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Partial Least Squares Regression; PLS

Because PLS enables extraction of latent variables
correlating with a response variable, it is desirable that
all irrelevant descriptors are excluded to calculate latent
variables from relevant ones with a response variable.
Therefore, backward and forward selection procedures
were applied. The ¢° value in LOO-CV was used as an
index of both variable selection procedures. In the
forward selection procedure, three variables, logP(o/w)
and both dummy variables with respect to aromatic
amines and aliphatic amines were used for the initial
variables. The number of latent variables was selected on
the basis of the lowest root mean squared error of
prediction (RMSEP) by LOO-CV.

Results and Discussions

MLR analysis

The results from four MLR analysis models are
shown in Table 3. Firstly, 29 variables were selected by
the backward selection procedure (“MLR_00" in Table
2), but the ¢* value calculated by LOO-CV was negative,
indicating that it was an inappropriate model for
predicting, although AIC had been minimized and the
adjusted coefficient of determination, R;> was high.
Since too many variables were selected, over-fitting
occurred in this model. Based on the significance tests
for the regression coefficients of the 29 explanatory
variables, 26, 24 and 11 variables were selected
according to the significance levels 0.1, 0.05 and 0.01,
respectively.

Table 3. Results of models by multiple linear
regression analysis

Variable , .
set R2 q Correct  Outlier
‘ -C 0, 0,
[N *] (LOO-CV) [%] [%]
MLR_00 187 8
- 0.610 -0.544
[29] (706 [3.0]
MLR 01 189 8
- 0.600 0.448
[26] (7131 [3.0]
MLR 02 194 8
- 0.594 0.404
[24] (71321 [3.0]
MLR_03 192 6
- 0.555 0.521
T8 [22]
173 7
logP(o/ 0.432 0.422
e [65.3] [2.6]

*: number of variables
R adjusted coefficient of determination

14

Three models were then calculated using the newly
selected variables (“MLR 017, “MLR 02” and
“MLR_03” in Table 3). The “MLR _03” prediction
model was the most appropriate model for predicting the
toxicity based on the ¢* values. The plots of
experimental and predicted values are shown in Figure 1.

In order to evaluate the number of outliers in these
models, the samples were classified based on their
prediction errors. More specifically, samples having
prediction errors less than 0.7 were classified into
“Correct” and those having prediction errors greater than
2 were classified into “Outlier”. In the “MLR _02”
regression model, the number of compounds that were
classified into “Correct” was greater than that of the
other models, but eight compounds were classified into
“Outlier”. The prediction error of one compound was
actually six or more. In contrast, in the “MLR_03”
model, the number of compounds that were classified
into “Outlier” was six and the prediction error of the
above compound (prediction error > 6) was improved to
0.27, although the number of compounds classified into
“Correct” decreased. Because ¢” value is the highest,
“MLR_03” might be excellent model in the examination
done this time. The “MLR_03” regression formula is
shown below as Equation (1). The correlation
coefficients between  explanatory  variables of
“MLR_03” are shown in Table 4.

y = 2304 + 0377 (#0.166)aroma + 0.380
(£0.037)logP(o/w) — 0.131 (+0.040)dipole+ 0.267
(£0.079HOMO — 0.152 (£0.060)LUMO + 0.070

(£0.037)E ele~  0.00012  (£0.00003)pmi -
0.0141(+0.0025)[ASA+] + 0.0014 (+0.0003)[CASA-]+
3.01 (£0.887)[FASA+] + 0.480 (£0.100)std_diml (1)

Since logP(o/w), regarded as an important factor for
predicting toxicity, was also the important variable in the
“MLR_03” model, variable selections in the present
study were considered to be one of the appropriate
procedures. The possibility that is the item that relates
from the selection also of “HOMO” and “LUMO” that
shows the energy status of the compound to the
reactiveness of the compound is thought. FASA+ is a
similar descriptor to ASA+ but the regression
coefficients of both variables had inverse effects on the
model. Therefore, to evaluate the multicolinearity, we
excluded one of the variables from the dataset and
regenerated the two models. As a result, the ¢* values
calculated from both models were lower than that of the
former model (data is not shown). Thus, it is likely that
both descriptors are necessary to predict toxicity.
Because the dataset in the present study comprises
compounds with various structures, complicated
relationships may result.
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Figure 1. Scatter plots of experimental and predicted values in MLR.
(a): MLR_03; variable selection by p-value < 0.01 in significant tests for regression coefficients.
(b): logP(o/w); single linear regression analysis by logP(o/w).

Table 4. Intercorrelation matrix for selected variables (MLR 03)
aromatic  logP dipole HOMO LUMO E ele pmi  ASA+ CASA- FASA+ std diml
aromatic 1
logP -0.137 1
dipole -0.038 -0.215 1
HOMO 0.551 0.187 -0.286 1
LUMO 0.131 -0.13 -0.294 0.026 1
E ele -0.293 0.072 -0.179  -0.119 0.038 1
pmi -0.131 0.676 0.134 0.026 -0.194  -0.071 1
ASA+ 0.352 0.023 -0.058 0.553 -0.2  -0.056 0.133 1
CASA- 0.115 0.169 0.235 0.142 -0.665 -0.074 0479  0.526 1
FASA+ 0.416 -0.278 -0.065 0.489 -0.148  -0.062 -0.262  0.881 0.349 1
std_dim1 -0.04 0.519 0.109 0.089 0.028 -0.144  0.821 0.281 0.229 -0.075 1

PLS analysis

The results of three PLS analysis models are shown
in Table 5. Some selected variables were different in the
backward and forward selection procedures, although
both procedures resulted in the same number of selected
variables. We selected the number of latent variables
bases on the lowest RMSEP. The transitions of RMSEPs
and the scatter plots between experimental and predicted
values are shown in Figure 2.

The ¢ values in the models with variable selection
procedures were higher than that of the model without a
variable selection procedure. It is possible that the
unnecessary variables influenced the calculations of the

latent variables and subsequent predictions. “Outlier”
was also small, better predict was able to be done to
“PLSR_baskward”. The variables selected by both
variable selection procedures are shown in Table 6, and
there were some variables which were selected in both
procedures. The standardized partial regression
coefficients of these common variables are shown in
Figure 3.

The coefficients of these common variables had
identical signs (positive or negative) between both
models, although there were slight differences between
their absolute values. Therefore, it was thought that the
significances of the descriptors that were selected in both
models for predicting toxicity were higher than the other
descriptors.



Journal of Computer Aided Chemistry , Vol.11 (2010) 16

PLSR 00 PLSR backward PLSR_forward

15 m—— 1S
14 1.4
1.3 1.3
&) o o12 012
2| g 119 2 11
E 5 1 E 1
0.9
0.8 0.8
0.7 850 0.7
0 10 20 30 0 5 10 15 20
Number of latent variables Number of latent variables Number of latent variables
(a) (b) (c)
PLSR 00 PLSR backward PLSR forward
8§ —— 8
S 6 X S 6 s
= =} o
5} ) 5)
£ 4 g 4 =
8 8 5
& 2 & 2 ;.}
m m m
0 b - 0 (Y SUNSN SR
9 -2
2 0 2 4 6 8 2 0 2 4 6 8 2 0 2 4 6 8
Predicted Predicted Predicted
(d) (e) ®
Figure 2. Transitions of RMSEP and Scatter plots of experimental and predicted values in
PLSR.
(a), (b), (c): transitions of RMSEP in PLSR without a variable selection, with backward and forward
selection procedures.
(d), (e), (f): scatter plots of experimental and predicted values in PLSR without a variable selection,
with backward and forward selection procedures.
Table 5. Results of models by partial least squares Table 6. List of variables in two models with variable
regression analysis selection procedures
) Correct  Outlier common*' PLSR backward** PLSR_forward**
Variable set 4 5 R o o — =
V*] Nis 1 ] 0] logP(o/w) E ele aliphatic
aromatic E E ele
FLSR_00 25 0448 0.468 185 8 .
PLSR_backward** 186 5 LUMO E str ASA H
19 0539 0.543 -
[19] (702]  [1.9] dipole E_strain FASA-
PLSR_fi = 187 7
forward 9 0523 0526 HF E_tor FCASA+
[19] [70.6] [2.6]
"""""""""""""""""""""""""" 173 o 7 i pmi CASA- FCASA-
logP(o/w)** - 0422 0432 wx B B vdw DCASA dens
*!: number of variables std_dim3 std_diml glob
*2: number of latent variables
*3: backward selection procedure sl VaA
** forward selection procedure *!: variables selected in both models
*3: this is same result as presented in Table 2 *2 variables selected in only backward selection procedure

*#3: variables selected in only forward selection procedure
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Standardized partial regression coefficients
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Figure 3. Standardized  partial  regression
coefficients of common variables
selected in both backward and
forward selection procedures.

Conclusion

In the present study, both MLR and PLS analyses
were conducted using 3D descriptors and logP(o/w), and
some 3D descriptors were found to be important for
predicting toxicity. Predicton accuracy of the generated
model was adequate and improved compared to that of
the model using only logP(o/w). It seems that MLR is
useful when thinking about mechanical analysis and a
structural improvement by the variable for the predict
model. Moreover, it is thought that PLS is suitable for
valuing the prediction accuracy. However, the value of a
3D descriptor easily changes when the steric structure
changes, therefore, careful attention must be paid to the
possibility that predictions using 3D descriptors may
worsen due to structural changes of the compound.

In future studies, prediction accuracy may be
improved by adding 2D descriptors to the 3D descriptors
used in the present study. Moreover, re-examination of
not only structure optimization, which affects the values
of 3D descriptors, but also variable selection procedures
for excluding unnecessary descriptors are important for
improving prediction accuracy.
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