		21 ACCEPTED MANUSCRIPT
1	[28]	H. Kestler, T. Kodama, D. Ringler, M. Marthas, N. Pedersen, A. Lackner, D. Regier,
2		P. Sehgal, M. Daniel, N. King, et al., Induction of AIDS in rhesus monkeys by
3		molecularly cloned simian immunodeficiency virus, Science 248 (1990) 1109-1112.
4	[29]	R. Shibata, T. Miura, M. Hayami, H, Sakai, K. Ogawa, T. Kiyomasu, A. Ishimoto, A
5		Adachi, Construction and Characterization of an Infectious DNA clone and of Mutants
6		of Simian Immunodeficiency Virus Isolated from the African Green Monkey, J Virol
7		64 (1990) 307-312.
8	[30]	K. Peden, M. Emerman, L. Montagnier, Changes in growth properties on passage in
9		tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-
10		1MAL, and HIV-1ELI, Virology 185 (1991) 661-672.
11	[31]	J. Katahira, T. Ishizaki, H. Sakai, A. Adachi, K. Yamamoto, H. Shida, Effects of
12		translation initiation factor eIF-5A on the functioning of human T-cell leukemia virus
13		type I Rex and human immunodeficiency virus Rev inhibited trans dominantly by a
14		Rex mutant deficient in RNA binding, J Virol 69 (1995) 3125-3133.
15	[32]	S. Tahara-Hanaoka, K. Sudo, H. Ema, H. Miyoshi, H. Nakauchi, Lentiviral vector-
16		mediated transduction of murine CD34(-) hematopoietic stem cells, Exp Hematol 30
17		(2002) 11-17.
18	[33]	M. Bock, K.N. Bishop, G. Towers, J.P. Stoye, Use of a transient assay for studying the
19		genetic determinants of Fv1 restriction, J Virol 74 (2000) 7422-7430.
20	[34]	K. Ikuta, C. Morita, S. Miyake, T. Ito, M. Okabayashi, K. Sano, M. Nakai, K. Hirai, S.
21		Kato, Expression of human immunodeficiency virus type 1 (HIV-1) gag antigens on
22		the surface of a cell line persistently infected with HIV-1 that highly expresses HIV-1
23		antigens, Virology 170 (1989) 408-417.

		22 ACCEPTED MANUSCRIPT
1	[35]	X. Li, Y. Li, M. Stremlau, W. Yuan, B. Song, M. Perron, J. Sodroski, Functional
2		replacement of the RING, B-box 2, and coiled-coil domains of tripartite motif 5alpha
3		(TRIM5alpha) by heterologous TRIM domains, J Virol 80 (2006) 6198-6206.
4	[36]	Z. Keckesova, L.M. Ylinen, G.J. Towers, The human and African green monkey
5		TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities, Proc
6		Natl Acad Sci U [°] S A 101 (2004) 10780-10785.
7	[37]	M.J. Perron, M. Stremlau, B. Song, W. Ulm, R.C. Mulligan, J. Sodroski, TRIM5alpha
8		mediates the postentry block to N-tropic murine leukemia viruses in human cells, Proc
9		Natl Acad Sci U S A 101 (2004) 11827-11832.
10	[38]	M.W. Yap, S. Nisole, C. Lynch, J.P. Stoye, Trim5alpha protein restricts both HIV-1
11		and murine leukemia virus, Proc Natl Acad Sci U S A 101 (2004) 10786-10791.
12	[39]	M.W. Yap, S. Nisole, J.P. Stoye, A single amino acid change in the SPRY domain of
13		human Trim5alpha leads to HIV-1 restriction, Curr Biol 15 (2005) 73-78.
14	[40]	Y. Li, X. Li, M. Stremlau, M. Lee, J. Sodroski, Removal of arginine 332 allows
15		human TRIM5alpha to bind human immunodeficiency virus capsids and to restrict
16		infection, J Virol 80 (2006) 6738-6744.
17	[41]	F. Diaz-Griffero, M. Perron, K. McGee-Estrada, R. Hanna, P. V. Maillard, D. Trono,
18		and J. Sodroski. A human TRIM5alpha B30.2/SPRY domain mutant gains the ability
19		to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 378
20		(2008) 233-242.
21	[42]	P.V. Maillard, S. Reynard, F. Serhan, P. Turelli, and D. Trono. Interfering residues
22		narrow the spectrum of MLV restriction by human TRIM5alpha. PLoS Pathog 3
23		(2007) e200.
24	[43]	E.C. Speelmon, D. Livingston-Rosanoff, S.S. Li, Q. Vu, J. Bui, D.E. Geraghty, L.P.
25		Zhao, M.J. McElrath, Genetic association of the antiviral restriction factor

ACCEPTED MANUSCRIPT TRIM5alpha with human immunodeficiency virus type 1 infection, J Virol 80 (2006) 1 2 2463-2471. 3 E.E. Nakayama, W. Carpentier, D. Costagliola, T. Shioda, A. Iwamoto, P. Debre, K. [44] Yoshimura, B. Autran, S. Matsushita, I. Theodorou, Wild type and H43Y variant of 4 5 human TRIM5alpha show similar anti-human immunodeficiency virus type 1 activity both in vivo and in vitro, Immunogenetics 59 (2007) 511-515. 6 7 D.van Manen, M. A. Rits, C. Beugeling, K. van Dort, H. Schuitemaker, and N. A. [45] 8 Kootstra. The effect of Trim5 polymorphisms on the clinical course of HIV-1 9 infection. PLoS Pathog 4 (2008) e18. 10 [46] J.N. Torimiro, H. Javanbakht, F. Diaz-Griffero, J. Kim, J.K. Carr, M. Carrington, J. Sawitzke, D.S. Burke, N.D. Wolfe, M. Dean, J. Sodroski, A rare null allele potentially 11 12 encoding a dominant-negative TRIM5alpha protein in Baka pygmies, Virology 391 13 (2009) 140-147. [47] L. Carthagena, M.C. Parise, M. Ringeard, M.K. Chelbi-Alix, U. Hazan, S. Nisole, 14 15 Implication of TRIM alpha and TRIMCyp in interferon-induced anti-retroviral restriction activities, Retrovirology 5 (2008) 59. 16

23

2	Figure legend
3	Fig 1. Effect of overexpressed TRIM5 _{hu} on HIV-1 production. (A) A schematic presentation
4	of TRIM5 _{hu} protein with the domains labeled and domain boundaries numbered according to
5	the amino acid residue. (B) 293T cells (2×10^5) were transfected with 0.01µg of
6	pNL Δ polEGFP together with various amounts of TRIM5 α_{hu} -HA (hT5 α WT or R437C) and
7	TRIM5 α_{rh} -HA expression plasmid (rhT5 α). Note that we used half amount of pRhT5 α
8	plasmid for transfection since we found half amount pRhT5 α expressed an equal amount of
9	TRIM5 α -HA protein compared to pHuT5 α WT and pHuT5 α R437C. pCDM- β -gal (0.01 μ g)
10	was also transfected as a control of transfection efficiency. The amount of released p24 in
11	culture supernatant and β -gal activity in the cell lysate from pcDNA3.1-transfected cells was
12	38ng/ml and 8× 10 ⁻¹ unit, respectively. The ratio of p24 to β -gal activity was set as 1. (C)
13	Lysates from 293T cells expressing the HA-tagged TRIM5 proteins were subjected to SDS-
14	PAGE, and the expression of HIV-1 Gag proteins and TRIM5 α was detected by
15	immunoblotting. The order of the samples applied is the same as B. The results of a typical
16	experiment are shown. Similar results were obtained in four independent experiments. (D)
17	293T cells were transfected with pYK-JRCSF, pNL4-3, p89.6, pSIVmac239 or pSA212
18	together with various amounts of TRIM5 α expression plasmids as in (B). After 2 days, the
19	amount of released HIV-1 p24 in culture supernatant was measured by ELISA. The progeny
20	viruses produced were infected to TZM-bl cells, and luciferase activity induced in the TZM-bl
21	cells was evaluated to titrate the infectious viruses. Both luciferase activity and p24 amount
22	were divided by β -gal activity in the 293T cell lysates to calculate relative viral titer and
23	relative p24 amounts. The p24 concentration in the culture medium of pYK-JRCSF, pNL4-3,
24	or p89.6-transfected cells that did not receive Trim5 α expression plasmid was 193.2ng/ml,
25	102.7ng/ml or 10.16ng/ml, respectively. The luciferase activity in the TZM-bl cells infected

1997	
1	with the corresponding progeny viruses was 8.12×10^5 , 3.56×10^5 or 2.03×10^4 relative light
2	unit (RLU), respectively. The progeny viruses produced from 293T cells transfected with
3	pSIVmac239 and pSA212 induced 9.62×10^3 RLU, and 1.3×10^3 RLU, respectively. The data
4	represent a typical result of 2 independent experiments.
5	
6	Fig 2. Incorporation of TRIM5 α into HIV-1 virion. Culture supernatants of the 293T cells co-
7	transfected with pNL Δ polEGFP and various TRIM5 α plasmids were harvested and passed
8	through 0.45 μ m filter followed by ultracentrifugation through 20% sucrose layer. The VLP
9	fractions prepared from 1ml out of total 2ml culture medium were applied to immunoblotting
10	to detect the HIV-1 Gag proteins and incorporated TRIM5 α . (A) pNL Δ polEGFP (0.01 μ g)
11	was transfected together with increasing amounts of TRIM5 α_{hu} -HA (hT5 α WT or R437C) and
12	TRIM5 α_{rh} -HA expression plasmid (rhT5 α) as indicated in Fig.1B. (B) pNL Δ polEGFP
13	(0.01µg) was transfected along with 0.1µg of TRIM5 α_{hu} -HA (hT5 α WT or R437C) or 0.05µg
14	TRIM5 α_{rh} -HA expression plasmid (rhT5 α WT or R441C).
15	
16	Fig 3. Effect of knockdown of TRIM5 α in human cells on HIV-1 production. (A) HT1080 or
17	293T cells were co-transfected with pNL Δ polEGFP and control siRNA or siRNA against
18	Trim5 α_{hu} . (B) Jurkat E6-1 cells were electroporated with the plasmid and siRNAs described
19	above by nucleofection. pCDM- β -gal was also included in both A and B to monitor the
20	electroporation efficiency. After 2 days, p24 levels in the supernatants and β -gal activity in
21	the cell lysates were measured. The relative p24 production was calculated by dividing p24
22	amount by β -gal activity (right panel of A and B). The p24 levels in the culture media are
23	indicated on the top of right panels of A and B. The level of TRIM5 α expression was
24	examined by usual and quantitative RT-PCR. Cells that were not subjected to any treatment
25	(Nt) were used as blank controls. The pictures of RT-PCR in the left panels represent a typical

1	one of 3 independent experiments. The results of quantitative PCR represent the mean± S.D.
2	of triplicate samples.
3	
4	Fig 4. Effect of various TRIM5 as on HIV-1 entry. 293T cells were transfected with
5	TRIM5 α_{hu} -HA (hT5 α WT or R437C) or TRIM5 α_{rh} -HA (rhT5 α) expression plasmid, and then
6	infected with VSV-G pseudotyped HIV-1-Venus (A). HeLa cells that had been transduced
7	with various TRIM5 α encoding retrovectors were infected with VSV-G pseudotyped HIV-1-
8	Venus (C). Forty-eight hours after infection, the cells were harvested and the Venus-positive
9	cells were counted by FACS. (A and C) shows a typical result of three independent
10	experiments. (B and D) The expression of TRIM5 α was examined by immunoblot assay.
11	
12	Fig 5. Effect of various TRIM5 as on N-MLV infection. The 293T cells transduced with
13	various TRIM5 α encoding retrovectors were infected with VSV-G-pseudotyped GFP
14	encoding N and B tropic MLVs. Forty-eight hours after infection, the cells were harvested
15	and GFP-positive cells were counted by FACS. (A) The left panel includes the means \pm S.D,
16	which was calculated based on three independent experiments. The right panel represents a
17	typical result of 2 independent experiments. (B) The expression of TRIM5 α s was examined
18	by immunoblot assay.
19 20	

ACCEPTED MANUSCRIPT

.

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

