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FIG. 4. Molecular interactions of GRL-02031 with HIV-1 protease. (A) A model of the interaction of GRL-02031 with HIV protease. The
bird’s-eye view of the docked pose (inset) is presented along with a blown-up figure highlighting the important hydrogen bond interactions. The
inhibitor is predicted to have hydrogen bond interactions with Asp25, Gly27, Asp29, 1le50, Asp29’, and 1e50’. Note that the pyrrolidone oxygen
(red stick) interacts with the S-2' subpocket and forms a hydrogen bond interaction with Asp29’. (B) Superimposed binding configurations of
GRL-02031 with the HIV-1 protease. The carbons are shown in gray in configuration 1 and in green in configuration 2. Selected hydrogen bond
interactions of configuration 2 are shown. In configuration 2, the methoxybenzene interacts with the S-2' site and forms a hydrogen bond
interaction with Asp30’. The interaction of the P-2 ligand Cp-THF is the same in both configurations. (C) The binding cavity of HIV protease with
lipophilic potential is shown. GRL-02031 fits tightly in the binding cavity and has favorable polar and nonpolar interactions with the active-site
residues of the HIV-1 protease. The van der Waals surfaces of Ile47 and Ile47’ (both in magenta) and of 1le84’ (in purple) demonstrate that they
form tight nonpolar interactions with GRL-02031. The protease residues are shown in stick representation. The following atoms are indicated by
designated colors: C, gray; O, red; N, blue; S, yellow; H, cyan. Both protease chains are shown in green. The figure was generated with the

MOLCAD program (Sybyl, version 8.0; Tripos, L.P, St. Louis, MO).

seen in the case of DRV (9). This resistance profile (i.e., the
requirement of multiple mutations) of GRL-02031 may also
confer certain advantage in the resistance profile of GRL-
02031.

Two mutations at conserved residues, L33F and Q58E, also
emerged by passage 37 and were present in 10 and 9 of 10
clones, respectively. L33F has primarily been reported in pa-
tients treated with RTV or APV (37). The L33F substitution
alone did not change the susceptibility of HIV-1 to GRL-02031
(Table 4), although it has recently gained attention because of
its association with resistance to the FDA-approved PI, ti-
pranavir (33).

In the HIV-1 variants selected with GRL-02031, four amino
acid substitutions in the Gag proteins (G62R, R409K, L363M,
and 1437T) were seen by passage 37. R409K within the p7 Gag
seems to be associated with viral resistance to APV (14), al-
though the significance of G62R within p17 is as yet unknown.
The p7-pl cleavage-site mutation 1437T has been reported to
be associated with ATV resistance (17). It is of note that by
passage 15, an unusual amino acid substitution, L363M,
emerged; this substitution has not previously been reported in
relation to PI resistance. This L.363M is located at the p24-p2
cleavage site, which represents the C terminus of the capsid
(CA) p24 protein that is highly conserved and that is involved

in virion assembly. The deletion of this cluster or the introduc-
tion of mutations such as L363A is known to cause significant
impairment of particle formation and infectivity (34). It is
noteworthy that L.363M appears in HIV-1 variants resistant to
a maturation inhibitor, PA-457 [3-O-(3',3’-dimethylsuccinyl)
betulinic acid], which binds to the CA-p2 cleavage site or its
proximity, blocks the cleavage by protease during virion mat-
uration, and exerts activity against HIV-1 (27, 44, 49).

It was noted that GRL-02031 and SQV remained active
against most of the Pl-selected HIV-1 variants and that SQV,
IDV, and NFV remained potent against HIV-1gg; 02031.5 um
(Table 3), suggesting that the combination of GRIL-02031,
SQV, IDV, and NFV can exert complementarily augmented
activity against multi-PI-resistant HIV-1 variants. Such a dif-
ference in the resistance profile of GRL-02031 when it is used
with SQV and NFV may be due to the differences in binding
and antiviral potency associated with the D30N and G48V
mutations (Table 4).

In an attempt to explain why GRL-02031 can exert potent
activity against a wide spectrum of HIV-1 variants resistant to
multiple PIs, we performed structural modeling and molecular
docking of the interactions of GRL-02031 with protease (Fig.
4). Interestingly, our structural modeling analysis demon-
strated that there are two distinct binding modes of GRL-
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02031 in the S-2’ pocket of the protease. Either the 2-pyrroli-
done group or the methoxybenzene moiety can orient toward
Asp29' and Asp30’ (configuration 1 and configuration 2, re-
spectively) (Fig. 4B). It is presumed that such alternate binding
modes provide distinct advantages to GRL-02031 in maintain-
ing its antiviral activity against a wide spectrum of HIV-1
variants resistant to other currently available PIs. The alternate
binding modes could explain the reason why the development
of resistance to GRL-02031 is substantially delayed compared
to the time to the development of resistance to APV or IDV
(Fig. 2). In addition, the models of GRL-02031 indicated that
it is capable of forming hydrogen bond interactions with the
backbone atoms of Asp29, Asp29’, andfor Asp30’. Such back-
bone interactions have been shown to be important in main-
taining potency not only against wild-type protease but also
against drug-resistant mutant proteases (1, 15, 16, 36). This
may also explain why GRL-02031 maintains its potency against
a wide variety of drug-resistant mutant proteases.

It is of note that the difference seen with GRL-02031 (one-
to twofold) seems substantially less than that seen with DRV
(one- to sevenfold) (Table 2). Although this difference may not
be translated into an actual difference in the clinical setting, it
is worth noting that GRL-02031 may have certain advantages
in its activity against highly drug-resistant HIV-1 variants. Con-
sidering that the acquisition of multiple amino acid substitu-
tions is required for the emergence of HIV-1 resistance to
GRIL-02031, the profile of HIV-1 resistance to GRL-02031,
which is apparently different from the profiles for the other
PIs, might result in an advantage for GRL-02031, although
further evaluations, including testing of the compound in the
clinical setting, are required.

Taken together, GRL-02031 exerts potent activity against a
wide spectrum of laboratory and clinical wild-type and multi-
drug-resistant HIV-1 strains without significant cytotoxicity in
vitro and substantially delays the emergence of HIV-1 variants
resistant to GRL-02031. These data warrant further consider-
ation of GRL-02031 as a candidate as a novel PI for the
treatment of AIDS.
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The synthesis of a series of stereochemically defined spirocyclic compounds and their use as novel P2-ligands for HIV-1 protease inhibitors
are described. The bicyclic core of the ligands was synthesized by an efficient nBu;SnH-promoted radical cyclization of a 1,6-enyne followed
by oxidative cleavage. Structure-based design, synthesis of ligands, and biclogical evaluations of the resulting inhibitors are reported.

The introduction of highly active antiretroviral therapy
(HAART) in 1996, in combination with HIV-1 protease
inhibitors and reverse transcriptase inhibitors, has dramati-
cally changed the management of HIV/AIDS.' The advent
of HAART has significantly reduced morbidity and mortality
and has improved the quality of life for HIV-infected patients,
particularly in developed nations.” Despite this important
breakthrough, current and future management of HIV/AIDS
is being challenged by the rapid emergence of multi-drug-
resistant HIV-1 strains and drug-related side effects.® Con-
sequently, development of novel and effective treatment
regimens are critically important.
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In our continuing effort to design a new generation of
HIV-1 protease inhibitors (PIs) that combat drug resistance,
we developed a series of exceedingly potent PIs. A number
of these nonpeptidyl PIs have shown superb antiviral activity
and drug-resistance profiles. In our structure-based design
strategies, we introduced the “backbone binding concept”
with the presumption that an inhibitor that makes maximum
interactions in the protease active site, particularly hydrogen
bonding with the backbone atoms, may retain its potency
against mutant strains.” Darunavir (1, Figure 1), which has
been approved by the FDA for the treatment of patients
harboring multi-drug-resistant HIV-1 strains, has emerged
from this approach.”® Our detailed X-ray structural analysis
of protein—ligand complexes revealed an extensive hydrogen

(3) Boden, D.; Markowitz, M. Antimicrob. Agents Chemother. 1998,
42, 2775.

(4) Ghosh, A. K,; Chapsal, B. D.; Weber, L. T.; Mitsuya, H. Acc. Chem.
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Figure 1. Structure of HIV protease inhibitors.

bonding network with HIV-1 protease backbone atoms and
most notably with the designed bis-THF P2-ligand.”

More recently, we reported another novel PI, GRL-06579
(2), which features a stereochemically defined bicyclic
hexahydrocyclopentylfuran (Cp-THF) P2-ligand in the hy-
droxyethylsulfonamide isostere core.® The X-ray crystal-
lographic analysis of 2-bound HIV-1 protease documented
extensive hydrogen bonding interactions including the Cp-
THF oxygen with the backbone atoms in the S2-subsite.®

The favorable drug-resistance profile of this PI containing
the Cp-THF ligand logically prompted us to design several
structural analogs. We set out to introduce new functionalities
on this bicyclic core that could create additional interactions
within the enzyme catalytic site. The 3-position of the Cp-
THF ligand appeared particularly suitable for this purpose,
because of its proximity to the flap region and the S2-subsite
of the protease. Based upon our analysis of the X-ray crystal
structure of 2-bound protease, we planned to investigate the
effect of a structurally constrained spirocyclic motif at the
3-position of the Cp-THF ring. We speculated that a cyclic
ether oxygen or an oxazolidinone carbonyl oxygen may be
positioned in this cyclic motif to accept a hydrogen bond
from the enzyme active site residues or a backbone NH. Such
a functionality would fill in the hydrophobic pocket in the
S2-subsite as well. Furthermore, this structural feature may
improve the pharmacological profile of these inhibitors.”'?
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Scheme 1. Synthesis of Bicyclic Ketone 8
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We initially set out to synthesize a series of spirocyclic
Cp-THF-derived P2-ligands and their corresponding HIV-
protease inhibitors (3a—e). A synthetic strategy was devised
so that all analogs could be synthesized from a common
precursor that gives rapid access to new polycyclic molecular
probes. The general synthesis of the bicyclic core of our new
P2-ligands was accomplished in enantiomerically pure form
as shown in Scheme 1. Optically active monoacetate 4 was
obtained in 95% ee by desymmetrization of the correspond-
ing meso-diacetate with acetyl cholinesterase.'! Protection
of alcohol 4 as a TBS ether followed by methanolysis of
the acetyl group furnished compound 5. Propargylation of §
using propargyl bromide in the presence of NaH provided
alkyne 6 in excellent yield.

The construction of the bicyclic core was accomplished
by an intramolecular radical cyclization of alkyne 6 using
nBu;SnH and AIBN in benzene at reflux. This provided vinyl
stannane 7 as a mixture of cis/trans diastereoisomers (2:1),

Scheme 2. Synthesis of Spirocyclic Ketal and Ether Ligands

(CH,0OH),, LOH
p-TsOH (cat.) .
8 PhH, reflux ?
86% Kﬁo
O
4 Bromobutene, \)
76% lMg Et,O/THF
.OH

.OTBS
(e} O 1. Os, CH2C|2 o O
D
: 2. p-TsOH (cat.), '
o PhH/MeOH g
| 10 92% 1
dr=1:0.85 MeO
.OH 1. HMDS
o O NH,HSO, (cat.
) 2. TMSOTY,
Et;SiH
(@] 12 71%

Org. Lett, Vol. 10, No. 22, 2008

393



along with trace amounts of the olefin, which presumably
formed during purification on silica gel. The mixture of
isomers was directly oxidized with a catalytic amount of
0s0y in the presence of NalO, and 2,6-lutidine to afford
the key intermediate, ketone 8 in 77% yield.

We first turned our attention to the synthesis of spirocyclic
ketal 9 and ether 12. Molecular modeling of the correspond-
ing inhibitors suggested that the ligand oxygens could be
within hydrogen bonding distance to the NH amide bonds
of both Asp30 and Asp29 residues.

Spirocyclic dioxolane ligand 9 was obtained in 86% yield
by treatment of ketone 8 with ethylene glycol in benzene with
a catalytic amount of p-TsOH. Synthesis of ether 12 was
achieved in four consecutive steps starting from ketone 8.
Reaction of 8 with homoallyl magnesium bromide furnished
compound 10 in 76% yield. Ozonolysis of the terminal alkene
and refluxing the resulting crude aldehyde in benzene/methanol
followed by azeotropic distillation of the excess methanol
afforded methyl acetal 11 as a mixture (1:0.85) of diastereoi-
somers. Reduction of this acetal intermediate 11 furnished the
desired alcohol 12 by applying a one-pot procedure involving
(1) TMS-protection of the alcohol with hexamethyldisilazane
and (2) subsequent reduction of the acetal with triethylsilane. 12

We have designed spirocyclic oxazolidinone ligands that
could potentially exploit polar interactions with the backbone
atoms and residues in the HIV-1 protease active site. Their
respective syntheses are highlighted in Scheme 3 and 4.

Scheme 3. Synthesis of Spirooxazolidinone Ligand 15
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Cyanohydrin 13 was synthesized in 82% yield from ketone 8.
LiAlH,-reduction of the cyanide provided the corresponding
amine, which exhibited partial TMS-deprotection. Therefore,
the crude mixture was directly submitted to the next steps with
(1) formation of the methyl carbamate derivative and (2)
removal of the silyl ethers with TBAF in THF. The resulting
diol 14 was then treated with NaH in THF to give oxazolidinone
ligand 15 in 51% yield over four steps (from 13).

Synthesis of oxazolidinone 18 started with vinylstannane
7 (Scheme 4). Proto-destannylation of 7 was carried out with
CSA in CH,Cl,. Epoxidation of the resulting olefin with
m-CPBA gave epoxide 16 as a major diastereomer (93:7
ratio). Opening of the epoxide with p-methoxybenzylamine
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Scheme 4. Synthesis of Spirooxazolidinone Ligand 18
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gave amino alcohol 17 in 67% yield. The carbonyl was
installed using triphosgene and Et:N in CH,Cl,. Deprotection
of the TBS-group provided the desired oxazolidinone 18.
The synthesis of polycyclic PIs is shown in Scheme 5.
Various synthetic ligands were reacted with 4-nitrophenyl-
chloroformate and pyridine to form the corresponding
activated carbonates, 19a-—e. Reaction of the respective

Scheme 5. Synthesis of Inhibitors 3a—e
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active carbonate with known® amine 20 in the presence of
diisopropylethylamine afforded PIs 3a—d. For the synthesis
of inhibitor 3e, amine 20 was reacted with active carbonate
19e to provide urethane 21. Removal of the PMB group from
21 by exposure to ceric ammonium nitrate (CAN) afforded
inhibitor 3e.

We examined all inhibitors for their enzymatic potency
as well as their cellular activity, and the results are displayed
in Table 1. As shown, most inhibitors exhibited excellent

Table 1. Enzymatic and Antiviral Activity of Pls

M
" QH ?l/©/0 e
N N
\/\/ ,/S\\
o ©

.0
R
0

Ph/
3a-e
Inhibitor R K (nM)* ICso (M)
H O
o- !< ,
3a ~0 H 0.16 0.28
’
O\)
H O 3b-(S) isomer
o- (X=0Me,Y=H):
) 0.81
3b ) H 3b-(R) isomer 0.23°
(0] (X=H,Y=0OMe):
- 0.38
X Y
H, .0

o X ]
3c SSH 222 0.17
o}

H .0
o X ]
3d " H 0.29 0.093
(0]

N

I

O

O
X J
&
O)‘NH

I

I
e
S

3e 0.021

“ K; determined following protocol as described by Toth and Marshall,
mean values of at least four determinations.!? # MT-2 cells (2 x 10%mL)
were exposed to 100 TCIDsy of HIV-1y s and cultured in the presence of
various concentrations of Pls, and the ICsq’s were determined by using the
MTT assay on day 7 of culture.® < Tested as a 1:0.85 mixture.

enzymatic potency. Dioxolane-based analogue 3a displayed
a K; value of 0.16 nM. Inhibitor 3b contains the spirocyclic
methyl acetal as a mixture (1:0.85 ratio) of diastereomers.
These diastereomers were separated by HPLC, and the
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stereochemical identity of each diastereomer was determined
by extensive NOESY experiments. Diastereomer 3b-(S)
showed an enzymatic K; of 0.81 nM. The 3b-(R) isomer is
slightly more potent (K; = 0.38 nM). The removal of the
methoxy group from 3b resulted in inhibitor 3¢, which
showed a loss of enzyme inhibitory activity. Both inhibitors
3b and 3¢ have shown comparable antiviral activity. We have
examined stereochemically defined oxazolidinone derivatives
as P2-ligands. Inhibitor 3d displayed a K; of 0.29 nM.
Diastereomeric inhibitor 3e is slightly more potent than 3d
in both enzyme inhibitory as well as in antiviral assays (ICsg
= 21 nM in MT-2 cells). The inhibitors in Table 1 in general
are significantly less potent than UIC-PI (TMC-126),'* the
corresponding methoxysulfonamide derivative of darunavir
or Cp-THF-containing inhibitor 2.3

In conclusion we have designed and synthesized a series
of inhibitors containing stereochemically defined novel
spirocyclic P2-ligands. The syntheses of these ligands were
carried out from the key intermediate 8, which was efficiently
prepared in optically active form by using a radical cycliza-
tion as the key step. The spirooxazolidinone-derived inhibitor
3e is the most potent inhibitor in this series. While these
inhibitors contain novel P2-ligands, it appears that the
spirocyclic motif at the 3-position of the Cp-THF ring
resulted in a significant reduction in potency. Further design
and optimization of the ligand binding site interactions are
in progress.
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Recently, we designed a series of novel HIV-1 protease inhibitors incorporating a stereochemically
defined bicyclic fused cyclopentyl (Cp-THF) urethane as the high affinity P2-ligand. Inhibitor 1 with
this P2-ligand has shown very impressive potency against multi-drug-resistant clinical isolates. Based
upon the 1-bound HIV-1 protease X-ray structure, we have now designed and synthesized a number of
meso-bicyclic ligands which can conceivably interact similarly to the Cp-THF ligand. The design of
meso-ligands is quite attractive as they do not contain any stereocenters. Inhibitors incorporating
urethanes of bicyclic-1,3-dioxolane and bicyclic-1,4-dioxane have shown potent enzyme inhibitory and
antiviral activities. Inhibitor 2 (K; = 0.11 nM; IC;, = 3.8 nM) displayed very potent antiviral activity in
this series. While inhibitor 3 showed comparable enzyme inhibitory activity (K; = 0.18 nM) its antiviral

activity (ICs = 170 nM) was significantly weaker than inhibitor 2. Inhibitor 2 maintained an antiviral

potency against a series of multi-drug resistant clinical isolates comparable to amprenavir. A
protein-ligand X-ray structure of 3-bound HIV-1 protease revealed a number of key hydrogen bonding
interactions at the S2-subsite. We have created an active model of inhibitor 2 based upon this X-ray

structure.

Introduction

The proteolytic enzyme HIV-1 protease is essential for viral
assembly and maturation.' As a consequence, the design of specific
inhibitors for HIV-1 protease has become the subject of immense
interest. In 1996, protease inhibitors (PIs) were introduced in
combination with reverse transcriptase inhibitors to become a
highly active antiretroviral therapy (HAART).? This treatment
regimen significantly increased life expectancy, improved quality
of life and decreased mortality and morbidity among HIV/AIDS
patients. Despite these notable advances, the emergence of drug-
resistant HIV-1 variants is severely limiting the efficacy of HAART
treatment regimens. Therefore, the development of new broad-
spectrum antiretroviral drugs that produce minimal adverse effects
remains an important therapeutic objective for the treatment
of HIV/AIDS.> We have recently reported our structure-based
design and development of a series of novel HIV-1 protease
inhibitors including darunavir,»® TMC-126,* and GRL-06579A
(1, Fig. 1).7 These inhibitors were designed with specific features

“Departments of Chemistry and Medicinal Chemistry, Purdue University,
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H wooH y OH
R
k

1 (GRL-06579A)

. " OH OMe
H ,O\n/N\A/N\

Fig. 1 Structure of inhibitors 1-3.

to help combat drug resistance. They have exhibited marked po-
tency in enzyme inhibitory and cell-culture assays. Furthermore,
these inhibitors have shown impressive activity against a broad-
spectrum of HIV isolates including a variety of multi-PI-resistant
clinical strains. Darunavir has been recently approved for the
therapy of HIV/AIDS patients who are harboring drug-resistant
HIV and do not respond to other antiretroviral drugs.
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One of our design principles to combat drug resistance is to
maximize the ligand-binding interactions in the active site and
particularly to promote extensive hydrogen bonding with the
active site protein backbone. Indeed, inhibitor 1 incorporates
a stereochemically defined bicyclic cyclopentanyltetrahydrofuran
(Cp-THF) as the P2-ligand in the hydroxylethylsulfonamide
isostere. The protein-ligand X-ray structure of inhibitor 1 revealed
extensive hydrogen bonding interactions with the backbone atoms
throughout the enzyme active site.* The cyclic ether oxygen is
involved in hydrogen bonding with the backbone NH of Asp29.
The presence of this oxygen is critical for its superb antiviral
properties, especially against drug resistant HIV strains. Based
upon further examination of the protein-ligand X-ray structure
of 1-bound HIV-1 protease, we subsequently speculated that a
simplified meso-hexahydrocyclopenta-1,3-dioxolane ligand could
conceivably maintain similar interactions with respect to the Cp-
THF ligand in inhibitor 1. Particularly, it appears that one of the
oxygens of this meso ligand can hydrogen bond with the Asp29
NH. Since the Cp-THF ligand in inhibitor 1 contains three chiral
centers, incorporation of a meso ligand as shown in inhibitor 2
would remarkably simplify the synthesis compared to the bicyclic
Cp-THF ligand. Furthermore, we speculated that the second
oxygen atom in the meso-P2-ligand could conceivably engage
in further interactions at the S2-subsite. Herein, we report the
design, synthesis and biological investigation of a series of protease
inhibitors that incorporate structure-based designed symmetrical
meso-bicyclic 1,3-dioxolane and 1,3-dioxane derivatives as the P2-
ligands. Inhibitors (2 and 3) incorporating these ligands have
shown exceedingly potent enzyme inhibitory potency as well as
antiviral activity. Furthermore, we evaluated the drug-resistance
profile of inhibitor 2 against multi-drug-resistant clinical isolates
and it was shown to maintain tremendous potency. The protein—
ligand X-ray structure of 3-bound HIV-1 protease has been
determined and this structure has provided molecular insight into
the ligand-binding site interactions.

Chemistry

The hexahydrocyclopenta-1,3-dioxolan-5-ol (11), required for
the synthesis of 2, was prepared as described in Scheme I.
Commercially available 1,6-heptadien-4-ol 4 was protected as the
corresponding f-butyldiphenylsilyl ether using sodium hydride
as the base in THFE The resulting diene was subjected to a
ring closing metathesis reaction using second generation Grubbs’
catalyst to afford the protected cyclopenten-1-ol 5 in 94% overall
yield. Osmium tetroxide-promoted dihydroxylation of olefin 5
was accomplished using a catalytic amount of osmium tetroxide
and NMO and pyridine to afford diol 6 as a 6 : 1 mixture of
anti- and syn-isomers which were easily separated by column
chromatography. The anti- isomer 6 was subsequently treated
with paraformaldehyde, preliminarily cracked with aqueous hy-
drochloric acid in chloroform under reflux,” affording the cyclic

acetal 7 in good yield. Along with the desired compound 7, the

trioxepane 8 was also isolated from the reaction mixture in a | :
1 ratio. We therefore decided to incorporate the tetrahydro-5aH-
cyclopenta[f][1,3,5]trioxepan-7-yl-moiety as a P2-ligand (resulting
in inhibitors 27-28, Table 1) because the higher flexibility of the
trioxepane ring could allow an improved adaptability to enzyme
amino acid mutations, leading to better activity against HIV-
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Scheme 1 Synthesis of alcohols 9-12.

resistant strains. Accordingly, both intermediates 7 and 8 were
deprotected using tetrabutylammonium fluoride (TBAF) in THF
to provide the anti-alcohols 9 and 10. Compounds 9 and 10
were subsequently subjected to Mitsunobu inversion to afford the
corresponding syn-alcohols 11 and 12.

For the preparation of inhibitors 3 and 29, alcohols 15 and 16
were synthesized as described in Scheme 2. Diol 6 was heated under
reflux in toluene in the presence of dibutyltin oxide with azeotropic
removal of water. The resulting stannylene acetal intermediate
was treated with chloroethanol to obtain the monoalkylated
derivative 13 in 68% overall yield." Subsequently, the primary
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HOC OH OH
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Scheme 2 Synthesis of alcohols 15 and 16.
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alcohol was selectively tosylated with p-toluenesulfonyl chloride
in the presence of pyridine. Exposure of the resulting compound to
sodium hydride resulted in an intramolecular substitution reaction
leading to the corresponding cyclization compound 14. TBAF-
mediated deprotection furnished the target anti-alcohol 15 in
good overall yield. The syn-alcohol 16 was then obtained after
Mitsunobu inversion of 15 as described above.

The synthesis of the active carbonates required for the synthesis
of the various inhibitors is shown in Scheme 3. Alcohol 9
was converted to the succinimidyl-derivative 17 by treatment
with N,N’-succinimidylcarbonate in the presence of Et;N as
described previously.' Alcohols 10-12, 15 and 16 were activated
by conversion to the corresponding p-nitrophenylcarbamates 18—
22 (81-95% yield) by using p-nitrophenylchloroformate and N-
methylmorpholine in THF. The general procedure for the synthesis
of inhibitors 2, 3 and 26-30 is outlined in Scheme 4. Epoxide
23" was converted into intermediate 24 following our previously
reported procedure.® Deprotection of 24 by using trifluoroacetic
acid followed by reaction with the activated alcohols 17-22
furnished inhibitors 2, 3 and 26-29 in 43-85% yields.
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Scheme 3 Synthesis of activated alcohols 17-22.

Finally, inhibitor 30 was synthesized from the known® amine
25. This amine was reacted with the activated carbonate 17 in the
presence of diisopropylethylamine in THF at 23 °C to provide 30.
Inhibitor 30 was obtained in 63% yield.
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Scheme 4 Synthesis of inhibitors 2, 3 and 26-30.

Results and discussion

The inhibitory potencies of the synthetic inhibitors were evaluated
using the assay protocol of Toth and Marshall,”® and the results
are shown in Table 1. As can be seen, inhibitor 2 has shown an
enzyme inhibitory potency of 0.11 nM. It appears that the bicyclic
1,3-dioxolane ring can be accommodated by the S2-subsite of
HIV-1 protease. Inhibitor 26 with a meso ligand containing a
trans-bicyclic-1,3-dioxolane ring is 2.5-fold less potent than the
syn-isomer 2. We have examined the effect of both syn and anti-
trioxepane rings as P2-ligands in inhibitors 27 and 28. The syn-
isomer 28 is significantly more potent (K; = 0.51 nM) than the anti-
isomer 27. Considering the acid sensitivity of 1,3-dioxolane rings,
we not only speculated that the stable 1,4-dioxane ring may fill the
hydrophobic S2-site, but also that the oxygens on the dioxane ring
may interact with backbone atoms or residues in the active site.
As shown, the meso ligand in inhibitor 3 with a syn-bicyclic-1,4-
dioxane ring has shown an enzyme inhibitory potency of 0.18 nM
(K; value). Consistent with previous results, the corresponding
anti-isomer 29 is significantly less potent. As reported previously,
the P2-ligand Cp-THF with a P2-hydroxymethy! sulfonamide
(inhibitor 1) 1s significantly more potent than the corresponding
P2’-methoxybenzene sulfonamide derivative. We have, therefore,
compared the inhibitory potency of inhibitor 30, containing a
P2’-hydroxymethyl benzene sulfonamide derivative, with inhibitor
2. However, inhibitor 30 did not exhibit this potency enhancing
effect.

We have examined selected compounds for their activity against
HIV-1 using a human CD4+ T-cell line (MT-2 cells). The activity
of inhibitor 2 against a variety of multi-drug-resistant HIV-1
variants was also examined in detail using human peripheral
blood mononuclear cells (PBMCs) as target cells. We employed
two endpoints for the activity against HIV-1: (i) the inhibition
of the HIV-1-elicited cytopathic effect for MT-2 cells and (ii) the
inhibition of HIV-1 p24 production for PBMCs.?
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Table 1 Enzymatic inhibitory activity of compounds 2, 3, 26-30 and antiviral activity of selected inhibitors against HIV-1,
Entry Inhibitor Ki/nM* 1Csy/uM?
1 0.11£0.01 0.0038 £0.0001
,O\H/N\f/\/N:S\
0" o o o
Ly Ph
2
2 0.40 £ 0.04 nd
" oH /©/OM9
(T
o o’ o
Ly P
3 541022 >1
O.__N N.
o (TY s
<O o, P oo
Lo 27
4 0.51+0.01 0.38 £0.02
O N N
SR Gt
<O o /‘ o 0
Ld P28
5 0.18+£0.03 0.21 £0.04
y OH /©/OM8
O N N,
o T Y
(e, I
o) 3
6 0.50 £ 0.04 nd
" oH OOMe
2R SR
; o o
O
o} 29
0.34+£0.07 0.0077 £0.003

* Values are means of at least two experiments. * MT-2 human T-lymphoid cells exposed to HIV-1,4;; antiviral activity of amprenavir (APV), saquinavir
(SQV) and indinavir (IDV) were 0.03 uM, 0.02 pM and 0.03 uM respectively in this assay. nd: not determined.

When examined in MT-2 cells as the target cells, inhibitor 2
displayed an impressive antiviral ICy, of 3.8 nM (Table 1). Inhibitor
3 showed an antiviral ICy, value in the high nanomolar range
(IC = 210 nM, Table 1), while it exhibited a similar K| to inhibitor
2. We subsequently examined inhibitor 2 for its activity against
a clinical wild-type X4-HIV-1 isolate (HIV-1grsiosp) along with
various multi-drug-resistant clinical X4- and R5-HIV-1 isolates
(Table 2) using PBMCs as the target cells.® The activity of inhibitor
2 against HIV-1grsioae (ICss = 29 nM) was comparable to those
of currently available protease inhibitors, SQV, APV, and IDV,
which display ICs, values of 12, 33, and 26 nM, respectively. Of
particular note, the ICy, value of inhibitor 2 in PBMCs (I1C5=
29 nM) was nearly 8-fold greater than the IC,, value in MT-2 cells

(ICs = 3.8 nM). With regard to this difference, considering that 2
is highly potent as examined in human T-cells (MT-2 cells) but its
activity is slightly less in PBMCs, it is possible that relatively higher
concentrations of 2 are required to suppress HIV-1 production
in chronically infected macrophages.” IDV was not capable of
efficiently suppressing the replication of most of the multi-drug-
resistant clinical isolates examined (HIV-1ypr/nn, HIV-lyprssses
HIV-1ypric, and HIV-1ypr,a), with ICs, values of >1.0 uM. The
potency of inhibitor 2 against most of the multi-drug-resistant
variants was generally comparable to that of SQV and APV,
although DRV was found to be the most potent among those
tested, including inhibitor 2, against HI'V-1ggsjoun. as well as all the
multi-drug-resistant variants.
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Table 2 Antiviral activity of inhibitor 2 against clinical HIV-1 isolates in PBMC cells

1Cs, values“(nM)

Virus? 2 DRV* SQv¢ APVe IDV/
HIV-1ggsioe (Wild-type: X4) 29 3.5 12 33 26
HIV-lLyprani(RS) 150 (5) 17 (5) 190 (16) 300 (9) > 1000 (>38)
HIV-1ypr/ise (RS) 550(19) 26(7) 330(28) 430 (13) > 1000 (>38)
HIV-1yprse (X4) 300 (10) 7(2) 36(3) 230(7) > 1000 (>38)
HIV-1pr/6 (X4) 340 (12) 7(2) 29 (2) 340 (10) 290 (11)
HIV-lypr/a (X4) 21 (D) 3 81 (7) 100 (3) >1000 (>38)

« Amino acid substitutions identified in the protease-encoding region compared to the consensus type B sequence cited from the Los Alamos database
include L63P in HIV-1 gy L10I, K43T, M46L, 154V, L63P, A71V, V82A, L9OM, and Q92K in HIV-1ype,mu; L10L, L241, 133F, E35D, M361, N37S,
MA46L, 154V, R57K, 162V, L63P, A71V, G738, and V82A in HIV-1ype.s; L0, 115V, K20R, 1241, M361, M46L, 154V, 162V, L63P, K70Q, V824, and
L8OM in HIV-1yorsc; LIOL VI T12E, 115V, L191, R41K, M46L, L63P, A71T, V82A, and L9OM in HIV-1pr.; and L101, 115V, E35D, N37E, K45R,
154V, L63P, A71V, V82T, L90M, 193L, and CI9SF in HIV-1ypp/a. HIV-1ggsipipe. served as a source of wild-type HIV-1. The IC;, values were determined
by employing PHA-PBMC (phytohemagglutinin-activated peripheral blood mononuclear cells) as target cells and the inhibition of p24Gag protein
production as the endpoint. All values were determined in triplicate. * X4 denotes CXCR4-tropic HIV-1 while R5 CCRS-tropic HIV-1. < DRV (darunavir).

4SQV (saquinavir). © APV (amprenavir). IDV (indinavir).

X-Ray crystallography

To obtain molecular insight into the ligand-binding site interac-
tions responsible for the impressive enzyme inhibitory potency of
compound 3, we determined the X-ray structure of 3-bound HIV-
1 protease. The crystal structure was solved and refined to an R
factor of 15.2% at a 1.07 A resolution. The inhibitor binds with
extensive interactions from P2 to P2’ with the protease atoms,
and most notable are the favorable polar interactions including
hydrogen bonds, as shown in Fig. 2. The transition-state hydroxyl
group forms hydrogen bonds to the side chain carboxylate oxygen
atoms of the catalytic Asp25 and Asp25’. Of particular interest,
the meso-bicyclic 1,4-dioxane ligand appears to be involved in
hydrogen bonding interactions with the backbone atoms and
residues at the S2-site. One of the dioxane oxygens hydrogen bonds
with the backbone NH of Asp29. The other oxygen makes a water-
mediated hydrogen bond with the carbonyl oxygen of Gly48. These
interactions are described in several peptide substrate analogs.”
However, the design of high affinity ligands incorporating this
interaction with Gly48 has not been previously demonstrated.
The inhibitor also hydrogen bonds with the protease main chain
amide carbonyl oxygen of Gly27, and there are water-mediated
interactions with the amides of Ile50 and lle50’ that are conserved
in the majority of protease complexes with inhibitors'® and

substrate analogs.”® The weaker polar interactions such as C-
H-- O and water-r interactions can be analyzed accurately in
atomic resolution structures."'® Inhibitor 3 also shows a water-
mediated interaction of the m system of the P2" aromatic ring
with the amide of Asp29’, which was also observed for darunavir
and inhibitor 1." Furthermore, the P2 methoxy group forms a
hydrogen bond to the backbone NH of Asp30’. Importantly, the
P2 group forms a hydrogen bond interaction with the carbonyl
oxygen of Gly48 and a water-mediated interaction with the amide
of Gly48, similar to the interactions described for several peptide
substrate analogs."”® These interactions of the P2 group confirm
the design strategy of incorporating new polar interactions with
conserved backbone regions of the protease.

In an effort to understand the binding interactions of the
corresponding meso-1,3-dioxolane ligand in the S2-subsite, we
have created an active model of inhibitor 2 (Fig. 3) based upon the
X-ray structure of 3-bound HIV-1 protease. The model suggests
that both dioxolane oxygens may interact with both active site
residues Asp29 and Asp30, as well as Gly48 through the structural
water molecule. In comparison, it appears that the dioxane
oxygens of inhibitor 3 are not within hydrogen bonding distance
of the backbone NH of Asp30. This may explain the marked
difference in antiviral activity of inhibitor 2 compared with inhib-
itor 3.

Fig. 2 Stereoview of the X-ray structure of inhibitor 3 bound to the active site of wild-type HIV-1 protease.
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Fig. 3 A stereoview of an active model of inhibitor 2 (green) with the X-ray structure of inhibitor 3 (magenta)-bound HIV-1 protease.

Conclusions

In summary, a series of novel HIV-1 protease inhibitors were
designed and synthesized by incorporating bicyclic meso-1,3-
dioxolane and 1,4-dioxane derivatives as the P2-ligands. A number
of inhibitors have shown very impressive enzyme inhibitory and
antiviral potency, similar to inhibitor 1 with a stereochemically
defined Cp-THF ligand. The design of meso-1,3-dioxolane and
1,4-dioxane P2-ligands as exemplified in inhibitors 2 and 3, respec-
tively, has remarkably simplified the stereochemical complexity as
well as chemical synthesis over the Cp-THF ligand in inhibitor
1. We have developed efficient synthetic routes to these ligands.
Inhibitor 2 has shown potent antiviral activity in both MT-
2 cells and PBMCs. Inhibitor 2 was profiled against a series
of multi-drug-resistant clinical isolates. While inhibitor 2 is less
potent than darunavir, it is significantly more potent than IDV
and comparable to APV and SQV in suppressing the replic-
ation of multi-drug-resistant isolates MDR,y and MDR,.
A protein—ligand X-ray structure of 3-bound HIV-1 protease
revealed extensive interactions of the inhibitor with the active
site of HIV-1 protease. Most notably, both oxygens of the meso-
P2-ligand are involved in hydrogen bonding interactions with the
protein backbone atoms. In particular, a water-mediated hydrogen
bond to the Gly48 carbonyl is very unique. An active model
of inhibitor 2 indicates similar ligand binding site interactions.
Our design principle of increasing ‘backbone binding’ appears
to maintain key interactions in the enzyme active site leading
to retained potency against multi-drug-resistant variants. Further
design and ligand optimization involving these interactions is in
progress.

Experimental

General. All moisture sensitive reactions were carried out
under a nitrogen or argon atmosphere. Anhydrous solvents were
obtained as follows: THF, diethyl ether, and benzene, distiiled
from sodium and benzophenone; dichloromethane, pyridine,
triethylamine, and diisopropylethylamine, distilled from CaH,.
All other solvents were HPLC grade. Column chromatography
was performed with Whatman 240-400 mesh silica gel under low
pressure (5-10 psi). TLC was carried out with E. Merck silica
gel 60 F,y plates. '"H and PC NMR spectra were recorded on
Varian Mercury 300 and Bruker Avance 400 and 500 spectrom-

eters. Optical rotations were measured using a Perkin-Elmer 341
polarimeter. IR spectra were recorded on a Mattason Genesis I1
FT-IR spectrometer.

4-(tert-Butyldiphenylsilyloxy)-4 H-cyclopentene (5)

To a suspension of sodium hydride (60% in mineral oil, 0.92 g,
23 mmol) in THF (10 mL), cooled to 0 °C, 1,6-heptadien-4-
ol 4 (1 mL, 7.7 mmol) was added dropwise over 10 min. The
resulting suspension was stirred at 0 °C for 30 min and then
tert-butyldiphenylchlorosilane (2 mL, 7.9 mmol) was added. The
reaction mixture was stirred at 23 °C for 4 h and then quenched
with a saturated solution of ammonium chloride. The solvent
was removed in vacuo and the aqueous phase was extracted with
CH,Cl,. The organic extracts were dried (Na,SO,), the solvent
removed and the residue purified by flash-chromatography (1 :
10, EtOAc-Hex) to afford 4-(rert-butyldiphenylsilyloxy)hepta-1,6-
diene (2.6 g, 96%) as a colorless oil: IR v, (NaCl; em™) 3066,
2951, 1421, 1103 and 696; &, (300 MHz, CDCl;) 7.70 (4 H, dd, J
1.6,7.6 Hz, ArH), 7.47-7.38 (6 H, m, ArH), 5.83-5.69 (2 H, m, 2 X
CH=CH,), 5.02-4.91 (4 H, m, 2 x CH=CH,), 3.87-3.80 (1 H, m,
CHOSI), 2.31-2.12 (4 H, m, 3-H,, 5-H,) and 1.08 [9 H, 5, C(CH;);;
6c (75 MHz, CDCl,) 135.9, 134.7, 134.3, 129.5, 127.5, 117.1, 72.4,
40.5,27.0and 19.4; m/=z (C1) 351 (M + H, 100); HRMS (M + H)"
caled for C,H;, 084, 351.2144; found, 351.2146.

To a solution of the above compound (2.0 g, 5.7 mmol) in dry
CH,CI, (20 mL), second generation Grubbs’ catalyst (48 mg) was
added and the resulting mixture was heated under reflux for 2 h.
Subsequently, the reaction mixture was cooled to 23 °C, the solvent
removed under reduced pressure and the residue purified by flash-
chromatography (1 : 10 EtOAc-Hex) to afford 5 (1.8 g, 98%) as
a colorless oil: IR v,,,, (NaCl; em™) 3067, 2853, 2736, 1428, 1109
and 702; &, (300 MHz, CDCl;) 7.67 (4 H, dd, J 1.8, 7.8, ArH),
7.45-7.34 (6 H, m, ArH), 5.61 (2 H, s, I-H, 2-H), 4.57-4.51 (1 H,
m, 4-H), 2.47-2.33 (4 H, m, 3-H,, 5-H,) and 1.05[9 H, s, C(CH;);];
8c (100 MHz, CDCl;) 135.7, 134.5,129.5, 128.3, 127.5, 73.5, 42.4,
26.9 and 19.1; m/z (CI) 323 (M + H, 100); HRMS (M + H)* caled
for C, H,,081, 323.1831; found, 323.1834.

(la,2¢,48)-4-(tert-Butyldiphenylsilyloxy)-1,2-cyclopentanediol (6)

A mixture of 5 (5.1 g, 15.8 mmol), osmium tetroxide (2.5 wt%
solution in fert-butanol, 4 mL), N-methylmorpholine-N-oxide
(2.6 g, 22.2 mmol), and pyridine (1.3 mL, 15.8 mmol) in a
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3:2: 1 mixture of tert-butanol, THF, and water (80 mL) was heated
under reflux for 4 h. The reaction mixture was cooled to 23 °C and
treated with a 20% aqueous solution of sodium bisulfite (10 mL).
The organic solvents were removed under reduced pressure and
the aqueous phase was extracted with EtOAc. The organic extracts
were washed with 1 N hydrochloric acid, water and brine, and dried
(Na,S0,). The solvent was removed in vacuo and the residue was
purified by flash-chromatography (1 : 1 EtOAc-Hex) to yield diol
6 (5.3 g, 94%) as a colorless oil: IR v,,, (NaCl; cm™) 3006, 2676,
1427, 1112 and 702; 6, (300 MHz, CDCl;) 7.62 (4 H, dd, J 1.8,
7.5, ArH), 7.45-7.33 (6 H, m, ArH), 4.84-4.42 (1 H, m, 4-H), 4.30-
429 (2 H, m, 1-H, 2-H), 2.22 (2 H, br. 5, 2 x OH), 1.99-1.80 (4 H,
m, 3-H,, 5-H,) and 1.04 [9 H, s, C(CH,),]; é¢ (100 MHz, CDCl;)
135.6,134.0, 129.6, 127.6,72.4,71.2,41.9, 26.8 and 19.0; m/z (ED)
356 (M, 100); HRMS (M)* caled for C, H,,O;Si, 356.1808; found,
356.1803.

(1p,28,40)-4-(tert-Butyldiphenylsilyloxy)-1,2~(methylenedioxy)-
cyclopentane (7) and (5aa,7§,8a0)-7-(tert-butyldiphenylsilyloxy)-
tetrahydrocyclopenta[f]-1,3,5-trioxepane (8)

A mixture of paraformaldehyde (0.77 g, 25.7 mmol) and con-
centrated hydrochloric acid (2 mL) in CHCI; (2 mL) was stirred
at 23 °C until a clear solution was formed (6 h) and then a
solution of 6 (0.2 g, 0.54 mmol) in CHCI; (2 mL) was added.
The resulting mixture was heated under reflux overnight and the
aqueous phase was extracted with CHCl,. The organic extracts
were dried (Na,SO,) and evaporated under reduced pressure to
yield 7 (0.18 g, 86%) after flash-chromatography (1 : 10, EtOAc-
Hex): IR v, (NaCl; em™) 2791, 1589, 1471, 1428, 822 and 699;
8y (300 MHz, CDCl,) 7.64 (4 H, d, J 6.3, ArH), 7.45-7.35 (6 H,
m, ArH), 4.78 (1 H, s), 4.60 (1 H, s), 451 2 H, d, J 54, 1-H,
2-H), 4.47-4.39 (1 H, m, 4-H), 1.99 2 H, dd, J 6.0, 13.8, 3-H’,
5-H"), 1.77-1.68 (2 H, m, 3-H"”, 5-H”) and 1.04 [9 H, s, C(CH,)];
8¢ (75 MHz, CDCl,) 135.6, 134.0, 129.7, 127.6, 94.0, 78.8, 72.7,
41.0,26.9 and 19.1; m/z (EI) 368 (M, 100). After further elution of
the column 8 (0.5 g, 5%) was obtained: IR v,,, (NaCl; cm™) 2827,
2726, 1427, 1113 and 703; 6, (300 MHz, CDCl;) 7.66-7.62 (4 H,
m, ArH), 7.46-7.35 (6 H, m, ArH), 5.17 (2 H,d, J 7.8, 2-H’, 4-H’),
470 2 H, d, J 7.8, 2-H", 4-H"), 4.52-4.43 (3 H, m, 5a-H, 7-H,
8a-H), 2.15-2.08 (2 H, m, 6-H’, 8-H"), 1.93-1.85(2 H, m, 6-H", 8-
H”yand 1.06 [9 H, s, C(CH,);]; 8¢ (75 MHz, CDCl,) 135.6, 133.8,
129.7, 127.7, 96.1, 82.5, 71.7, 41.1, 26.9 and 19.1; m/z (CI) 397
(M - H, 100); HRMS (M — H)* caled for C;3HyO,Si, 397.1832;
found, 397.1832.

(4a,1p,2p)-4-Hydroxy-1,2-(methylenedioxy)cyclopentane (9)

A mixture of 7 (0.47 g, 1.3 mmol) and #-Bu,N*F~ (1.0 M solution
in THF, 1.4 mL, 1.4 mmol) in dry THF (10 mL) was stirred at
23 °C for 16 h. To the reaction mixture was added a saturated
solution of NaHCO;, the solvent was removed in vacuo and the
aqueous phase extracted with Et,O. The organic extracts were
dried (Na,SO,) and evaporated and the residue was purified by
flash-chromatography (1 : 1 EtOAc-Hex) to yield 9 (0.16 g, 96%)
as a colorless oil: IR v,,,, (NaCl; cm™') 3044, 2792, 2602, 1065, 821
and 602; &, (300 MHz, CDCl;) 4.89 (1 H, s, OCHHO), 4.59 (1
H,s, OCHHO),4.50 (2 H,d, J 6.0, 1-H, 2-H), 4.41-4.32 (1 H, m,
4-H), 3.13 (1 H, br. s, OH), 2.09 (2 H, dd, J 5.6, 14.0, 3-H’, 5-H’)

and 1.61-1.51 (2 H, m, 3-H"”, 5-H"); 6. (75 MHz, CDCl;) 94.1,
78.9, 70.8 and 40.6; m/z (CI) 129 (M — H, 100); HRMS (M — H)*
caled for C,H,0,, 129.0552; found, 129.0556.

(5a0,78,8aa)-7-Hydroxytetrahydrocyclopentalf]-1,3,5-trioxepane
10)

The title compound was obtained as described for 9 in 83%
yield. Flash-chromatography was performed using EtOAc: IR
Vimax (NaCl; cm™) 3036, 2649, 1424, 1118 and 930; 8, (300 MHz,
CDCly) 5.15(2H,d, J 7.2,2-H",4-H'),4.67(2 H,d, J 7.2, 2-H”,
4-H"), 4.47-4.40 (3 H, m, 5a-H, 7-H, 8a-H), 2.07-2.02 (4 H, m,
6-H,, 8-H,) and 1.86 (1 H, br. s, OH); ¢ (75 MHz, CDCl;) 96.1,
82.3, 70.0 and 40.8; m/z (EI) 160 (M, 100); HRMS (M)* calcd for
C,H,,0,,160.0736; found, 160.0738.

(1p,28,4p)-4-Hydroxy-1,2-(methylenedioxy)cyclopentane (11)

To a mixture of 9 (100 mg, 0.77 mmol), p-nitrobenzoic acid
(250 mg, 1.5 mmol), and triphenylphosphine (450 mg, 1.5 mmol),
was added diisopropylazodicarboxylate (300 pL, 1.5 mmol)
dropwise and the resulting mixture was stirred at 23 °C. After
16 h, the solvent was removed under reduced pressure and the
residue purified by flash-chromatography (1 : 2 EtOAc-Hex). The
resulting ester was dissolved ina 3: 2 : | mixture of THF, methanol,
and water (10 mL) and LiOH-H,O (162 mg, 3.8 mmol) was added.
The yellow mixture was stirred at 23 °C for 5 h and then the solvent
was removed in vacuo. The residue was diluted with water and the
aqueous phase extracted with Et,0. The organic extracts were
dried (Na,SO,) and the solvent was evaporated. Purification of
the residue by flash-chromatography (1 : | EtOAc-Hex) afforded
11 (57 mg, 57%) as a colorless oil: IR v, (NaCl; em™) 3052,
2804, 2577, 1164, 1096, 1011 and 924; 8, (300 MHz, CDCl;) 5.17
(1 H, s, OCHHO), 4.68 (1 H, s, OCHHO), 4.61 (2 H, d, J 4.8,
1-H, 2-H), 4.27 (1 H, t, J 4.7, 4-H), 2.33 (1 H, br. 5, OH), 2.21 (2
H,d, J 153, 3-H’, 5-H’) and 1.85-1.77 (2 H, m, 3-H”, 5-H"); 6
(75 MHz, CDCl,) 94.7, 81.5, 74.0 and 41.0; m/z (ED) 129 (M -
H, 100); HRMS (M — H)* caled for C¢H,O;, 129.0611; found,
129.1012.

(5a0,70,8a0)-7-Hydroxytetrahydrocyclopentalf]-1,3,5-trioxepane
(12)

The title compound 12 was obtained as described for 11 in 69%
yield. Flash-chromatography was performed using EtOAc: IR v,
(NaCl; cm™) 3044, 2832, 2633, 1481, 1116 and 928; 6y (300 MHz,
CDClL) 5.18(2H,d, J 7.2,2-H",4-H"), 4.67(2H,d, J 7.2, 2-H",
4-H”), 4.31-4.25 (2 H, m, 5a-H, 8a-H), 4.18-4.13 (1 H, m, 7-H),
2.40 (1 H, br. s, OH), 2.17-2.08 (2 H, m, 6-H’, 8-H’) and 2.03-1.96
(2 H, m, 6-H”, 8-H"); 6. (75 MHz, CDCl,) 95.3, 82.8, 71.0 and
41.1; m/z (CI) 161 (M + H, 100); HRMS (M + H)* calcd for
C;H,,0,, 161.0814; found, 161.0814.

(H)-(1B,28,40)-2-(2'-Hydroxyethoxy)-4-(tert-
butyldiphenylsilyloxy)cyclopentane-1-ol (13)

A mixture of 6 (1.4 g, 3.9 mmol) and dibutyltin oxide (0.94 g,
3.9 mmol) in dry toluene (130 mL) was heated under reflux with
azeotropic removal of water. After 5 h, the reaction mixture was
concentrated to half the initial volume and chloroethanol (2.5 mL,
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39 mmol) and #-Bu,N*I" (1.4 g, 3.9 mmol) were added. The
resulting mixture was heated under reflux for 19 h. Afterwards
the solvent was evaporated and the residue was purified by flash-
chromatography (10: 1 EtOAc-MeOH) to afford 13 (1.3 g, 86%) as
a colorless oil: IR v, (NaCl; cm™) 3102, 2604, 1589, 1471, 1062,
823 and 612; 6, (300 MHz, CDCL;) 7.62 (4 H, d, J 8.7, ArH),
7.44-7.33 (6 H, m, ArH), 4.45-4.40 (1 H, m, 4-H), 4.33-4.28 (!
H, m, 2-H), 4.04-3.98 (1 H, m, 1-H), 3.76-3.71 (2 H, m, CH,0),
3.66--3.55 (2H, m, CH,0), 3.01 (2 H, br. s, 2 x OH), 1.97-1.80 (4
H, m, 3-H,, 5-H,) and 1.04 (s, 9H); 8. (75 MHz, CDCl;) 135.6,
134.1,129.6, 127.6,80.7,71.1,71.0, 70.8, 61.7,42.3, 39.0, 26.9 and
14.2; m/z (ESI) 423 (M + Na, 100).

(1B,2,4a)-4-(tert-butyldiphenylsilyloxy)-1,2-(ethylenedioxy)-
cyclopentane (14)

A mixture of 13 (1.2 g, 3.0 mmol), p-toluenesulfonyl chloride
(1.3 mg, 6.6 mmol), pyridine (1.2 mL, 15 mmol) and a catalytic
amount of N,N-dimethylaminopyridine in CH,Cl, (40 mL) was
stirred at 23 °C for 24 h. The reaction mixture was treated with
I N HCI and the aqueous phase was extracted with CH,Cl,. The
organic extracts were dried (Na,SO,) and the solvent removed.
Purification of the residue by flash-chromatography (1 : 1 EtOAc—
Hex) afforded the tosylated alcohol (990 mg, 60%) as a colorless
oil: IR v, (NaCl; cm™) 3104, 2992, 2691, 1598, 1359, 1177, 923
and 705; &y (300 MHz, CDCl,) 7.76 (2 H, d, J 8.4, ArH), 7.61
(4 H, d, J 7.8, ArH), 7.42-7.26 (8 H, m, ArH), 4.53-4.25 (1 H,
m, CHO), 4.15-4.09 (3 H, m, CHO, CH,0), 3.96-3.91 (1 H, m,
CHO), 3.68-3.62 (2 H, m, CH,0), 2.41 (3 H, s, CH,), 1.89-1.75
(4 H, m, 3-H,, 5-H,) and 1.03 [9 H, s, C(CH,),]; 6. (100 MHz,
CDCl;) 135.6, 134.0, 132.8, 129.8, 129.6, 127.9, 127.8, 127.6, 80.7,
71.3, 71.0, 69.0, 68.6, 67.0, 42.1, 38.7, 26.8, 21.6 and 18.9. To a
solution of the above product (150 mg, 0.27 mmol) in dry THF
(12 mL), NaH (60% in mineral oil, 22 mg, 0.54 mmol) was added
and the resulting suspension was heated under reflux for 30 min.
After cooling to 23 °C, the reaction mixture was quenched with
a saturated solution of NH,Cl, the solvent was removed and the
aqueous phase was extracted with EtOAc. The organic extracts
were dried (Na,SO,) and the solvent was removed in vacuo. The
residue was purified by flash-chromatography (1 : 3 EtOAc-Hex)
to afford 14 (82 mg, 80%) as a colorless oil: IR v, (NaCl; cm™)
2803, 1427, 1136, 957 and 703; &4 (300 MHz, CDCIl;) 7.65 (4 H,
d, J 7.8, ArH), 7.46-7.36 (6 H, m, ArH), 4.55-4.48 (1 H, m, 4-H),
4,18 (2H,t,J 5.1, 1-H, 2-H), 3.70-3.62 (2 H, m, CH,0), 3.53-3.46
(2 H, m, CH,0), 2.16-2.07 (2 H, m, 3-H’, 5-H’), 1.82-1.74 (2 H,
m, 3-H”, 5-H”) and 1.06 [9 H, s, C(CH;);]; éc (75 MHz, CDCl;)
135.6, 134.1, 129.5, 127.6, 75.2, 71.1, 62.2, 37.5, 27.0 and 19.1;
m/z (CI): 383.25 (M + H, 100).

(18,2p,40)-4-Hydroxy-1,2-(ethylendioxy)cyclopentane (15)

The above compound was deprotected as described for 9 to afford
15 in 90% yield as a colorless oil: IR v,,,, (NaCl; cm™) 3013, 2797,
2550, 1129 and 664; 8, (300 MHz, CDCl;) 4.58-4.51 (1 H, m,
4-H), 417 2 H, t, J 4.8, 1-H, 2-H), 3.78-3.71 (2.H, m, CH,0),
3.58-3.51 (2 H, m, CH,0), 2.34-2.25 (2 H, m, 3-H’, 5-H’) and
1.72-1.66 (3 H, m, 3-H”, 5-H"”, OH); é. (75 MHz, CDCl;) 75.1,
69.6, 62.3 and 37.2; m/z (EI) 144 (M, 100).

(1B,2B,4p)-4-Hydroxy-1,2-(ethylendioxy)cyclopentane (16)

Starting from 15 the title compound 16 was obtained as described
for 11 in 83% yield as a colorless oil. Flash-chromatography was
performed using EtOAc: IR v,,, (NaCl; cm™) 3014, 2571, 1135,
1081 and 875; 6, (300 MHz, CDCl;)4.22-4.16 (1 H, m, 4-H), 4.01
(2H,t,J42, 1-H, 2-H), 3.88-3.80 (2 H, m, CH,0), 3.63-3.55 (2
H, m, CH,0), 2.57 (1 H, br. s, OH) and 2.10-1.93 (4 H, m, 3-H,,
5-H,); 8¢ (75 MHz, CDCly) 76.0, 71.4, 62.3 and 37.5; m/z (EI)
144 (M, 100).

(1B,2p,4p)-1,2-(Methylenedioxy)cyclopent-4-yl
succinimidylcarbonate (17)

To a solution of 9 (67 mg, 0.52 mmol) in dry acetonitrile
(2 mL), N,N’-disuccinimidyl carbonate (198 mg, 0.77 mmol) and
triethylamine (145 uL, 1.0 mmol) were added and the resulting
mixture was stirred at 23 °C. After 8 h the solvent was removed,
the residue was taken up in a saturated solution of NaHCO,
and the aqueous phase was extracted with EtOAc. The organic
extracts were dried (Na,SQ,) and the solvent was removed in
vacuo. Purification of the residue by flash-chromatography (10 :
1 CHCI1,-MeOH) yielded 17 (58 mg, 55%): IR v, (NaCl; cm™)
2759, 1787, 1740, 1210, 1090; &, (300 MHz, CDCL) 5.27 (1 H,
t, J 7.2, 4-H), 497 (1 H, s, OCHHO), 4.69 (1 H, s, OCHHO),
4.61-4.59 (2 H, m, 1-H, 2-H), 2.82 (4 H, s, CH,CH,), 2.38 (2 H,
dd, J 6.2, 14.2, 3-H’, 5-H’) and 1.99-1.89 (2 H, m, 3-H”, 5-H");
éc (100 MHz, CDClL,) 168.6, 150.8,94.5, 81.2, 78.1,37.3 and 25.4;
m/z(CI)270 (M - H, 100); HRMS (M — H)* caled for C,,H,;NO,,
270.0614; found, 270.0607.

(5aa,7p,8a0)-7-(4-nitrophenoxycarbonyloxy)-
tetrahydrocyclopentalf]-1,3,5-trioxepane (18)

To a solution of 10 (15 mg, 0.094 mmol) and N-
methylmorpholine (31 pL, 0.28 mmol) in dry THF (3 mL), p-
nitrophenylchloroformate (57 mg, 0.28 mmol) was added and the
resulting mixture was stirred at 23 °C. After 1 h, water was added,
the solvent was removed under reduced pressure and the aqueous
phase was extracted with CHCI;. The organic extracts were dried
(Na,S0,) and the solvent evaporated. The residue was purified by
flash-chromatography (1 : 4 EtOAc-CHC,) to afford 18 (31 mg,
95%) as a pale yellow viscous oil: IR v,,,, (NaCl; cm™) 2831, 2598,
1766, 1529, 1350, 1116 and 859; 6 (300 MHz, CDCl,) 8.27 2 H,
d,J 8.7, ArH), 7.38 (2 H, d, J 8.7, ArH), 5.34-5.31 (1 H, m, 7-H),
519 (2 H,d, J6.9,2-H, 4-H), 4.77 (2 H, d, J 6.9, 2-H”, 4-H"),
4.51-4.47 (2 H, m, 5a-H, 8a-H) and 2.38-2.26 (4 H, m, 6-H., 8-
H.,); 8¢ (75 MHz, CDCl;) 155.3, 126.2, 125.3, 121.7, 115.6, 95.5,
81.2, 78.5 and 37.6; m/z (EI) 325 (M, 100).

(18,28,4p)-4-(4-Nitrophenoxycarbonyloxy)-1,2-
(methylenedioxy)cyclopentane (19)

The title compound 19 was obtained from 11 as described for
18 in 81% yield. Flash-chromatography was performed using 1 :
1 EtOAc-Hex: IR v, (NaCl; em™) 2739, 1764, 1527, 1348 and
1204; 8, (300 MHz, CDCL,) 8.27 (2 H, d, J 5.1, ArH), 7.38 (2 H,
d, J 5.1, ArH), 5.20-5.16 (2 H, m, OCH,0), 4.83-4.81 (1 H, m,
4-H), 468 2 H,d, J 5.7, I-H, 2-H), 2.38 (2 H, d, J 14.7, 3-H’,
5-H’) and 2.11-2.02 (2 H, m, 3-H”, 5-H"); 6. (100 MHz, CDCl;)
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155.4, 126.1, 125.2, 121.8, 115.5, 95.0, 80.7, 80.4 and 38.4; m/z
(CI) 296 (M + H, 100); HRMS (M + H)" caled for C;H,NO;,
296.0770; found, 296.0769.

(5a0,74¢,8aa)-7-(4-Nitrophenoxycarbonyloxy)-
tetrahydrocyclopentalf]-1,3,5-trioxepane (20)

The title compound was obtained from 12 as described for 18
in 94% yield. Flash-chromatography was performed using 1 : 6
EtOAc—CHCL: IR v, NaCl; cm™) 2587, 1765, 1594, 1528, 1349
and 858; 84 (300 MHz, CDCL) 8.25 (2 H, d, J 8.0, ArH), 7.39 (2
H, d, J 8.0, ArH), 5.20 (2 H, d, J 7.5, 2-H’, 4-H"), 5.10-5.02 (1
H,m, 7-H), 4752 H, d, J 7.5, 2-H", 4-H"), 4.29-4.24 (2 H, m,
5a-H, 8a-H), 2.51-2.41 (2 H, m, 6-H’, 8-H') and 2.25-2.17 (2 H,
m, 6-H”, 8-H”); 8¢ (75 MHz, CDCl;) 155.2, 126.2, 125.2, 121.7,
115.6, 94.6, 80.8, 76.6 and 36.9; n/z (CI) 324 (M - H, 100).

(1B,2p,4a)-4-(4-Nitrophenoxycarbonyloxy)-1,2-
(ethylenedioxy)cyclopentane (21)

The title compound was obtained from 15 as described for 18
in 81% yield. Flash-chromatography was performed using 1 : 4
FtOAc-CHCI;: IR v, (NaCl; cm™) 2655, 1757, 1592, 1503, 1337,
852 and 754; 8y (300 MHz, CDC1;) 8.29 (2 H, d, J 7.3, ArH), 7.36
(2H, d, J 7.3, ArH), 5.22-5.18 (1 H, m, 4-H), 3.86-384 2 H, m,
1-H, 2-H), 3.78-3.63 (4 H, m, CH,0), 2.38-2.24 (4 H, m, 3-H,, 5-
H.); 8¢ (100 MHz, CDCL,) 161.8, 126.2, 125.3,121.7, 115.6, 78.1,
74.3,62.1 and 33.9; m/z (CI) 310 (M + H, 100).

(1B,2,4p)-4-(4-Nitrophenoxycarbonyloxy)-1,2-
(ethylenedioxy)cyclopentane (22)

The title compound was obtained from 16 as described for 18
in 95% yield. Flash-chromatography was performed using 1 : 4
EtOAc-CHCL,: IR v, (NaCl; cm™") 2588, 1725, 1594, 1222, 1109
and 773; 8y (400 MHz, CDCl,)8.27 (2H,d, J 7.0, ArH), 7.38 (2
H, d, J 7.0, ArH), 5.14-5.10 (1 H, m, 4-H), 3.99 (2 H, t, J 4.6,
1-H, 2-H), 3.91-3.86 (2 H, m, CH,0), 3.64-3.59 (2 H, m, CH,0)
and 2.31-2.18 (4 H, m, 3-H,, 5-H,); 6. (100 MHz, CDCl;) 162.5,
126.1, 125.2, 121.7, 115.5, 81.4, 74.3, 62.3 and 32.5; m/z (CI) 310
(M + H, 100).

(1'S,2' R)-{ 1"-Benzyl-2"-hydroxy-3'-[isobutyl(4-
methoxybenzenesulfonyl)amino]propyl} carbamic acid
(1p,2p,4p)-1,2-(methylenedioxy)cyclopent-4-yl ester (2)

A solution of 24 (25 mg, 0.05 mmol) in 30% trifluoroacetic acid
in CH,Cl, (4 mL) was stirred at 23 °C for 40 min and then the
solvent was removed under reduced pressure. The residue was
dissolved in THF (3 mL), a solution of 19 (18 mg, 0.059 mmol)
in THF (1 mL) and diisopropylethylamine (100 L, 0.6 mmol)
were added. After 24 h the organic phase was diluted with CHCl;,
washed with water, dried (Na,SO,), and evaporated. The residue
was purified by flash-chromatography eluting with a 1 : | mixture
of EtOAc and hexanes to afford 2 (20 mg, 74%) as a white solid:
o], +4.5 (c 1.2 in CH,CL,), mp 68 °C (from EtOAc-Hex); IR
Vi (NaCl; cm™) 3129, 2801, 2660, 1711, 1597, 1497, 1155 and
761; 8, (300 MHz, CDCl,) 7.71 (2 H, d, J 8.8, ArH), 7.32-7.19
(5H, m, ArH), 6.98 (2 H, d, J 8.8, ArH), 5.01 (1 H, s, OCHHO),
4.92 (1 H, br. s, NH), 4.80 (2 H, m, 4-H, OCHHO), 4.57 (2 H,

d, J 5.4, 1-H, 2-H), 3.87 (3 H, s, OCH;), 3.79 (2 H, m, CHN,
CHOH), 3.10-2.76 (6 H, m, CH,N, CH,Ph), 2.11-1.80 [5 H, m,
3-H,, 5-H,, CH(CH,).], 0.90 3 H, d, J 6.6, CHCH ) and 0.86 (3
H, d, J 6.6, CHCH,); 6 (15 MHz, CDCl,) 162.9, 155.3, 137.5,
129.9,129.6,129.3, 128.5,126.4, 114.3,94.7, 80.5, 74.2, 72.3, 58.8,
55.6, 54.9, 53.8, 38.5, 35.4, 27.3, 20.2 and 19.9; m/z (ES) 563
(M + H, 100); HRMS (M + H)* calcd For CxH3N,OsS, 563.2427;
found, 563.2406.

(1'S,2'R)-{1’-Benzyl-2"-hydroxy-3'-[isobutyl(4-
methoxybenzenesulfonyl)amino]propyl} carbamic acid
(1B,28,40)-1,2-(methylenedioxy)cyclopent-4-yl ester (26)

A solution of 24 (40 mg, 0.079 mmol) in 30% trifluoroacetic acid
in CH.Cl, (6 mL) was stirred at 23 °C for 40 min and then the
solvent was removed under reduced pressure. The residue was
dissolved in CH,Cl, (4 mL), a solution of 17 (23 mg, 0.1 mmol)
in CH,Cl, (2 mL) and diisopropylethylamine (140 pL, 0.8 mmol)
were added. After 2 h the organic phase was washed with water,
dried (Na,SO,) and evaporated. The residue was purified by flash-
chromatography (1 : 1 EtOAc-Hex) to afford 26 (34 mg, 76%) as
a white foam: [@], +3.6 (¢ 1.3 in CH,CL); IR vy, (NaCl; cm™)
3216, 2801, 2670, 1712, 1597, 1497, 1154 and 755; 6y (300 MHz,
CDClL) 7.70 2 H, d, J 8.7, ArH), 7.32-7.21 (5 H, m, ArH), 7.00
(2 H, d, J 8.7, ArH), 5.06 (1 H, t, J 7.0, 4-H), 493 (1 H, s,
OCHHO), 4.76 (1 H, d, J 8.4, NH), 4.71 (1 H, s, OCHHO), 4.52
(2 H, m, 1-H, 2-H), 3.87 (3 H, s, OCH,), 3.84 (2 H, m, CHN,
CHOH), 3.11 (1 H, dd, J 8.0, 14.8, CHHN), 3.04-291 (4 H, m,
CHHN, CH,N, CHHPh), 2.78 (1 H, dd, J 6.7, 13.1, CHHPh),
2.17-2.10 2 H, m, 3-H’, 5-H’), 1.86-1.58 [3 H, m, 3-H"”, 5-H",
CH(CH;),], 091 3 H, d, J 6.6, CHCH,)and 0.87 3 H, d, J 6.9,
CHCH,); éc (75 MHz, CDCl,) 162.9, 155.8, 137.6, 129.9, 129.7,
129.4, 128.4, 126.5, 114.3, 94.3, 78.5, 74.5, 72.6, 58.8, 55.6, 54.9,
53.7,37.8, 35.3,27.3,20.2 and 19.9; m/z (ES) 585 (M + Na, 100);
HRMS (M + Na)* caled for Cy;HiN,NaO,S, 585.2247; found,
585.2228.

(1S,2R)-{1"-Benzyl-2"-hydroxy-3'-[isobutyl(4-
methoxybenzenesulfonyl)amino|propyl} carbamic acid
(5aa,7p,8aa)-tetrahydrocyclopentalf]-1,3,5-trioxaepan-7-yl ester
27

The title compound was obtained from 24 and 18 as described for
2 in 43% yield. Flash-chromatography was performed with 1 : 4
EtOAc-CHCL;: [¢]®, +5.2 (¢ 1.7 in CH,CL,); IR V,, (NaCl; e ™)
3118, 2825, 2656, 1712, 1596, 1012 and 771; 8y (300 MHz, CDCl,)
7.70 2 H, d, J 9.0, ArH), 7.32-7.21 (5 H, m, ArH), 6.98 2 H, d,
J 9.0, ArH), 5.15(2 H, d,J 7.2, 2-H’, 4-H'), 5.05 (1 H, br. s, NH),
476 (1 H,d, J 8.4, 7-H),4.68 2 H, d, J 7.2, 2-H"”, 4-H"), 4.32—
4.23 (2 H, m, 5a-H, 8a-H), 3.87 (3 H, s, OCH,), 3.83-3.80 (2 H, m,
CHN,CHOH),3.10(1 H,dd, J 8.4,15.3, CHHN), 3.04-2.88 (4 H,
m, CHHN, CH,N, CHHPh), 2.78 (1 H, dd, J 6.9, 13.5, CHHPh),
2.09-1.94 (4 H, m, 6-H,, 8-H,), 1.86-1.77 [1 H, m, CH(CH,),],
091 (3H,d,J 6.9, CHCH;)and 0.87 3 H, d, J 6.3, CHCH,); 6
(75 MHz, CDCl;) 163.0, 155.7, 137.6, 129.8, 129.7, 129.4, 128.4,
126.5,114.3,95.4,81.5,73.6,72.7,58.8,55.7,54.9, 53.7,37.8, 35 .4,
27.3,20.2 and 19.9; m/z (ES) 615 (M + Na, 100); HRMS (M +
Na)* caled for C,yHyyN,NaQ,S, 615.2353; found, 615.2361.
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(1'S,2'R)-{1"-Benzyl-2"-hydroxy-3'-{isobutyl(4-
methoxybenzenesulfonyl)amino]propyl} carbamic acid
(5aa,70,8a0)-tetrahydrocyclopentaff]-1,3,5-trioxaepan-7-yl ester
(28)

The title compound was obtained from 24 and 20 as described for
2 in 42% yield. Flash-chromatography was performed with 1 : 1
EtOAc-Hex: [a]}, +7.3 (¢ 1.7 in CH,CL,); IR v,,, (NaCl; em™)
3117, 2801, 2707, 1711, 1596, 1260 and 1153; &; (300 MHz,
CDCl;) 7.70 (2 H, d, J 8.7, ArH), 7.31-7.21 (5 H, m, ArH), 6.97
(2H,d,/8.7,ArH),5.14(2H,d,J 6.9,2-H",4-H"), 491 (1 H,d,J
7.8, NH),4.83-4.78 (1 H,m, 7-H),4.68 (2 H, d, J 6.9, 2-H", 4-H"),
4.15-4.10 (2 H, m, Sa-H, 8a-H), 3.87 (3 H, s, OCHj;), 3.81-3.83
(2 H, m, CHN, CHOH), 3.12-2.85 (5 H, m, 2 x CH,N, CHHPh),
2.77(1 H,dd, J 6.9,13.5, CHHPh),2.34-2.21 (2H, m, 6-H’, 8-H"),
1.94-1.76 [3 H, m, 6-H"”, 8-H”, CH(CHj,),], 0.90 (3 H, d, J 6.6,
CHCH,;)and 0.86 (3 H, d, J 6.6, CHCH,); 6. (100 MHz, CDCl;)
162.9, 156.1, 137.5, 129.8, 129.5, 129.4, 128.4, 126.4, 114.3, 94.8,
81.0, 72.3, 71.3, 58.6, 55.6, 55.0, 53.6, 37.1, 35.5, 27.1, 20.1 and
19.8; m/z (ES) 615 (M + Na, 100); HRMS (M + Na)* caled for
CyHoN;NaO,S, 615.2353; found, 615.2349.

(1'S,2’R)-{1"-Benzyl-2"-hydroxy-3'-[isobutyl(4-
methoxybenzenesulfonyl)amino}propyl} carbamic acid
(1B,2p.,4p)-1,2-(ethylenedioxy)cyclopent-4-yl ester (3)

The title compound was obtained from 24 and 22 as described for
2 in 40% yield. Flash-chromatography was performed with 1 : |
EtOAc-Hex: [o]% +6.9 (¢ 0.7 in CH,CL); IR v, (NaCl; cm™)
3120, 2788, 2656, 2542, 1712, 1596, 1259, 1154 and 755; &y
(500 MHz, CDCly) 7.70 (2 H, d, J 9.0, ArH), 7.31-7.22 (5 H,
m, ArH), 6.97 (2 H, d, J 9.0, ArH), 4.90-4.86 (2 H, m, NH, 4-H),
3.87 (3 H, s, OCHj;), 3.85-3.79 (7 H, m, 2 x CH,O, 1-H, 2-H,
OH), 3.57-3.54 2 H, m, CHN, CHOH), 3.11 (1 H, dd, J 8.2, 14.7,
CHHN), 3.03-2.88 (4 H, m, CHHN, CH,N, CHHPh), 2.78 (1 H,
dd, J 6.7, 13.2, CHHPh), 2.17-2.08 (2 H, m, 3-H’, 5-H"), 1.98-
1.95 (2 H, m, 3-H”, 5-H"), 1.90 [1 H, dt, J 5.2, 15.0, CH(CH,),],
091 (3H,d,J6.5 CHCH;)and 0.86 (3 H, d, J 6.5, CHCH); 6
(75 MHz, CDCl;) 163.0, 156.2, 137.6, 129.8, 129.6, 129.5, 128.5,
126.5,114.3,74.5,73.2,72.5,71.8, 62.5, 62.3, 58.8, 55.6, 55.0, 53.8,
35.5,33.8, 33.5,27.3,20.2 and 19.9; m/z (ES) 599 (M + Na, 100);
HRMS (M + Na)* caled for C,yHyyN,NaOS, 599.2403; found,
599.2394,

(1I'S,2'R)-{1’-Benzy}-2"-hydroxy-3'-[isobutyl(4-
methoxybenzenesulfonyl)aminojpropyl} carbamic acid
(1B,2p,40)-1,2-(ethylenedioxy)cyclopent-4-yl ester (29)

The title compound was obtained from 24 and 21 as described for
2 in 40% yield. Flash-chromatography was performed with 1 : 1
EtOAc-Hex: [a]f, +8.2 (¢ 1.0 in CH,CL,); IR v, (NaCl; cm™)
3121,2706, 1711, 1596, 1260, 1154 and 757; 8, (500 MHz, CDCI;)
7.70 (2 H, d, J 8.7, ArH), 7.31-7.28 (2 H, m, ArH), 7.24-7.22 (3
H, m, ArH), 6.98 (2 H, d, J 8.7, ArH), 5.09 (1 H, br. s, NH), 4.74
(1 H, d, J 8.0, 4-H), 4.06-4.01 (2 H, m, 1-H, 2-H), 3.87 (3 H, s,
OCH,), 3.82-3.81 (2 H, m, CH,0), 3.75-3.71 (2 H, m, CH,0),
3.55-3.51 (2 H, m, CHN, CHOH), 3.10 (1 H, dd, J 15.0, 8.5,
CHHN), 3.03-2.86 88 (4 H, m, CHHN, CH,N, CHHPh), 2.78 (1
H,dd, J 13.5, 6.5, CHHPh), 2.32-2.23 (2 H, m, 3-H’, 5-H"), 1.81
(I H, q, J = 6.5, 3-H"), 1.79-1.68 (1 H, m, 5-H"), 1.62-1.53 [1

H, m, CH(CH,),], 091 (3 H,d, J 6.6, CHCH,) and 0.86 (3 H, d,
J 6.6, CHCH,); é: (75 MHz, CDCL) 163.1, 156.1, 137.6, 129.8,
129.6, 129.5, 128.5, 126.6, 114.4, 74.6, 73.2, 72.7, 62.2, 58.8, 55.7,
54.9,53.8,35.4,34.3,34.2,27.3,20.2 and 19.9; m/z (ES) 599 (M +
Na, 100); HRMS (M + H)* caled for C,,H, N, NaO;S, 599.2403;
found, 599.2421.

(I'S,2’R)-{1"-Benzyl-2"-hydroxy-3'-[isobutyl(4-
(hydroxymethyl)benzenesulfonyl)amino]propyl} carbamic acid
(18,2p,4p)-1,2-(methylenedioxy)cyclopent-4-yl ester (30)

To a solution of 25* (40 mg, 0.1 mmol) and diisopropylethylamine
(150 uL, 0.9 mmol) in THF (3 mL), a solution of 17 (30 mg,
0.11 mmol) was added and the resulting mixture was stirred at
23 °C. After 48 h, the organic phase was diluted with CHCI,,
washed with water, dried (Na,SO,) and evaporated. The residue
was purified by flash-chromatography (2 : 1 EtOAc-Hex) to afford
30(35mg, 63%) as an amorphoussolid: [a]yy, +7.8 (¢ 1.3in CHCL,);
IR v, (NaCl; em™) 3042, 2996, 2707, 1710, 1530, 1334, 1156 and
755; Oy (400 MHz, CDClL;) 7.77 (2 H, d, J 8.1, ArH), 7.52 (2 H,
d,J 8.1, ArH), 7.32-7.21 (5 H, m, ArH), 5.00 (1 H, s, NH), 4.92
(1 H, m, 4-H), 4.82-4.80 (4 H, m, OCH,0, CH,0H), 4.58-4.57
(2 H, m, I-H, 2-H), 3.81-3.79 (2 H, m, CHN, CHOH), 3.11-2.83
(6 H, m, 2 x CH,N, CH,Ph), 6H), 2.10-1.82 [S H, m, 3-H,, 5-H,,
CH(CH;),], 091 (3H,d,J 6.6, CHCH;)and 0.83 (3 H, d, J 6.6,
CHCH,); ¢ (100 MHz, CDCl,) 156.2, 146.2, 137.5, 137.1, 129.5,
128.5, 127.5, 127.1, 126.5, 94.6, 80.5, 75.8, 72.2, 64.0, 58.5, 55.1,
53.5,38.4,354,27.1, 20.0 and 19.8; m/z (ES) 585 (M + Na, 100);
HRMS (M +Na)* caled for CxHiN,NaQsS, 585.2247; found,
585.2246.

X-Ray crystallography. The HIV-1 protease construct with the
substitutions Q7K, L331I, L631, C67A, and C95A to optimize
protein stability,® was expressed and purified as described.?
Crystals were grown by the hanging drop vapor diffusion method
using a | : 15 molar ratio of protease at 2.0 mg mL™ and the
inhibitor dissolved in dimethylsulfoxide. The reservoir contained
0.1 M sodium acetate buffer (pH = 4.2) and 1.5 M NaCl. Crystals
were transferred into a cryoprotectant solution containing the
reservoir solution and 20-30% (v/v) glycerol, mounted on a nylon
loop and flash-frozen in liquid nitrogen. X-ray diffraction data
were collected on the SER-CAT beamline of the Advanced Photon
Source, Argonne National Laboratory. Diffraction data were pro-
cessed using HKL2000% resulting in a Ry value of 7.0% (41.8%)
for 90 315 unique reflections between 50 and 1.07 A resolution with
a completeness of 88.1% (51.3%), where the values in parentheses
are for the final highest resolution shell. Data were reduced in space
group P2,2,2 with unit cell dimensions of « = 58.00 A, b =86.34 A
and ¢ = 45.83 A with one dimer in the asymmetric unit. The
structure was solved by molecular replacement using the CPP4i
suite of programs,” with the structure of the D30N mutant
of HIV protease in complex with GRL-98065 (2QCI)* as the
starting model. The structure was refined using SHELX97% and
refitted manually using the molecular graphics programs O* and
COOT.” Alternate conformations were modeled for the protease
residues when obvious in the electron density maps. Anisotropic
atomic displacement parameters (B-factors) were refined for all
atoms including solvent molecules. Hydrogen atoms were added
at the final stages of the refinement. The identity of ions and
other solvent molecules from the crystallization conditions was
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deduced from the shape and peak height of the 2F ~F, and F-F.
electron density, the hydrogen bond interactions and interatomic
distances. The solvent structure was refined with one sodium ion,
three chloride ions, and 203 water molecules including partial
occupancy sites. The final Ry, was 15.2% and RBy.. was 17.7%
for all data between 10 and 1.07 A resolution. The rmsd values
from ideal bonds and angle distances were 0.015 A and 0.034 A,
respectively. The average B-factor was 13.1 and 18.2 A? for
protease main chain and side chain atoms, respectively, 12,5 A for
inhibitor atoms and 24.0 A? for solvent atoms. The X-ray crystal
structure of the inhibitor 3 complex with the HIV-1 protease has
been deposited in the Protein Databank (PDB)® with an access
code of 3DKI.
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We report the design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors.
The inhibitors incorporate stereochemically defined flexible cyclic ethers/polyethers as high affinity P2-
ligands. Inhibitors containing small ring 1,3-dioxacycloalkanes have shown potent enzyme inhibitory and
antiviral activity. Inhibitors 3d and 3h are the most active inhibitors. Inhibitor 3d maintains excellent potency
against a variety of multi-Pl-resistant clinical strains. Our structure—activity studies indicate that the ring
size, stereochemistry, and position of oxygens are important for the observed activity. Optically active synthesis
of 1,3-dioxepan-5-ol along with the syntheses of various cyclic ether and polyether ligands have been
described. A protein—ligand X-ray crystal structure of 3d-bound HIV-1 protease was determined. The structure
revealed that the P2-ligand makes extensive interactions including hydrogen bonding with the protease
backbone in the S2-site. In addition, the P2-ligand in 3d forms a unique water-mediated interaction with the

NH of Gly-48.

Introduction

The introduction of protease inhibitors (PIs) into highly active
antiretroviral therapy (HAART), a combination therapy based
on coadministration of PIs with reverse-transcriptase inhibitors,
marked the beginning of a new era in HIV/AIDS chemotherapy.
HAART treatment regimens have led to a significant decline
in the number of deaths due to HIV infection in the developed
world,! Unfortunately, there are a number of factors that severely
limit current HAART treatment regimens. High frequency of
dosing, heavy pill burden, and issues of tolerability and toxicity
can lead to poor adherence to treatment.” The need for more
potent, less toxic drug regimens is quite apparent.

It is the rapid emergence of drug resistance, however, that is
proving to be the most formidable problem. Mutations causing
drug resistance are thought to occur spontaneously, through the
recombination of mixed viral populations, and also due to drug
pressure, particularly when administered at substandard doses.*®
A growing number of patients are developing multidrug-resistant
HIV-1 variants.”® There is ample evidence that these viral strains
can be transmitted. Thus, the development of antiretroviral
agents able to maintain potency against resistant HIV strains
has become an urgent priority.

Darunavir (TMC-114, 1, Figure 1) is a new nonpeptidic P1
recently approved by the FDA for the treatment of antiretroviral
therapy-experienced patients.” Inhibitor 1, and its related
analogue 2, are exceedingly active against both wild-type and
multidrug resistant HIV strains. Both PIs demonstrated potent

 The PDB accession code for 3d-bound HIV-1 protease X-ray structure
is 3DIK.
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Figure 1. Structure of inhibitors 1, 2, and 3c.d.

in vitro activity against viral isolates resistant to currently
licensed PIs.' ' Our structure-based design strategies for these
Pls are based on the presumption that maximizing active site
interactions with the inhibitor, particularly hydrogen bonding
with the protein backbone, would give rise to potent inhibitors
retaining activity against mutant strains."*'* Indeed, side chain
amino acid mutations cannot easily disrupt inhibitor—backbone
interactions because the active site backbone conformation of
mutant proteases is only minimally distorted compared to the
wild-type HIV-1 protease.'>™'7 In this context, the fused bis-
tetrahydrofuran (bis-THF) urethane of compounds 1 and 2 was
demonstrated to be a privileged P2-ligand, being able to engage
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Table 1. Enzyme Inhibitory and Antiviral Activity of Inhibitors 3a—m
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in a number of hydrogen bonding interactions with the backbone
atoms of amino acids at the protease S2-site.

We are continuing our efforts toward the development of
novel Pls characterized by a high activity against both wild-
type HIV-1 and resistant strains. We further speculated that an
inhibitor interacting strongly with the protein backbone, while
being able to accommodate amino acid side chain variations
by means of repacking with a flexible ring, would maintain
significant affinity against both wild-type and mutant enzymes.
With this goal in mind, we designed a series of Pls based on
the (R)-(hydroxyethylamino)sulfonamide isostere and bearing
flexible cyclic ethers and polyethers as P2-ligands (inhibitors
3a—m, Table 1). Starting from compound 3e, incorporating a
(1R)-3,5-dioxacyclooctan-1-yl urethane, which can be consid-
ered as the flexible counterpart of the bis-THF moiety, we
designed a series of structural variants of this inhibitor. These
inhibitors contain polyether-based P2-ligands ranging from 6-
to 13-membered rings coupled to a p-methoxyphenylsulfona-
mide as the P2’-ligand. Herein we report the structure-based
design, synthesis, and preliminary biological evaluation of
inhibitors 3a—m. Among these inhibitors, 3d (Figure 1) is the
most potent, with an impressive enzyme inhibitory and antiviral
activity (Ki = 26 pM, ICsy = 4.9 nM). Furthermore, a
protein—ligand X-ray structure of 3d-bound HIV-1 protease has
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revealed important molecular insight regarding ligand-binding
site interactions.

Chemistry. The syntheses of seven- and eight-membered 1,3-
dioxacycloalkanes 8a—d for the corresponding inhibitors 3a—d
are shown in Scheme 1. Protected diol 6a was prepared by a
two-step procedure starting from (S)-hydroxyglutaric acid 4,
obtained by following a known protocol.'® The hydroxyl group
of 4 was protected as a ferr-butyldiphenylsilylether 5 in
quantitative yield. LiBH4 reduction of both ester groups afforded
6a in good yield,"

Compounds 6a and 6b*” were converted to cyclic derivatives
by exposure to paraformaldehyde and BF;+OEt?! to afford
cyclic ethers 7a and 7b in 51% and 82% yield, respectively.
Deprotection of compounds 7a to 8a was carried out by using
n-BuyNTF~ in THF. Benzylether of 7b was removed by a
catalytic hydrogenation over 10% Pd—C to furnish 8b. Mit-
sunobu inversion of the secondary hydroxyl groups of 8a,b was
accomplished by using p-nitrobenzoic acid, triphenylphosphine,
and diisopropylazodicarboxylate in benzene at 23 °C. Saponi-
fication of the resulting esters provided 8c and 8d.

For the synthesis of compounds 8e and 8f, which represent
the monoxygenated analogues of 8d, a synthetic strategy based
on a ring-closing metathesis reaction as the key step was planned
(Schemes 2 and 3). Accordingly, secondary alcohol 9°* (Scheme



