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molecular mechanism is not clear, we consider that the affinity
of X4R5 Env to CXCR4 or CCRS5 coreceptor might be lower
than that of X4 or RS Env; thus, coreceptor antagonists
inhibited the interaction between the coreceptor and X4RS5
Env more effectively than the interaction between the cor-
eceptor and X4 or RS Env. In addition, the neutralization
susceptibility to T-20 varied among 35 CRF01_AE Env-
recombinant viruses. The amino acid substitution, N42S,
known to be associated with the T-20-resistant phenotype [23],
was observed in gp41 of most CRFO1_AE Env-recombinant
viruses [9]; however, the replication of all 35 CRF01_AE Env-
recombinant viruses was effectively suppressed by T-20
treatment (Table 4), suggesting that the protein structure of
gp41 might be somehow different between CRFO1_AE and
subtype B.

Finally, we propose that the series of CRFOl1_AE Env-
recombinant viruses established in this study is a useful tool to
understand the functional characteristics of CRFO1_AE Env.
Thirty-five Env-recombinant viruses showed a variety of
neutralization susceptibilities to NHMADbs and pooled patient
plasma (Table 2) as well as to HIV-1 entry inhibitors (Table 4);
thus, those recombinant viruses could be employed to study
the molecular mechanisms of how CRFO1_AE virus acquires
the resistant phenotype to humoral immune responses or to
viral entry inhibitors. HIV-1 Env is a candidate viral protein to
elicit humoral immune responses in HIV-1 vaccine develop-
ment [4]. These CRFO1_AE Env-recombinant viruses could
also be employed to evaluate the effectiveness of HIV-1
vaccine candidates against CRFO1_AE viruses circulating in
Thailand.
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Conventional comparative molecular field analysis (COMFA) requires at least 3 orders of experimental data,
such as IC,, and K, to obtain a good model, although practically there are many screening assays where
biological activity is measured only by rating scale. To improve three-dimensional quantitative structure—
activity relationship (3D-QSAR) analysis, we developed in this study a modified ordinal classification-
oriented CoMFA using partial-least-squares generalized linear regression and ridge estimation. The modified
Logistic COMFA was validated using a corticosteroid binding globulin receptor binding data set, a benchmark
for 3D-QSAR, and an acetylcholine esterase inhibitor data set. Our results show that modification of Logistic
CoMFA enhanced both prediction accuracy and 3D graphical analysis. In addition, the 3D graphical analysis
of the modified Logistic CoMFA was much improved. This improvement resulted in more accurate
information on the binding mode between proteins and ligands than in the case of conventional CoMFA.

INTRODUCTION

Quantitative structure—activity relationships (QSAR) are
used to establish a correlation between chemical structure
and specific biological activity," and the derived models are
used to predict the activity of untested compounds. This
correlation is one of the most important steps in drug
discovery, particularly in the hit-to-lead stage. The prevalence
of commercial cheminformatics tools, such as Sybyl, makes
it convenient to perform three-dimensional QSAR (3D-
QSAR) analysis. Above all, comparative molecular field
analysis (COMFA)? is a widely used approach for generating
descriptors based on 3D structural information of molecules.

In real screening, many assays measure compounds’
biological activity only by rating scale. Under such circum-
stances, it is difficult to obtain good CoMFA models, since
relatively accurate experimental ICs, and pK; values are
generally required. In a preceding paper, we have proposed
an ordinal classification approach using CoMFA (Logistic
CoMFA) and showed that this approach is better and more
robust than conventional COMFA with rating scale activity.?

Logistic CoMFA couples CoMFA with ordinal logistic
regression (OLR), which classifies samples according to the
probability of each rank. Unfortunately, ordinary algorithms
of logistic regression analysis do not converge in some
cases.*” Infinite parameter estimates can occur depending
on the configuration of the sample points in the observation
space.’
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Using PLS with penalized logistic regression, Fort and
Lacroix proposed a robust samples classification.” Their
method is based on ridge estimators in the logistic regression
reported by Le Cessie and Van Houwelingen.® Both methods,
however, were developed for analyzing a binary response
variable, and there is no way of applying them to ordinal
classification. Although multigroup iteratively reweighted
partial least squares (MIRWPLS) was generalized for mul-
tigroup classification by Ding and Gentleman,” this method
is in principle used to analyze nominal data. Thus, MIRW-
PLS treats the ratings as nominals with no special ordering.
Additionally, with MIRWPLS, it is difficult to estimate
parameters because, unlike MIRWPLS for binary data
analysis, MIRWPLS uses the (number of classes — 1)>-fold
size of a sparse matrix for explanatory variables. By and
large, CoOMFA uses as many as > 1 000 explanatory variables
and requires a huge-sized matrix of variables. Hence,
applying MIRWPLS to CoMFA is impracticable.

Recently, Bastein et al.'® contrived a new logistic PLS
algorithm, which is based on the PLS generalized linear
regression (PLS-GLR) model. The PLS-GLR approach
performs OLR analysis on every explanatory variable without
enlarging the size of the explanatory matrix in the process
of computation of the latent variables.

In this study, we modified Logistic CoMFA by harnessing
two approaches. The first modification is the application of
Logistic CoMFA to PLS-GLR instead of ordinary OLR-
based PLS. The second is the incorporation of Logistic
CoMFA with ridge penalty estimation, although, as men-
tioned above, the occurrence of a convergence problem was
a possibility in some cases. Next, we compared the modified
ordinal classification CoMFA with Logistic CoMFA.

© 2008 American Chemical Society
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Table 1. Chemical Structures and CBG Activity of Steroids
X3
i
D
H
Xy
E Tk “ e
steroids pK; class  MCS X, X, X3 X4 Xs Xe Xy Xg

training  cortisol 7.88 1 A H = H OH H H OH COCH,0H
training  corticosterone 7.38 1 A H = H OH H H H COCH,0H
training  11-deoxycortisol 7.88 1 A H = H H H H OH COCH,OH
training [7a-hydroxyprogesterone 7.74 1 A H = H H H H OH COMe
training 11-deoxycorticosterone 7.65 i A H = H H H H H COCH,OH
training  progesterone 738 1 A H = H H H H H COMe
training  cortisone 6.89 2 A H == H H H H OH COCH,0H
training  testosterone 6.72 2 A H == H H H H H OH
training  aldosterone 6.28 2 B
training  dihydrotestosterone 592 2 C H = H H H OH
training  4-androstenedione 5.76 3 A H = H H H H =0
training  androsterone 5.61 3 C OH H H H =0
training  etiocholanolone 5.23 3 D OH =0
training  pregnenolone 5.23 3 D OH COMe
training  androstanediol 5.00 3 C H OH H H H OH
training  S-androstenediol 5.00 3 D OH OH
training  dehydroepiandrosterone 5.00 3 D OH =
training  estradiol 5.00 3 E OH H H OH
training  estriol 5.00 3 E OH OH H OH
training  estrone 5.00 3 E OH H =
training  17a-hydroxypregnenolone 5.00 3 D OH OH COMe
test 2o-methylcortisol 7.69 1 A Me = H OH H H OH COCH,0OH
test cortisol acetate 7.55 1 A H = H OH H H OH COCH,OMe
test predonisolone 7.51 1 F
test epicorticosterone 7.20 1 A H = H H OH H H COCH,0H
test 16a-methylprogesterone 7.12 l A H = H H H Me H COMe
test 19-norprogesterone 6.82 2 A H = H H H H H COMe
test 4-pregnene-3,11,20-trione 6.78 2 A H = H = H H COMe
test 16a,17a-dihydroxyprogestero  6.25 2 A H = H H H OH OH COMe
test 19-nortestosterone 6.14 2 G
test 2a-methyl-9a-fluorocortisol 5.80 2 A Me =0 F OH H H OH COCH,OH

Hence, we present here a new approach for the improve-
ment and applicability of modified Logistic CoMFA with
PLS-GLR and ridge estimation and a comparison of the
improved Logistic CoMFA with conventional CoMFA and
original Logistic COMFA using two data sets. One of these
data sets is the corticosteroid binding globulin (CBG)
receptor binding data set,'' which is widely used as a
benchmark for 3D-QSAR. The other data set is the acetyl-
choline esterase (AChE) inhibitor data set. Each data set was
analyzed from two aspects of the COMFA method. The first
aspect is prediction of the accuracy of the modified Logistic
CoMFA method. Accurate prediction of Logistic CoMFA
enables us to effectively prioritize the screening of certain
compounds. The second is contour map analysis, which can
identify important portions for interaction between the protein
and ligand.

METHODS

1. Data Set. /.1. CBG Data Set. Activities and chemical
structures of CBG data set ligands were used for validation
of the modified Logistic CoMFA and for comparison of this
new method with original Logistic CoOMFA. Some groups

have reported validation of each 3D-QSAR using the CBG
data set as a benchmark.'>"'*> The CBG data set comprises
21 compounds for training and 10 compounds for testing.
Not only activity values but also rating classes can be
obtained.'®Although there is no steroid of class; in the test
set, it is desirable that all rating classes be included in
the test set. However, we used the data set without any
modification, such as shuffling between training and test
sets, because the CBG data set is a 3D-QSAR benchmark
(Table 1).

1.2. AChE Data Set. Activities and chemical structures
of AChE data set ligands were also used for validation of
the modified Logistic COMFA. The AChE data set consists
of a series of 111 inhibitors (74 training and 37 test
compounds). We used in this study 3D coordinates and
partial charges reported by Sutherland et al.!” pICs, values
ranged widely from 4.27 to 9.52, and activity classes were
allocated as follows: class, (pICs, = 7.5), class, (6.0 < pICy,
< 7.5), and class; (pICsy < 6.0) (Figure 1). Unlike the CBG
data set, the test set of the AChE data set comprised all
activity classes.
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Class3 Class2 Class1

e}

Frequency
(]

N

4 45 5 55 6 65 7 75 8 85 9 95 10
plCso

Figure 1. Distribution of inhibitory activity for AChE training (blue)
and test (red) sets.

2. Molecular Modeling. The 3D coordinates were used
without any refinement for both data sets. For the CBG data
set, Gasteiger—Hiickel charges were assigned to each atom
by Sybyl, version 7.22 (Tripos Inc.). For the AChE data set,
atomic partial charges in mol?2 files obtained from Sutherland
et al.’s study'” were used.

3. Calculation of Steric and Electrostatic Potential
Fields. The steric and electrostatic CoMFA potential fields
were calculated at each lattice intersection of a regularly
spaced grid as implemented in Sybyl using Lennard-Jones
and Coulomb potentials, respectively. Calculations were
performed with Sybyl standard parameters.

4. Calculation of Latent Variables in Ordinal CoMFA,
Based on the PLS-GLR Model. The calculation of latent
variables was based on the PLS-GLR method,'® where latent
variables were extended from linear models to generalized
linear models.

Algorithm of Ordinal Logistic PLS

Computation of the first latent variable t;:

1-1. OLR of y was performed on each x; j = 1,2, ..., p)
and logistic regression coefficient ay;. a,; were regarded as
0 when the significance level of a,; was low (p value > 0.25).

1-2. w,, the weight column vector toward X, was
calculated as w, = a,/la,l, where a; = (a,;, a5, ..., a;p).

1-3. The first latent variable t; was determined as t; =
Xwy, where X = (xy, X,, . . ., X,,).

Computation of the second latent variable t,:

2-1. A simple linear regression of each x; on t;, and
calculation of each residual x,; were performed.

2-2. OLR of y on t; and each x,; and calculation of logistic
regression coefficient a,; on x, were performed. The forward
variables selection method was used. a,; was also regarded
as 0 when the significance level of a,; was low (p value >
0.25).

2-3. w, was calculated as w, = a,/la,l, where a, = (a,,,

Ayps + s Gop)-
2-4. t, was determined as t, = X,w, where X, = (x,,,
Xp2, « + s Xap)-

Computation of the ith latent variable t; (i = 3):
3-1. Multilinear regression of each x;_; and t, t,, ...,
t;_; and calculation of each residual x;; were preformed.

OHGARU ET AL.

3-2. OLR of y on t;, t,, ..., t,_; and each X;; and cal-
culation of logistic regression coefficient a;; on x; were
performed. The forward variables selection method was used.
a; was regarded as 0 when the significance level of a; was
low (p value >0.25).

3-3. w; was calculated as w; = a/la;|, where a; = (a;;, a;»,
e Aiy).

3—4.pt,~ was determined as t; = X;w;, where X; = (X;;, X;»,
o s 55 Kpp)s

Rulg to stop computing latent variables:

Latent variables were successively computed as shown
above. If a, was equivalent to 0 in the computation of the
hth latent variable, computation was terminated.

Although the original PLS-GLR algorithm normalizes each
residual before calculation of a new latent variable, PLS-
GLR normalization of residuals was not adopted in this study.

5. Modification to Ordinal CoMFA by Ridge OLR.
Latent variables calculated as shown above were applied to
explanatory variables of OLR analysis. The followings are
details of the modification to Ordinal CoMFA.

OLR analysis gives the probability of each rank. For
instance, the data set is categorized into three rating classes
as follows:

Prb(Class,) = {1 +exp(—5,)} '
Prb(Class,) = {1 + exp(—)72)}7l {1+ eXp(—ﬂ])}#‘

Prb(Class;) = 1 — {1 +exp(—7,)} "'

where 7, and 7, can be rewritten as

7, =c,—b't
Mm=c, ~b't
1=,

The coefficients c;, ¢,, and b (size g x 1) were evaluated
using a maximum likelihood estimation (MLE) with a ridge
penalty. With Prb;;, the probability when the activity rating
of compoundi (i =1,2,...,n)ranksclassjG =1, 2, ...,
m), the likelihood (L) is obtained by

n

L= | Prb)} xPrb); ... Prb)"

=

where n is the number of compounds, Yj (G=1,2,3)is0or
L,andy, + y, + =« +y, =1L

In MLE, the coefficients c, c,, and b in the case where L
is a maximum are determined as the most appropriate
coefficients. The log-likelihood is good to estimate unknown
parameters with [ set as InL

n
=Y (y,InPrb, +y, nPrb,+ ... +y,, InPrb,,)
i=1
Unfortunately, logistic regression sometimes encounters
obstacles, such as a complete or quasi-complete separation
problem.® To avert such a problem, we adopted the penalty
approach in Fisher’s score method'® and the information
criteria method.'® nlbl> was introduced as a penalty term.

g(cy,c5,b) =1— Anlbl?

where A is the weight of the penalty term (A = 0). A
conjugate-gradient numerical optimization algorithm was
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Table 2. Summary of Leave-One-Out Cross-Validation of CBG
Training Set of the Modified Logistic and Original Logistic COMFA
Analyses

CoMFA
modified logistic
qF 0.79 0.75
no. of correct 14 13
accuracy 67% 62%

“ Cross-validated Spearman’s rank correlation coefficient.

Table 3. Prediction of CBG Test Set by the Modified Logistic and
Original Logistic CoMFA Analyses

CoMFA
modified logistic
4" 0.45 0.45
no. of correct 7 7
accuracy 70% 0%

@ Cross-validated Spearman’s rank correlation coefficient.

adopted to maximize function g. In this study, 0, 0.0001,
0.001, 0.01, and 0.1 were used as A. To estimate the
coefficients of OLR in any case, the penalty approach was
used.

Details of PLS-GLR with ridge estimation by are described
in the Appendix.

6. Difference between the Precedent Logistic CoMFA
and the Modified CoMFA. In the precedent Logistic
CoMFA algorithm, latent variables are calculated to maxi-
mize the correlation between cumulative probabilities of
activity ratings and the respective latent variable. Strictly
speaking, this calculation is a kind of ordinary PLS. Latent
variables calculated in the process of PLS are used for OLR.

On the other hand, in the modified Logistic CoMFA
algorithm, latent variables are calculated in parallel with
OLR. Thus, the latent variables used are appropriate for OLR.

Although the difference is small in the calculation of the
first latent variable, with an increase in the number of latent
variables to calculate, the difference becomes remarkable.

7. CoMFA Program. Both the modified Logistic COMFA
and the original Logistic CoMFA, programmed in Fortran90,
were computed on a dual-core Xeon 2.0 GHz computer.

RESULTS AND DISCUSSION

1. Steroids in CBG Binding Analysis. /.1. Validation
of CBG Data Set. The modified Logistic COMFA and the
original Logistic CoMFA models were performed with leave-
one-out (LOO) cross-validation (Table 2). The results of the
modified Logistic COMFA were obtained with A = 0. This
means no penalty was added. Both models were good in
terms of the cross-validated Spearman’s rank correlation
coefficient (g,), but the modified Logistic CoMFA was found
to be slightly better for accurate activity ratings. The
prediction capability of each model was next investigated
using the best numbers of latent variables. As a result, the
modified Logistic CoOMFA was found to be as accurate as
the original Logistic CoMFA (Table 3). This is probably
because the original Logistic CoMFA is already established
as a prediction model for activity ratings. Therefore, modi-
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fication of Logistic CoMFA had no improving effect on
prediction accuracy.

1.2. Contour Interpretation. The contour maps obtained
by CoMFA show how 3D-QSAR methods are useful to
identify features for recognizing protein-ligand interactions.
CoMFA steric interactions are represented by favored green
and disfavored yellow contours, while electrostatic interac-
tions are represented by negative-charge favored red and
positive-charge favored blue contours. Figure 2 shows a
comparison of contour maps (standard deviation x coef-
ficient) derived from (a and b) the modified Logistic CoMFA,
(c) conventional CoMFA, and (d) the original Logistic
CoMFA. A reduction of C-3 causes low binding affinity,
which is supported by all contour maps. The conventional
CoMFA map supports the fact that the carbonyl at the 17
position causes low activity, though the original Logistic
CoMFA map, unfortunately, does not support such a fact.
On the other hand, the modified Logistic CoMFA map
supports the importance of the carbonyl at the 17 position.
These findings indicate that important information is retained
by the use of ordinal classes, although conventional COMFA
builds a 3D-QSAR model using pK; values, while both
original and modified Logistic COMFA use pK; classes that
are rounded pK;’s.

The modified Logistic CoMFA map was found to be as
good as the conventional CoMFA map. Furthermore, to
validate the performance of the modified Logistic CoMFA,
we compared the CoMFA contour map with X-ray data of
the binding between CBG and cortisol.” Figure 3 shows a
closeup of cortisol in the steroid binding site of CBG. The
electrostatic potential on the CBG surface is obviously
distributed, and it is clear that the cortisol binds to CBG
complementarily. Of the five polar atoms in cortisol, only
two oxygen atoms connected with the carbon atoms C-11
and C-20 of the steroid interact directly with CBG residues.?”
The hydroxyl oxygen atoms at C-11 and C-20 make
hydrogen bonds to Asp256 and GIn224, respectively (Figure
4). Moreover, Figure 3 holds the fact that there is a broad
space around C-17 of the cortisol. This is supposed by the
CoMFA contour map. Especially, C-3 and C-17 of the
cortisol and their respective surrounding on the CBG surface
indicate that these steric as well as electrostatic interactions
are important for the binding.

2. AChE Binding Analysis. 2.1. Validation of AChE
Data Set. Shown in Table 4 are the results from the LOO
cross-validation of each CoOMFA method. The results of the
modified Logistic COMFA were obtained with 4 = 0.0001.
(Under 4 = 0, the modified Logistic COMFA encountered a
separation problem as mentioned above.) Both models were
good in terms of g, but the modified Logistic COMFA was
found to be slightly better for accurate activity ratings. Next,
the prediction capability of each model was investigated
using the best numbers of latent variables.. As a result, the
modified Logistic CoMFA was found to be as accurate as
the original Logistic CoMFA (Table 5). This finding is
consistent with that of CBG, indicating that the original
Logistic CoMFA without any modification is a good 3D-
(QSAR model to predict activity ratings of untested compounds.

2.2. Contour Interpretation. Contour maps of the modified
Logistic CoMFA and the conventional CoMFA are shown
in Figure 5. E2020, marketed as Aricept, is depicted in the
center. Both maps show that steric potential is as important
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Figure 2. CBG contour maps (standard deviation x coefficient) derived from the modified Logistic CoOMFA, conventional CoOMFA, and
original Logistic COMFA: (a) steric effect by the modified Logistic CoMFA; (b) electrostatic effect by the modified Logistic CoMFA; (c)
steric and electrostatic effects by conventional CoMFA; (d) steric and electrostatic effects by original Logistic CoMFA. The centered
molecule, cortisol, is strongly bound to CBG. To increase the activity, the positive charge (in blue) and the negative charge (in red) have
to be increased. In addition, molecular volume has to be increased (green) or decreased (yellow) to increase the activity.

ry

Figure 3. Closeup of cortisol in the steroid binding site of CBG
(X-ray data, 2v95, from the Protein Data Bank). The CBG protein
surface is colored according to molecular electrostatic potential
(positive charge in blue and negative charge in red).

as electrostatic potential for inhibitory activity. The modified
Logistic CoOMFA map clearly shows that there is a narrow
space near the carbonyl group of 1-indanon and that there is
a broad space around the positions C-3 and C-4 of 1-indanon
and another space nearby the dimethoxy group at C-6. The
conventional CoMFA map only shows a broad space at the
opposite of the carbonyl group of 1-indanon.

In order to validate both CoMFA maps, we compared
contour maps with X-ray data of the binding between AChE
and E2020.%! Figure 6 shows a close up of E2020 in the
binding site of AChE. The electrostatic potential on the
AChE surface is not clearly localized, indicating that
interactions other than electrostatic interaction are important
for the binding. There is indeed no polar interaction between
AChHE and E2020 (Figure 7). As for steric interaction, X-ray
data show a broad space around positions C-3 and C-4 of
1-indanon, a space near the dimethoxy group at C-6, and a
narrow space near the carbonyl group. E2020 binds along
the active site and interacts with the peripheral anionic site.”'
Thus, the modified Logistic CoMFA map gives more
accurate information than the conventional CoMFA or the

hydrophobic site

Figure 4. Schematic depiction of the interactions between CBG
and cortisol. Hydrogen bonds are shown with dotted lines (X-ray
data, 2v95, from the Protein Data Bank).

Table 4. Summary of Leave-One-Out Cross-Validation of AChE
Training Set of the Modified Logistic and Original Logistic CoMFA
Analyses

CoMFA
modified logistic
as 0.66 0.53
no. of correct 54 52
accuracy 73% 70%

“ Cross-validated Spearman’s rank correlation coefficient.

ordinal classification-based CoMFA (Ordinal CoMFA) and
facilitates understanding of the structure—activity relationship.

Using CBG and AChE data sets, we have found in this
study that original Logistic CoMFA is a good model to
predict activity ratings of untested compounds, but not a good
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Table 5. Prediction of AChE Test Set by the Modified Logistic
and Original Logistic COMFA Analyses

CoMFA
modified logistic
q 0.66 0.66
no. of correct 25 25
accuracy 68% 68%

@ Cross-validated Spearman’s rank correlation coefficient.

Figure 5. AChE contour maps (standard deviation x coefficient)
derived from the modified Logistic CoMFA (a) and conventional
CoMFA (b). The centered molecule, E2020, is strongly bound to
AChE. To increase the activity, the positive charge (in blue) and
the negative charge (in red) have to be increased. In addition,
molecular volume has to be increased (green) or decreased (yellow)
to increase the activity.

Figure 6. Close up of E2020 in the binding site of AChE (X-ray
data, leve, from the Protein Data Bank). AChE protein surface is
colored according to molecular electrostatic potential (positive
charge in blue and negative charge in red).
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Figure 7. Schematic depiction of the interactions between AChE
and E2020 (X-ray data, leve, from the Protein Data Bank).

model to build contour map analysis. In addition, our results
show that modified Logistic CoMFA, which couples PLS-
GLR and ridge estimation, is a good model for building
contour map analysis. Furthermore, the modified Logistic
CoMFA was found to exhibit a contour map as accurately
as, or more accurately than, conventional CoMFA. The main
reason for the excellence of Ordinal COMFA with PLS-GLR
and ridge estimation is probably overfitting. Conventional
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CoMFA uses PLS and produces several (normally at least
> 3) latent variables. To avoid excessive fitting, a cross-
validation method is used to determine the number of latent
variables, which can influence the COMFA contour map.>
In contrast, Ordinal CoMFA uses logistic PLS, which also
produces several (normally as much as < 3) latent variables.
Using latent variables, Ordinal CoMFA estimates the prob-
ability of each rank and does not estimate activity ratings
directly. Therefore, the number of latent variables used is
not so influential.

CONCLUSION

In the present study, we modified Logistic CoOMFA by
incorporating PLS-GLR and ridge estimation into it and
compared the modified Logistic CoMFA with original
Logistic CoOMFA and conventional CoMFA using CBG and
AChHE data sets. Our results show that modified Logistic
CoMFA is superior in terms of both prediction accuracy and
contour map analysis to other models. Especially, the
modified Logistic COMFA showed enhanced building of the
contour map model and was as good as, or better than,
conventional CoMFA. As lots of rank-scale biological
activity data are produced in the process of drug discovery,
we believe that Ordinal CoMFA is an important and powerful
method to analyze rating data and to facilitate novel drug
development.

NOMENCLATURE

The following notation is used. Uppercase bold variables
are matrices, lowercase bold variables are column vectors,
and lowercase variables are scalars.

X: explanatory variables matrix (size n X p)

y: class probability variables vector (size n X 1)

x;: jth explanatory variable vector (size n x 1)

w,: column vector of logistic PLS weights matrix (size p x
1Y)

t,: latent variable vector, a column vector of PLS scores
matrix (size n x 1)

a,: hth column vector of coefficients for OLR on elements
of x; (size p x 1)

n: number of samples

p: number of X variables

Jj: integer counter for X variables

h: integer counter for latent variable dimension
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APPENDIX

The procedure of ridge logistic PLS used in this study is now
applied to a monoamine oxidase (MAO) inhibitor data set*® as
a case study. Table 6 shows normalized physical properties and
inhibitory activity classes of the MAO data set. MAO inhibitory
activities are categorized to four classes.
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Table 6. Normalized Physical Properties and Inhibitory Activity
Classes of MAO Data Set

ID ¥ Ex* I* X* activity?
cpd_01 —0.69 0.49 1.95 —0.64 1
cpd_02 —0.79 1.08 —0.49 1.49 1
cpd_03 —-0.69 1.08 —0.49 —0.64 1
cpd_04 0.14 0.36 —0.49 —0.64 1
cpd_05 —0.32 0.49 —0.49 —0.64 2
cpd_06 —0.32 0.49 —0.49 —0.64 2
cpd_07 —1L.16 1.08 1.95 —0.64 2
cpd_08 —0.32 0.49 —0.49 1.49 3
cpd_09 -0.32 —0.72 —0.49 —0.64 3
cpd_10 0.61 —0.72 —0.49 —0.64 3
cpd_11 2.01 1.74 —0.49 —0.64 3
cpd_12 1.35 —0.76 —0.49 1.49 3
cpd_13 —0.97 —0.72 —0.49 —0.64 3
cpd_14 —0.32 0.49 —-0.49 1.49 4
cpd_15 0.52 —1.49 —0.49 1.49 4
cpd_16 0.52 —1.49 —0.49 —0.64 4
cpd_17 0.05 —1.49 1.95 —0.64 4
cpd_18 —1.16 1.08 1.95 1.49 4
cpd_19 —0.6 -0.72 —0.49 —0.64 4
cpd_20 247 —0.76 —0.49 —0.64 4

“ Activity class: 1 (most potent), 2 (moderately potent), 3 (slightly
active), and 4 (inactive).

Let A be set as 0.01; separate OLR of the quality on each
standardized predictor yields the coefficients a,; of =¥, E¥, I*,
and X* equal to, respectively, 0.5183 (—26.57), —1.1304 (—24.17),
0.0209 (—27.42), and 0.3907 (—26.96), with function g given in
parentheses. The p values yielded by the Wald test on the four
OLR coefficients are, respectivey, 0.22, 0.02, 0.96, and 0.36. Only
m* and E* are significant variables at the 25% risk level.

After normalizing the coefficients, the first latent variable is
defined as

_ 0.5183x 7™+ (—1.1304) X E}

\(0.5183) + (—1.1304)?
= 0.41687* — 0.9090E;
—0.73
_|—131
1.72
In order to obtain the second latent variable t,, t, is built

starting from the residuals x,; of the regressions of each x; on
t,. In the case of x,,(sT,*), for instance,

x,; = 0.5497t, + residual
X, =X —0.5497¢,

—0.69 —0.73 —0.29
— —0:‘79 05497 —1:.31 _ —():.07
2.;17 1..72 1.33
X, is obtained from the similar calculation
—029 -0.13 177 -0.71

x, (7007 003 081 135

1.53 070 —0.07 —0.46

Successively, separate OLR of the quality on each standardized
predictor yields the coefficients ay; of 7,*, Ey*, L* and X,*

OHGARU ET AL.

equal to, respectively, —0.0382 (—23.66), —0.0382 (—23.66),
0.4225 (—23.24), and 0.5176 (—23.00), with function g given
in parentheses. The follwing p values are obtained for the
predictors’ coefficients: 0.93, 0.93, 0.39, and 0.28. There is no
significant variable at the 25% risk level; the model with only
the first latent variable t; is retained.

Each activity class probability is estimated in the following:

Prob(Activity = 1) =1 + exp(—1.8903 — 1.3696t,)}'l
Prob(Activity < 2) = {1 +exp(—0.8167 — 1.3696t1)}_1
Prob(Activity < 3)={1-+exp(1.0093 — 1.3696t,)}_1

By expressing t, in terms of the normalized variables 7% and
E*,

Prob(Activity = 1) = {1 + exp(—1.8903 — 0.57087* +
1.2450EH} 7

Prob(Activity < 2)= {1 +exp(—0.8167 — 0.57087* +
1.2450EH} 7!

Prob(Activity < 3) = {1 + exp(1.00903 — 0.57087* +
1.2450E5} 7!

Supporting Information Available: List of inhibitory
activities and SMILES keys of AChE data set. This material
is available free of charge via the Internet at http://
pubs.acs.org.
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