1 0 1—pi2 P1,2 +P2,2 — P1,202,3
M3 = 0 0 4] 2pa,2 + (1- p2,3)2
0 0 0 P22
0 0 0 p2,2
0 0 0 0
5th to 7th column:
] 0 0
P2,3 0 0
0 p2,3 0
(1 —p23)p23 (1 —p23)p2a P33
1—1p23 0 p2.3 -+ P3,3
0 1—pa3 p2,3 + P3,3
0 0 1+ 2p3,3
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with its eigenvalues:

1—p12,1+2p11 —pr2 (1 —p1,2)°, 1 — p2g,

1+ 2].’)2’2 — D2,3, (1 — p2’3)2 and 1+ 2p3‘3 . (42)
Let S denote the diagonal matrix: Diag(1—p1,2, 1+2p1,1—p1.2, (1 —p1,2)% 1 —Dpas,
14 2p22 — P23, (1 — p23)?, 1+ 2ps 3). The features of the growth matrix M are
the followings:

If the eigenvalues differ from one another, then there exists a regular matrix P
such that M = PSP~!. In this case, (1,0,0,0,0,0,0)P is:
(0’ 25 €s, 07 €5, €8, 67) 5

where e3, e5, g and e7 are nonzero values. These facts lead the composition (4.1):
(1,0,0,0,0,0,0)PS™P~1 to

(0,2(1+ 2p1,1 — p1,2)™, e3(1 — p1,2)°™, 0, e5(1 + 2pa,2 — p2,3)™,
es(l — p2,3)2m, er(1+ 2p3,3)m)P'1 .
As m approaches infinity, because only 14-2p; 1 —p1,2,1+2p22—p23 and 142p3 3
can be greater than 1, the composition above can be described as follows:
(0,2(1+ 2p11 — p1,2)™,0,0,e5(1 + 2pa,2 — p2,3)™, 0, e7(1 + 2p3 3)™) P L.

The fifth and seventh rows of P~!, corresponding to the fifth and seventh columns:
es(1+2p2,2—p2,3)™ and e7(1+42p3 3)™ in the first row vector, have zero elements at
the AA, AB, BA and AA, AB,BA, BB, BC,CB columns, respectively. Therefore,
only the second column: 2(1 4 2p; 1 — p1,2)™ can give rise to AA, AB, and BA
as m approaches infinity. This indicates that one of the necessary conditions for
AA,AB,BA, BB, BC, CB and CC to be well mingled as m approaches infinity
is:

14+2p11—p2>1 A 1+2p11 —p12> 1+ 2p22 — P23

AN1+2p1—p12>1+2p33. (4.3)
In addition, for real biological systems, the following constraints are assumed:
yN(AA) = N(BB) = N(CC) A yN(AB) = N(BC). (4.4)

Under the condition (4.4), let m approach infinity, and the following equations are
derived:

N(AB) = N(BA) = Y¥(p1,2 — p2,3)(1 — P12 — P23)
Y(pr,2 — P2,3) + P23

N(BC) = N(CB) =yN(AB),

N(BB)=N(CC) =1,

p1,1 = p1,2(l — p1,2) (P23 + Y(P1,2 — P2,3))/ (2v(Pr,2 — P2,3)(1 — P12 — P2.3)),

P22 = <p1,2p2,3( — (1 —p12)P3 o + P23 — Pr2pss) + (pig(?» — 5p2,3)
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~(2-p23)(1 — P2,3)P§,3 - P?,z(l — 2p2,3) + Pl,ng,g( - 1+2(2
— p2a)(1 — pa3)paa) + P2 opa,a(5 — 9pas + 6p5 3) — PY (2 + P23

- 7103,3 + 419%,3))’)' + (pr2 — p2,3)3(L — p2.3)p2,3(2 — P12
- p2,3)’)’2> / (2(101,2 —pa3)(—1l4+p12+ Pz,s)’y((—l + p1,2)P1,2
—p3a+ (P12 —P23)(—2+p12 +P2,3)’Y)) ,

P33 = <p2,3 ((1 — p1,2)P1,2P2,3 — (P1,2 — P2,3) (piz +(1- P2,3)Pg,3
~pra(l+p23+053))y — (Pr2 — p2,3)*(2 — P12

—p2,3)(1 — 2p12 +p2,3)’72)>/<2(p1,2 —p23)(—1+p1,2

+ P2,3)’y((—2 + p1,2)p1,2y — p2,3(1 — (2 - 292,3)’Y)>> , (4.5)

where N(XY) denotes the number of sequences XY as m approaches infinity
and v denotes that the ratio of the initial cells to the developed cells is 1/7. Notice
that N(AB) = N(BA) and N(BC) = N(CB) always hold true because of the
construction of the rewriting rules (3.1). In the equations above (4.5), N(4A)
is normalized, i.e., N(AA) = 1. Thus, N(XY), (X,Y € {A,B,C}), p1,1, P22
and p3 3 can explicitly be represented as functions of p; 2 and pg 3. Notice that as
N(AB) = (N(BA)) approaches 1, the cell-type diversity approaches its maximum.

4.2. Inference of the proliferation and transition rates by QE

Now, let us infer relations between the proliferation and transition rates for which
the cell-type diversity is high under the constraints: (4.3), (4.4) and (4.5). For this
purpose, it is sufficient to calculate the relations that maximize N(AB) under the
constraints of (4.3), (4.5) and (4.4) because of N(AA) = 1, N(AB) = N(BA),
N(BC) = N(CB) and the constraint (4.4).

It may be worth noting that it seems difficult to calculate relations between
the rates under such complicated constraints by numerical methods. Indeed, in
our previous analysis by brute-force numerical simulations [16], we estimated a set
of rates that realize high cell-type diversity by searching a large number of points,
but could not obtain definite relations between the rates. In [10], Janssen and Lin-
denmayer described some plant as an IL-system and investigated the development
of highly branched inflorescences using various developmental parameter sets by
numerical analysis. They succeeded in producing a proper model of the plant, but
did not obtain definite relations between the parameters. Although the rate val-
ues provide a snapshot for the system behaviour, the relation between rates will
provide more profound insights into the mechanism of the system. Therefore, in
this paper, we have utilized the QE approach to obtain algebraic relations between
rates.
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Firstly, we determine the maximum values of N(AB) by solving the following
QE problem:

Ip127p2 3 (¥(p1,2,p2,3,7) AN(AB) > ¢), (4.6)
where 9¥(p1,2,p2,3,7) is a formula derived by combining all equations and inequali-
ties appearing in (4.3), (4.4) and (4.5), conjunctively. For a fixed value of v, the QE
procedure (4.6) produces the following inequalities: ¢ < (v/17 + 1)/8 ~ 0.64039,
(/881 — 9)/40 ~ 0.517041 and (v/89801 — 99)/400 ~ 0.50167 when the 7 values
are 1, 10 and 100, respectively. Thus, we have determined the maximum values.
To summarize, we have obtained the composition describing the highest cell-type
diversity:

(AA,AB,BA, BB, BC,CB,CC) = (1, f(V), f(V): : v f (s v f () v), (47)
with f(1) = (V17+1)/8, £(10) = (v/881~-9)/40 and f(100) = (/89801 —99)/400.

By QE method, we have also successfully derived the algebraic equation between
the maximum value: h (0 < f < 1) and +y (y > 0) as follows:

(4.8)

h2y% — 42 — 2R3y + 3h2y — hy+ 2R3 =0 (893 — 1142+ 3y -1 <0),
2h:y +hy—v—h=0 8y — 1192 +3y— 1> 0).

The relations between rates which maximize the diversity can be derived
using formula (4.5). The rate-relations for v = 1, 10 and 100 are illustrated in
Figure 4. These values were chosen because in our previous simulation [22], the
constraint (4.4) over N(XY), (X,Y € {A, B,C}) was observed, and partly be-
cause there are few initial-type cells (A in this work) corresponding to stem cells
in real biological systems [8]. Remember that 1/v was defined as the ratio of the
initial cells to the developed cells. Interestingly, three modes for the highest diver-
sity of cell types emerge. The three modes correspond to three curves separated by
discontinuous points of the derivative. The three modes when « is 100 are explicitly
expressed as follows:

e Mode L
p2,3 = the minimum real root of the equation in z,
19900p3 , — 4900p3 , + 20000p7 , + (—39901py 2 + 69801p7 ,
— 1000053 )z + (20000 + 10200p;,> — 30100p? ,)z> + (—30100
+ 10000p; 2)z® +10100z* =0 (0 < p12 < po),
where pg is the minimum real root of the equation in z,
39999 — 320794z + 88398822 — 966392z° + 3632002% = 0,

and is approximately 0.321746.
e Mode II:

pas = (1 +198p; o — \/1 + 396py.5 — 796pi2> /200 (po < pr.2 < 2/5).
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FIGURE 4. Relations between the proliferation p; ; and transition
rates p;;+1 when the maximum values above are satisfied. The
black line, dashed line, gray line denote the relations when v is 1,
10 and 100, respectively with the cell-type order conservation rule.
The dot-dash line shows the case with v = 10 without the cell-type
order conservation rule. (b) Modes I, II and III correspond to the
three curves (or lines) into which the points where the curve is
not smooth separate the whole region. Mode I includes the origin.
(d) is the graph of (c) magnified around (1,1). Note in (c) and
(d), the line 1 4 2p1,1 — p1,2 = 1+ 2p2,2 — P23 is much the same

as the gray curve.

o Mode III:

P23 = (200 —99py 5 — /40000 — 199600p1 3 + 2498011)%’2) /400

(0 <p1,2 < 2/5) .

Modes I, II and III show the existence of three stages, in which the cell-type
diversity is highest. We have observed the existence of the three stages when
v > 1. Notice that Modes I, II and III, described by algebraic functions of p; 2,

have been inferred using the QE method.
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FIcURE 5. Rate-relations between the points that are lowered
from the highest cell-type diversity curve by 0.01 (a) and 0.05 (b).
The black points were calculated with the conservation rule, the
gray points without the rule.

We have focused on the case of y > 10 because in our previous simulation [22],
the constraint (4.4) over N(XY), (X,Y € {A, B,C}) was observed, and there are
few initial-type cells (A in this work) corresponding to stem cells in real biological
systems [8]. Remember that 1/v is defined as the ratio of the initial cells to the
developed cells in Section 4.1.

We have also calculated the relation between the proliferation and transi-
tion rates when N(AB) is the maximum without the cell-type order conservation
rule (2.1), to evaluate the effect of the conservation rule. Figures 4 (c) and (d) show
that, with the cell-type order conservation rule, the (1+2p1 1 —p1,2, 1+2p2 2 —p2,3)
curve (dashed and gray) is close to the line 1 +2p; 1 —p1,2 =1+ 2pa 2 — p23; by
contrast, the curve for v = 10 without the conservation rule (the dot-dashed line)
is separate from 1+ 2py 1 —p12 = 1+ 2p3 2 — p2,3. Such a tendency is observed as
long as v > 10.

4.3. Relation between cell-type diversity and the order conservation rule

We also evaluated the robustness of high cell-type diversity when 4 is 10 with and
without the cell-type order conservation rule. This evaluation was performed by
deriving the relation between the proliferation and transition rates obtained when
the points are lowered by 0.01 and 0.05 from the highest cell-type diversity curve
inferred exactly in Section 4.2. As illustrated in Figures 5(a) and (b), the set of
points (gray) without the conservation rule are more separate from the original
set than the set (black) with the rule.

This indicates that, without the cell-type order conservation rule, the relation
between the proliferation and transition rates wherein high cell-type diversity is
realized is less robust. Taking account of the results in Section 4.2 and these results,
we can safely state that the cell-type order conservation rule plays a key role in
high cell-type diversity.
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5. Conclusion

One of the remarkable features in this study is that algebraic relations have been
inferred over the IL-system with the aid of quantifier elimination. Indeed, the
inferred relations between cell-type diversity and cell-type order conservation have
revealed that cell-type diversity appears robustly if and only if the cell-type order
conservation rule exists.

Although our model assumes only three cell types, our approach of combining
IL-systems and algebraic computation will shed some light on the important role of
the cell-type order conservation rule for multi-cellular organisms and in inference
problems over IL-systems.
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1 Introduction

One of the important topics in drug design and bioinformatics is identification of novel
target genes for the treatment of diseases. For that purpose, various approaches have
been proposed. Among these, transfected cell microarrays (cell arrays for short) are
regarded as a potentially powerful approach (Bailey et al., 2002; Kato et al., 2004;
Y oshikawa et al., 2004; Ziauddin and Sabatini, 2001). Cell arrays are complementary
technique to DNA microarrays. The most important difference is that each spot in a
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DNA microarray corresponds to a gene, whereas each spot in a cell array corresponds
to a cluster of several tens or hundreds of living cells. This property enables us to
observe times series data of gene expression in living cells. Furthermore, upon the
addition of cells and a lipid transfection reagent, slides printed with cDNA become
living microarrays, in which some specific gene is overexpressed. On the other hands,
it is also possible to knock out some specific gene by using siRNA (Bailey et al.,
2002; Yoshikawa et al., 2004). Therefore, we may be able to observe effects of gene
overexpression or gene knockdown by using cell arrays. We may also be able to observe
effects of external signals on gene expressions in living cells.

In order to observe the effects using cell arrays, we may need some additional
technology. Over the past decade, a battery of powerful tools that encompass forward
and reverse genetic approaches have been developed to dissect the molecular and
cellular processes that regulate disease. In particular, the advent of genetically-encoded
fluorescent proteins, together with advances in imaging technology, make it possible
to study these biological processes in many dimensions (Hadjantonakis et al., 2003).
Importantly, these technologies allow direct visual access to complex events as they
happen in their native environment, which provides greater insights into human
diseases than ever before (Stearman et al., 2007; Golzio et al., 2007). Repoter genes
are genes encoding these fluorescent proteins, by which we can observe the expression
level of gene or the corresponding product through the magnitude of fluorescence.
Combining repoter genes with the cell array technology, we may be able to visually
observe effects of gene overexpression, gene knockdown or external signals on
gene expressions in living cells. However, the cost (both in labour and money) of
introduction of reporter genes to a cell is very high. Thus, we cannot use a lot of
reporter genes. Instead, we should allocate several or several tens of reporter genes
which are the most efficient for identifying the pathways that are significantly activated
or inactivated by means of external signals or environmental changes.

There exist related studies. Several studies have been done for developing
hypothesis generation techniques that use model checking and formal verification in
order to qualitatively reason about signaling networks (Chabrier-Rivier et al., 2004;
Eker et al., 2002; Tran et al., 2005). These techniques may be useful for computational
analysis of effects of external signals and/or environmental changes. However,
these techniques require statements about the property of individual reactions in
networks, details of which are often unavailable. Ruths et al. recently proposed a
framework for computational hypothesis testing in which signaling networks are
represented as bipartite directed graphs (Ruths et al, 2006). In their framework,
each network contains two types of nodes: nodes corresponding to molecules and
nodes corresponding to reactions. They considered two problems: the constrained
downstream problem and the minimum knockdown problem. The latter one is closely
related to our problem and is to find a minimal set of nodes removal of which
disconnects two given sets of compounds. They defined the minimum knockdown
problem as a graph theoretic problem. They proved that the problem is NP-hard and
proposed an iterative and randomised heuristic algorithm.

In this paper, we consider graph theoretic formulations of the reporter gene
allocation problem. Since there is no consensus mathematical model of genetic
networks or signaling pathways, we do not assume any specific models such as Boolean
networks and Bayesian networks. Instead, we treat each network as a directed graph,
where each edge can have a weight. Then, we formulate the reporter gene allocation
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problem as problems of selecting a set of nodes that covers as many nodes as possible,
or selecting a minimal set of nodes that covers all the nodes in a network, where we
say that node v is covered by node u if there exists a directed path from v to v within
a specified length. We prove that these problems are NP-hard. Furthermore, we prove
that these problems are hard to approximate. We also show that some connection
between these problems and the set cover problem (along with its variant). In order to
solve realistic instances, we formulate these problems as Integer Programs (IPs) and
apply a well-known IP solver (CPLEX) to solving instances of these IPs. This approach
is reasonable because a close relationship between integer programming and the set
cover is known (Vazirani, 2001). It should be noted that our approach is significantly
different from that in Ruths et al. (2006):

e problems and network representations are different from each other

e optimality of the solution is not guaranteed in Ruths et al. (2006), whereas
optimality is guaranteed in our approach.

We perform computational experiments using both artificially generated networks and
a real biological network. Though our IP formulations are simple, the results are quite
surprising: the proposed method can find optimal solutions within several seconds
even for networks with 10,000 nodes. Furthermore, the set of allocated reporters
for a real network is reasonable from a biological viewpoint. These suggest that
the proposed approach is practically useful for finding an optimal set of -reporter
genes.

2 Allocation problems

In this section, we define two optimal allocation problems, P1 and P2. Biological
networks such as gene regulatory networks and signaling pathways can be considered
asa directed graph G = (V, E) withaset of nodes V = {v1, ..., v, } and a set of directed
edges from v; to v;, (v;,v;) € E. In gene regulatory networks, a node means a gene,
and in signaling pathways, a node means a protein. It should be noted that a reporter
gene can be used both for measuring gene expression and for measuring abundance of
proteins.

We define that a node v is a neighbouring upstream node of a node v, if there
is a directed path within the length of a constant L from v to v, in G. In this case,
we also say that v is covered by v,. For a set of nodes R, we say that v is covered
by R if v is covered by some node in R. This definition can be justified as follows:
if some node v covered by v, is affected by external signals and/or environmental
changes, it is highly expected (for small L) that v, is also be affected. That 1s, we
may infer that a subnetwork around v, is affected by external signal or environmental
change if v, is affected, and we want to cover as many parts of the network
as possible.

We assume in this paper that L does not depend on the reporter node and each edge
has unit length. This assumption is reasonable because it is difficult to determine L for
each gene or protein and the length of each edge. However, the proposed methods can
be modified for a general case in which L depends on the reporter node and each edge
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has distinct length (or weight). Figure 1 shows an example of covered nodes by using
a reporter when L = 2.

Problem P1 maximises the number of covered nodes by using K reporters, and is
defined as follows.

Definition 1 (Problem P1): Given a directed graph G = (V, E)) and two integers L and
K (< |V]), findaset R C V of cardinality at most X maximising the number of nodes
covered by R.

It should be noted that R corresponds to a set of reporters. For sufficiently large K,
we can cover all nodes of V using the solution of Problem P1. In some cases, we may
want to cover all the nodes by using a minimum number of reporter nodes. Thus, we
also consider the following problem.

Definition 2 (Problem P2): Given a directed graph G = (V, E) and an integer L,
find a minimum cardinality set R C V such that all nodes of V are covered by R.

Figure 1 Example of nodes covered by a reporter node when L = 2 in a directed graph
G = (V, E) with V = {v1,...,v7}. In this case, vz, vs3, vs and v are covered by vg

3 Theoretical results

We show that Problem P1 is MAX SNP-hard, which means that no PTAS exists
unless P = NP. It should be noted that MAX SNP-hardness also implies NP-hardness.
For terminology on approximation algorithms, refer to Vazirani (2001).

Theorem 1: Problem Pl is MAX SNP-hard.
Proof. We show an L-reduction from the maximum coverage problem (Vazirani,
2001; Hochbaum, 1982), which is known to be MAX SNP-hard (Akutsu and

Bao, 1996), to Problem P1. The maximum coverage problem is defined as follows:
Given a family of sets S over U, and an integer k, find C C S of cardinality
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at most k£ which maximises the number of covered elements in U. From an
instance [ = (U = {u1,...,um},S = {s1,..., 8}, k(< 1)) of the maximum coverage
problem, we construct an instance I’ = (G = (V, E), L, K') of P1 in the following way
(See Figure 2):

V= {ula” oy Um,y 815 - - .,S[},

It should be noted that |V| =m + [, |E| = 22:1 |sj]. Thus, I’ can be constructed in
polynomial time.

Let OPT (1) and OPT'(I') be the costs of optimal solutions of I and I, respectively.
Then, OPT(I') = OPT(I) + k holds. Without loss of generality, we can assume that
OPT(I) > k. Therefore, OPT'(I') < 20PT(I).

Given any solution R C V of I’ with cost (i.e., the number of covered nodes) ¢/,
we produce a solution C of I in polynomial time by lettingC = R — U,where R — U =
{r|r € Randr ¢ U}.Then, |C| < |R| < k.Let cbethe cost (i.e., the number of covered
elements) of C. Since ¢’ < ¢+ k holds,

OPT(I')— ¢ = OPT(I)+ k — ¢ > OPT(I) —c.

Therefore, the above reduction is an L-reduction and thus Problem Pl is MAX
SNP-hard. O

For Problem P2, we can show a much stronger hardness result as follows.

Figure 2 Left: Transformation of an instance I = (U = {u1,...,um},S = {s1,...,s1}, k)
of the maximum coverage problem to Problem P1. Right: Transformation of
I = (U, S) of the set cover problem to Problem P2

Theorem 2: There is no polynomial time algorithm for Problem P2 with
approximation ratio less than -12—5 logn for any constant 0 < § < 1 unless NP C
DTIME (npotytos(n)),

Proof: We prove the theorem by contradiction. Suppose that there is a polynomial
time algorithm for Problem P2 with approximation ratio less than 1=4 Jog n for some

1
constant 0 < 6 < 1.
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The set cover problem is defined as follows: Given a family of sets S over U, find
a minimum cardinality set C C S such that all elements of U are covered by Us,ec 8i
From an instance ] = (U = {uy,...,um},S = {s1,..., 8 }) of the set cover problem,
we constructaninstance I’ = (G = (V, E), L) of P2 in the following way (See Figure 2):

V= {u1,...,Um, 51, 51,80},

4
E= U {(s550}u U {(wi,9)} |,

1 Ui €85

i=
L=1,

where sg is a node not in S.

Let OPT(I)and OPT(I') be the costs of optimal solutions of 7 and I, respectively.
Then, OPT(I') = OPT(I) + 1 holds.

Given any solution R C V of I’ with cost ¢’ (i.e., the number of selected nodes),
we produce a solution C of I in polynomial time by letting C = (R — U — {sp}) U
{s;] for u; € R— S — {so},u; € 3s;}. Let ¢ be the cost (i.e., the number of selected
elements) of C. Since ¢ = |C| < |R| = ¢’ holds,

c c c

OPT(I) _ OPT(IN =1~ OPT(I) =1'

For any constant 0 < § < 1,

Vel < 1 c < 1
OPT(I -1~ 1-60PTU) " 1

logn

holds from the assumption for sufficient large n = m + [ + 1. Therefore,

c < 1lo
opPT) ~1 %™

This contradicts to the fact that there is no polynomial time algorithm for the set
cover problem with approximation ratio less than élogn unless NP C DTIME
(nPoWlod(n)) Thus, the theorem is proved. 0

It is to be noted that the reduction in the proof of Theorem 2 also provides a proof of
NP-hardness of Problem P2.

Though we have shown negative results on approximation of problems P1 and P2,
we can also show positive results on approximation ratios using a well-known greedy
algorithm for the set cover (Vazirani, 2001; Hochbaum, 1982; Akutsu and Bao, 1996).

Proposition 1: P can be approximated within a factor of e/(e — 1) in polynomial
time, where e is the base of the natural logarithm.

Proof. Wereduce P1 to the maximum coverage problem. From an instance I = (G =
(V,E), L, K) of P1. we construct an instance I’ of the maximum coverage problem by
lettingU =V, § = {s,]s, is the set of nodes covered by v € V},and k = K. Itis clear
that this reduction can be done in linear time.
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Then, by identifying a node v with a set s,, we can see the following.
e OPT(I)=OPT(I') holds
e From a solution R of I’ with cost ¢, we can obtain a solution C of I with cost c.

Since the maximum coverage problem can be approximated within a factor of
e/(e — 1) using the simple greedy algorithm for the set cover problem (Vazirani, 2001;
Hochbaum, 1982; Akutsu and Bao, 1996), P1 can also be approximated within a factor
ofe/(e —1). O

Proposition 2: P2 can be approximated within a factor of O(logn) in polynomial
time.

Proof: Wereduce P2 to the set cover problem as in the proof of Proposition 1, where
k is not relevant in this case. Then, it is straight-forward to see that P2 is approximated
within a factor of O(logn) since the set cover problem can be approximated within
a factor of O(logn) using the simple greedy algorithm (Vazirani, 2001; Hochbaum,
1982). O

4 Integer programming formulation

In this section, we propose methods to solve Problem P1 and P2 using integer
programming. In the previous section, we showed that both Problem P1 and P2 are
very hard to find optimal or approximate solutions. However, efficient algorithms such
as branch-and-bound methods have been developed for integer programming, which
is also NP-hard. Therefore, we formulate Problem P1 and P2 as IPs, and call IP1 and
IP2 respectively. In the next section, we show that IP1 and IP2 are solved in practical
time through computational experiments.
Problem P1 is formulated as follows.

n
(IP1) Maximise Zyi,
i=1

Subject to

Yi < Z z; fori=1,.,n,
jesf

n
Z-’Ei <K,
i=1
z; = {0, 1},
Yi = {Oa 1},

where SF is the set of nodes covering v;. Thus, for j € SF, the length of a directed

path from the node v; to v; is less than or equal to L. z; = 1 if v; is selected as a

reporter, otherwise z; = 0. y; = 1 if v; is covered by some reporter, otherwise y; = 0.

IP1 maximises the number of covered nodes using at most K reporter nodes.
Similarly, Problem P2 is formulated as follows.

n
(IP2) Minimise » =,

=1
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Subject to
Z z;>1 fori=1,.,n,
jesE

xz; = {0,1}.

IP2 minimises the number of reporters such that all nodes are covered. If the parameter
K of IP1 is greater than or equal to the optimal solution of IP2, the optimal solution
of IP1 is always n.

5 Computational experiments

We applied the proposed methods to two kinds of data, apoptosis pathway maps as
a real network and artificial scale-free networks for validating the practicality of our
methods in large networks.

All of these computational experiments were done on a PC with a Xeon 5160
3GHz CPU and 8GB RAM running under the Linux (version 2.6.19) operating
system. We used ILOG CPLEX (version 10.1, http:/ /www.ilog.com /products/cplex /)
for solving IP1 and IP2, and measured execution time of the optimisation function
CPXmipopt() for mixed integer programming problems in CPLEX. We must calculate
SE for all 4 in order to give integer programming problems to the function. However,
the preparation takes at most O(n?) time.

5.1 Apoptosis pathway maps

We used apoptosis pathway maps in a HeLa cell (See Figure 3). The maps are composed
of major signal pathways of apoptosis, which are initiated by TRAIL (tumour
necrosis factor apoptosis inducing ligand) ligation (Kimberley and Screaton, 2004).
The maps were constructed by a commercial software, MetaCore (GeneGo Corp.,
http://www.genego.com/metacore.php), in which findings presented in peer-reviewed
scientific publications were systematically encoded into an ontology by content and
modelling experts, and a molecular network of direct physical, transcriptional and
enzymatic interactions was computed from this knowledge base. The maps thus
constructed contain 132 proteins and 337 binomial relations.

Table 1 shows the results on the optimal solution of IP1 and IP2 for each
L(=1,...,6,132)and K(=1,...,6). The solution of IP2 for each L gives the required
number of nodes to cover all nodes of V. For example, 42 reporters are required for
L =1, and 9 reporters for L = 6.

In the case that L is equal to the number of nodes n = 132, a node v; is always
covered by another v; if there is a directed path from v; to v;. Since 121 proteins among
132 proteins are covered by protein BAK1 in the case of both L = 6 and L = 132,
we can see that the distance between almost all pairs of proteins in this network is
at most 12. Thus, it is considered that the network also has a small-world property
(Watts and Strogatz, 1998). It should be noted that most nodes (126 nodes) are covered
by 6 reporters in the case of L = 6. It is also observed that 104 nodes are covered by
6 reporters even in the case of L = 2. For L =1, ..., 3, TP53, BCL2 and BAX were
selected as the most significant reporters respectively. These proteins are considered
as hubs of the network because they have large indegrees and outdegrees. On the
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