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TABLE 4. Sensitivities of infectious molecular HIV clones carrying various amino acid substitutions to GRL-02031°
Fold change in EC, Fold change in ECs, of
Recombinant HIV-1 clone Egﬁ’l_%%%f f Foil;‘i Ehcange comparedgwith thast0 other P%s reportgg
50 of other PIs previously (reference)

pNLA-3 (wild-type) 0.023 = 0.008 1.0
L10F 0.037 * 0.001 1.6 14 (APV) 1.5 (IDV) (42)
L33F 0.028 + 0.005 12 1.0 (RTV) 1.4 (APV) (31)
M461 0.028 + 0.009 1.2 1.2 (RTV) 1.0 (APV) (40)
147V 0.037 + 0,006 1.6 1.2 (APV) 2.2 (APV) (31)
QS8E 0.033 £ 0.007 14 1.0 (APV) Not previously reported
V82l 0.035 = 0.001 1.5 1.5 (RTV) 1.9 (APV) (31)
184V 0.030 + 0.0001 1.3 2.2 (IDV) 10.6 (IDV) (41)
185V 0.024 = 0.011 1.0 2.1 (RTV) Not previously reported
MA461/I4TV 0.073 £ 0.009 32 1.3 (APV) 1.0 (APV) (40)
V82I/185V 0.035 £ 0.002 1.5 1.6 (RTV) Not previously reported
184V/185V 0.097 £ 0.010 42 14.8 (RTV) Not previously reported
1L10F/147V/V821/185V 043 +0.06 18.7 1.9 (RTV) Not previously reported
L10F/MA461/147V/V821/185V >1 >43 10.0 (APV) Not previously reported
D30N 0.020 = 0.009 0.9 5.6 (NFV) 6.0 (NFV) (41)
G48V 0.040 = 0.0008 1.7 51 (SQV) 7.8 (SQV) (21)
150v 0.015 * 0.008 0.7 1.2 (APV) 3.5 (APV) (31)
1L.90M 0.032 £+ 0.001 1.4 1.0 (SQV) 3.0 (SQV) (21)

« MT-4 cells (1 X 10%ml) were exposed to 100 TCIDjs of each infectious molecular HIV clone, and the inhibition of p24 Gag protein production by the drug was
used as the endpoint on day 7 in culture. The fold change represents the ratio of the ECsg for each mutant clone to the ECsg for wild-type HIV-1y14.5. All assays were

performed in triplicate, and the values shown are mean values (£1 standard deviation) derived from the results of three independent experiments.

tightly in the binding cavity and has favorable polar and non-
polar interactions with the active-site residues of the HIV-1
protease. The van der Waals surfaces of Ile47 and Ile47’ and of
1le84’ demonstrate that they form tight nonpolar interactions
with GRL-02031. Our antiviral data showing that the 147V
substitution is associated with HIV-1 resistance to GRL-02031
(Tables 3 and 4) are in agreement with this structural finding,
in that the substitution should reduce GRL-02031’s interaction
with protease and helps develop HIV-1 resistance to the in-
hibitor.

DISCUSSION

In the present work, we demonstrated that GR1.-02031 sup-
presses the replication of a wide spectrum of HIV-1 isolates
and is potent against a variety of HIV-1 variants highly resis-
tant to muitiple PIs, with the differences in the ECys being less
than twofold in comparison with the EC,, for wild-type strain
HIV-1grsiospre (Table 2). Additionally, when HIV-1y; 4., Was
propagated in the presence of increasing concentrations of
IDV, APV, or GRL-02031, the time of emergence of HIV-1
variants highly resistant to GRI.-02031 was substantially de-
layed compared to that of IDV- or APV-resistant HIV-1 vari-
ants (Fig. 2). Indeed, 21, 27, and 37 passages were required for
HIV-1 to acquire the ability to propagate in the presence of
APV, IDV, and GRL-02031 at 5 pM, respectively. In this
regard, when we generated a variety of Pl-resistant HIV-1
variants by propagating laboratory strain HIV-1py, 5 in the
presence of increasing concentrations of a PI in MT-4 cells
using the same procedure as that used in the present study, it
required 27, 23, 22, 21, and 14 passages for the virus to prop-
agate in the presence of 5 pM of SQV, APV, IDV, NFV, and
RTV, respectively (26). However, it should be noted that the
population size of HIV-1 in a culture is relatively small and
that the viral acquisition of mutations can be affected by sto-
chastic phenomena. For example, mutations take place at ran-

dom and the rates of mutations in the HIV-1 genome may not
be reproducible, although certain mutations that severely com-
promise viral replication would not remain in culture.

During the selection of HIV-1,, with GRL-02031, the
L10F substitution, one of the secondary substitutions, first ap-
peared. The L10F mutation occurs distal to the active site of
the enzyme and is thought to act in concert with active-site
mutations and compensate for a possible functional deficit
caused by the latter (6, 32). Mutations at Leu-10 reportedly
occur in 5 to 10% of HIV-1 isolates recovered from untreated
HIV-1-infected individuals but increase in prevalence by 60 to
80% in heavily treated patients (19, 22). However, the virolog-
ical and structural significance of the L10F substitution in
HIV-1 resistance to GRL-02031 is presently unknown.

By passage 37, two active-site mutations (V821 and 184V)
emerged. These V82 and 184 residues represent active-site
residues whose side chains are involved in the formation of the
protease substrate cleft and that make direct contact with cet-
tain PIs (48), and the V821 substitution has been shown to be
effective in conferring resistance when it is combined with a
second active-site mutation, such as V321 (23). Another active-
site mutation (I85V) and two flap mutations (M461 and 147V)
also emerged by passage 30. Both Met46 and Ile47 are located
in the flap region of the enzyme; the 147V substitution is
reported to be associated with viral resistance to APV and
JE-2147 (40, 48). The lipophilic potential of the computation-
ally defined cavity for the binding of GRL-02031 within the
HIV protease seems to be related to a finding that the van der
Waals surfaces of Ile47 and Iled47’ and of Ile84’ form tight
nonpolar interactions with GRL-02031 (Fig. 4C). Our antiviral
data showing that the 147V substitution is associated with
HIV-1 resistance to GRI-02031 (Table 3) are in agreement
with this structural finding. However, it is also of note that
HIV-1 acquires substantial resistance to GRL-02031 when the
virus gains multiple mutations in the protease (Table 4), as
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FIG. 4. Molecular interactions of GRL-02031 with HIV-1 protease. {A) A model of the interaction of GRL-02031 with HIV protease. The
bird’s-eye view of the docked pose (inset) is presented along with a blown-up figure highlighting the important hydrogen bond interactions. The
inhibitor is predicted to have hydrogen bond interactions with Asp25, Gly27, Asp29, Ile50, Asp29’, and Ile50'. Note that the pyrrolidone oxygen
(red stick) interacts with the S-2' subpocket and forms a hydrogen bond interaction with Asp29'. (B) Superimposed binding configurations of
GRL-02031 with the HIV-1 protease. The carbons are shown in gray in configuration 1 and in green in configuration 2. Selected hydrogen bond
interactions of configuration 2 are shown. In configuration 2, the methoxybenzene interacts with the S-2’ site and forms a hydrogen bond
interaction with Asp30’, The interaction of the P-2 ligand Cp-THF is the same in both configurations. (C) The binding cavity of HIV protease with
lipophilic potential is shown. GRL-02031 fits tightly in the binding cavity and has favorable polar and nonpolar interactions with the active-site
residues of the HIV-1 protease. The van der Waals surfaces of Hle47 and Ile47’ (both in magenta) and of e84’ (in purple) demonstrate that they
form tight nonpolar interactions with GRL-02031. The protease residues are shown in stick representation. The following atoms are indicated by
designated colors: C, gray; O, red; N, blue; S, yellow; H, cyan. Both protease chains are shown in green. The figure was generated with the

MOLCAD program (Sybyl, version 8.0; Tripos, L.P, St. Louis, MO).

seen in the case of DRV (9). This resistance profile (ie., the
requirement of multiple mutations) of GRL-02031 may also
confer certain advantage in the resistance profile of GRL-
02031.

Two mutations at conserved residues, L33F and QS58E, also
emerged by passage 37 and were present in 10 and 9 of 10
clones, respectively. 1.33F has primarily been reported in pa-
tients treated with RTV or APV (37). The L33F substitution
alone did not change the susceptibility of HIV-1 to GRL-02031
(Table 4), although it has recently gained attention because of
its association with resistance to the FDA-approved PI, ti-
pranavir (33).

In the HIV-1 variants selected with GR1-02031, four amino
acid substitutions in the Gag proteins (G62R, R409K, L363M,
and 1437T) were seen by passage 37. R409K within the p7 Gag
seems to be associated with viral resistance to APV (14), al-
though the significance of G62R within p17 is as yet unknown.
The p7-pl cleavage-site mutation 1437T has been reported to
be associated with ATV resistance (17). It is of note that by
passage 15, an unusual amino acid substitution, 1363M,
emerged; this substitution has not previously been reported in
relation to PI resistance. This 1.363M is located at the p24-p2
cleavage site, which represents the C terminus of the capsid
(CA) p24 protein that is highly conserved and that is involved

in virion assembly. The deletion of this cluster or the introduc-
tion of mutations such as L.363A is known to cause significant
impairment of particle formation and infectivity (34). It is
noteworthy that 1.363M appears in HIV-1 variants resistant to
a maturation inhibitor, PA-457 [3-0-(3',3'-dimethylsuccinyl)
betulinic acid], which binds to the CA-p2 cleavage site or its
proximity, blocks the cleavage by protease during virion mat-
uration, and exerts activity against HIV-1 (27, 44, 49).

It was noted that GRI.-02031 and SQV remained active
against most of the Pl-selected HIV-1 variants and that SQV,
IDV, and NFV remained potent against HIV-1gg1.02031-5
(Table 3), suggesting that the combination of GRL-02031,
SQV, IDV, and NFV can exert complementarily augmented
activity against multi-PI-resistant HIV-1 variants. Such a dif-
ference in the resistance profile of GRL-02031 when it is used
with SQV and NFV may be due to the differences in binding
and antiviral potency associated with the D30N and G48V
mutations (Table 4).

In an attempt to explain why GRL-02031 can exert potent
activity against a wide spectrum of HIV-1 variants resistant to
multiple PIs, we performed structural modeling and molecular
docking of the interactions of GRL-02031 with protease (Fig.
4). Interestingly, our structural modeling analysis demon-
strated that there are two distinct binding modes of GRL-
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02031 in the S-2' pocket of the protease. Either the 2-pyrroli-
done group or the methoxybenzene moiety can orient toward
Asp29’ and Asp30’ (configuration 1 and configuration 2, re-
spectively) (Fig. 4B). It is presumed that such alternate binding
modes provide distinct advantages to GRL-02031 in maintain-
ing its antiviral activity against a wide spectrum of HIV-1
variants resistant to other currently available PIs. The alternate
binding modes could explain the reason why the development
of resistance to GRL-02031 is substantially delayed compared
to the time to the development of resistance to APV or IDV
(Fig. 2). In addition, the models of GRL-02031 indicated that
it is capable of forming hydrogen bond interactions with the
backbone atoms of Asp29, Asp29’, and/or Asp30’. Such back-
bone interactions have been shown to be important in main-
taining potency not only against wild-type protease but also
against drug-resistant mutant proteases (1, 15, 16, 36). This
may also explain why GRL-02031 maintains its potency against
a wide variety of drug-resistant mutant proteases.

It is of note that the difference seen with GRL-02031 (one-
to twofold) seems substantially less than that seen with DRV
(one- to sevenfold) (Table 2). Although this difference may not
be translated into an actual difference in the clinical setting, it
is worth noting that GRL-02031 may have certain advantages
in its activity against highly drug-resistant HIV-1 variants. Con-
sidering that the acquisition of multiple amino acid substitu-
tions is required for the emergence of HIV-1 resistance to
GRI1-02031, the profile of HIV-1 resistance to GRL-02031,
which is apparently different from the profiles for the other
PIs, might result in an advantage for GRL-02031, although
further evaluations, including testing of the compound in the
clinical setting, are required.

Taken together, GRL-02031 exerts potent activity against a
wide spectrum of laboratory and clinical wild-type and multi-
drug-resistant HIV-1 strains without significant cytotoxicity in
vitro and substantially delays the emergence of HIV-1 variants
resistant to GRL-02031. These data warrant further consider-
ation of GRL-02031 as a candidate as a novel PI for the
treatment of AIDS.
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Chapter 2

Entry Inhibitors of Human Immunodeficiency Virus

MASANORI BApa

Highly active antiretroviral therapy (HAART) based on
the combination of different classes of inhibitors has
dramatically improved the prognosis of human immu-
nodeficiency virus type 1 (HIV-1) infection after its es-
tablishment (52, 109). In fact, more than 20 drugs, tar-
geting reverse transcriptase and protease, are available
in clinic for the treatment of HIV-1 infection. Since re-
verse transcriptase and protease are virus-specific en-
zymes, the emergence of drug-resistant viruses caused by
amino acid mutations of the enzymes often results in
treatment failure of HAART (36). Furthermore, there
are few drug options in the case of treatment failure be-
cause of cross-resistance to the same class of compounds
(40). Therefore, a lot of attempts have been made to
identify novel anti-HIV-1 agents targeting a molecule
different from reverse transcriptase and protease. Among
the potential targets, viral entry and proviral DNA inte-
gration processes are considered to be the most promis-
ing, and some inhibitors of these processes have already
been licensed or are currently under phase II or III clini-
cal studies (Table 1). In this review, I focus on the viral
entry processes that play crucial roles in HIV-1 replica-
tion and describe inhibitors thereof.

TARGET IDENTIFICATION

The HIV-1 envelope glycoprotein complex consists
of the surface subunit gp120 and the transmembrane
subunit gp41. The two subunits remain noncovalently
associated and oligomerize as trimers on the surface of
virions (13). The entry of HIV-1 into the target cells is
initiated by the binding of the envelope glycoprotein
gp120 to the cellular receptor protein CD4 (Fig. 1a).
Thus, it is easily predicted that blocking viral attach-
ment to the target cells (gp120-CD4 interaction) results
in complete protection of the cells from HIV-1 infection.
In fact, a number of substances have been shown to

interfere with this step and strongly inhibit HIV-1 repli-
cation in vitro (18). However, each of them appears to
have its own problems for clinical development, which
is discussed later. The binding of gp120 to CD4 resuits
in a complex series of conformational changes in both
gp120 and gp41, which includes exposure and increased
affinity of the binding site of gp120 to a chemokine re-
ceptor, either CCRS or CXCR4 (67, 107). Binding of
gp120 to one of the chemokine receptors is indispens-
able for subsequent steps of viral entry to proceed (Fig.
1b). Although several chemokine receptors have been
shown to interact with gp120, CCRS and CXCR4 play
a major role as coreceptors of HIV-1 (10).

HIV-1 using CCRS as a coreceptor (R5 HIV-1) is
isolated predominantly during the asymptomatic stage
and is also responsible for viral transmission between
individuals (14). In addition, RS HIV-1 seems to play an
important role even in the advanced stage of the disease
(53, 95). Thus, it has been considered that CCRS is an
attractive target for inhibition of HIV-1 replication. This
idea has also been encouraged by the observation that
individuals having homozygous CCRS5-A32, a truncated
and nonfunctional form of CCRS, display profound re-
sistance to HIV-1 infection without apparent immune
dysfunction (16, 55, 77). These results suggest that
CCRS antagonists are effective as anti-HIV-1 agents
without serious side effects despite targeting the host cel-
lular molecule CCRS. On the other hand, the rationale
of using CXCR#4 antagonists for treatment of HIV-1 in-
fection is still a matter of controversy. The emergence of
CXCR4-using (X4) HIV-1 is clearly associated with ac-
celerated CD4+ T-cell depletion and rapid progress to the
end stage of the disease (14, 73). However, animal stud-
ies demonstrated that the natural CXCR4 ligand SDF-1
was essential during fetal development, especially for
B-cell lymphopoiesis, bone marrow myelopoiesis, and
cardiac ventricular septum formation (68). Furthermore,
CXCR4 is expressed in developing vascular endothelial
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Table 1. Entry inhibitors approved for clinical use or
in clinical studies®

Stage Name Mechanism
Phase I TAK-652 CCRS antagonist
Phase I/Illa PRO 140 Anti-CCRS monoclonal antibody
INCB9471 CCRS antagonist
HGS004 Anti-CCRS monoclonal antibody
Phase IIb  TNX-355 Anti-CD4 monoclonal antibody
Phase III Vicriviroc (SCH-D)  CCRS antagonist

Approved  Maraviroc (UK-427, CCRS antagonist
857, Selzentry)
Enfuvirtide (T-20,

Fuzeon)

Fusion inhibitor targeting gp41

“The inhibitor list is based on the currently available information through the
Internet, Therefore, it may not cover all of the entry inhibitors in clinical studies,
or their development may have already proceeded to the next stage at the time
of publication.

cells, and mice lacking CXCR4 or SDF-1 had defective
formation of the large vessels supplying the gastrointes-
tinal tract (86). Although the small-molecule CXCR4
antagonist AMD3100 was found to be well tolerated in
humans (35), the safety and usefulness of CXCR4 an-
tagonists should be carefully monitored in further clini-
cal studies.

The transmembrane glycoprotein gp4l is com-
posed of three domains: the ectodomain, the membrane-
spanning domain, and the cytoplasmic tail (13, 102).
The ectodomain contains an N-terminal fusion peptide
that is essential for membrane fusion. It also contains
two regions with a hydrophobic heptad repeat (HR-1
and HR-2), whose sequence motif is characterized as
coiled coils. Binding of gp120 to either CCRS or CXCR4
leads to conformational changes of gp41, which allows
the fusion peptide to interact with the target cell mem-
brane (Fig. 1c). The heptad repeat regions of gp41 fold
into a six-helix bundle (Fig. 1d). Consequently, the viral
envelope and cellular membrane come closer together
and complete membrane fusion (Fig. 1e). Since synthetic
peptides corresponding to either HR-1 or HR-2 amino
acid sequences are capable of inhibiting membrane fu-
sion, gp41 is also considered to be an attractive target
for inhibition of HIV-1 replication.

INHIBITORS AND MECHANISMS OF ACTION

Viral Attachment Inhibitors

A variety of polyanionic compounds have been re-
ported to inhibit HIV-1 replication in vitro through
blocking virus attachment to the target cells (3, 17).
Representative molecules are dextran sulfate and hep-
arin. Early studies demonstrated that dextran sulfate
exerted its anti-HIV-1 activity by inhibiting the adsorp-
tion of viral particles to the target cells (7, 63). Later,
their mechanism of action was found to be electrostatic

Attachment

4= CCRS5 or CXCR4
L — antagonists

Figure 1. A schematic presentation of HIV-1 entry. (a) The first step of
HIV-1 entry to the host cells is gp120 binding to the primary receptor
CD4. (b) After binding, the conformation of gp120 changes, which in-
duces exposure of the coreceptor binding domain. Consequently,
gp120 binds to a coreceptor, either CCRS or CXCR4. (¢) The binding
of gp120 to a coreceptor leads to conformational changes of gp41 that
allow insertion of its fusion peptide into the target cell membrane.
(d) Then, the heptad repeat (HR-1 and HR-2) regions of gp41 fold
into a six-helix bundle (hairpin structure). (e) The bundle formation
brings viral envelope and cell membrane closer together and facilitates
their fusion. The closed arrows indicate the molecules or steps that
entry inhibitors interact with.
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neutralization to the positively charged residues in the
V3 loop of gp120 (65, 105). Although sulfated polyan-
ions are highly potent inhibitors of X4 HIV-1 replica-
tion in cell cultures, their activity proved to be much
weaker against RS HIV-1 (62). Furthermore, the results
of clinical trials with dextran sulfate were quite disap-
pointing due to its poor oral bioavailability and high
toxicity upon intravenous administration (28).

Cyanovirin-N (CV-N) is a small (11-kDa) carbohy-
drate-binding protein (lectin) isolated from the cyano-
bacterium Nostoc ellipsosporum with highly potent anti-
HIV-1 activity (12). The antiviral activity of CV-N is
mediated via high-affinity interactions with the mannose-
rich oligosaccharides of gp120 (11, 25). In addition to
CV-N, several carbohydrate-binding agents have been
identified as effective inhibitors of HIV-1 replication in
vitro (8). However, their clinical development does not
seem to be feasible because of poor oral bioavailability,
high toxicity, and potential immunogenicity in vivo;
nevertheless, the use of CN-V as a topical microbicide
to prevent HIV-1 transmission is of considerable inter-
est (93).

BMS-378806 (Fig. 2a) is a small-molecule HIV-1 in-
hibitor that blocks viral attachment to the target cells.
The compound exhibited potent antiviral activity against
a panel of RS, X4, and R5X4 (dualtropic) HIV-1 strains
in vitro (31, 54). However, HIV-2 and simian immunode-
ficiency virus were not susceptible to this compound. Ini-
tially, it was thought that BMS-378806 bound to gp120
and inhibited the interaction between gp120 and CDA4.
However, a recent study suggests that the compound
binds to gp120 and blocks the induction of HR-1 expo-
sure without significantly affecting the binding of CD4
(81). In animal studies, BMS-378806 displayed favorable
pharmacokinetic profiles, including low protein binding,
minimal effect of human serum on anti-HIV-1 activity,
and good oral bioavailability (54, 108). Although clinical

0
7 N\‘)

Figure 2. Chemical structures of viral attachment inhibitors. (a) BMS-
378806; (b) BMS-488043,

studies have been conducted with BMS-488043 (Fig.
2b), a derivative of BMS-378806, development of this
drug as an anti-HIV-1 agent was halted. Nevertheless,
like other viral attachment inhibitors, this compound
may have potential as a topical microbicide for preven-
tion of HIV-1 transmission (41).

Coreceptor Inhibitors

The first small-molecule and nonpeptide chemokine
receptor antagonists having potent and selective anti-
HIV-1 activity in vitro were a series of bicyclams (19).
The prototype compound AMD3100 (Fig. 3a) proved
inhibitory to the replication of several laboratory and
clinical HIV-1 strains at nanomolar concentrations or
lower (20). Although bicyclams were initially reported
to interfere with a viral uncoating event, these com-
pounds were found to be highly specific inhibitors of
CXCR4 (21, 79). AMD3100 potently inhibited the in-
tracellular calcium signaling induced by the CXCR4 li-
gand SDF-1 but did not induce signaling itself, indicat-
ing that the compound behaves as a CXCR4 antagonist.
Furthermore, the inhibition was strictly restricted to
CXCR4 and was not observed for any other chemokine
receptors (33). Since this compound is not orally bio-
available, an intravenous single-dose phase I clinical
study was performed with healthy and seronegative vol-
unteers. As mentioned above, intravenous administra-
tion of AMD3100 was well tolerated, and its plasma
concentrations were sustained above the 90% inhibi-
tory concentrations for HIV-1 replication in vitro for
12 h (35). To evaluate the in vivo efficacy, an open-label
dose-escalation study was conducted for 40 HIV-1-
infected subjects. AMD3100 was administered for
10 days by continuous intravenous infusion at various
doses. Only one patient, whose virus was confirmed to
use solely CXCR4 and who also received the highest
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Figure 3. Chemical structures of CXCR4 inhibitors. (a) AMD3100;
(b) KRH-1636.
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dose, had a significant (0.9-log,,) reduction of plasma
viral RNA from baseline {34). However, the average
change in viral load across all patients was the mini-
mum. Given such results, AMD3100 is not being further
developed as an anti-HIV-1 agent.

In addition to AMD3100 and its derivatives, sev-
eral molecules have been shown to inhibit HIV-1 repli-
cation by interacting with CXCR4. These include T22,
ALX40-4C, CGP64222, and KRH-1636. T22 is a syn-
thetic peptide that consists of 18 amino acids and an an-
alog of polyphemusin II, which is isolated from hemo-
cyte debris of American horseshoe crabs (66). This
peptide specifically inhibits X4 HIV-1 replication in
vitro. ALX40-4C (N-a-acetyl-nona-p-arginine amide
acetate) was a peptide initially developed as a competi-
tive inhibitor of the binding of the HIV-1 Tat protein to
the transactivation response (TAR) RNA structure (85).
Later, it was found that ALX40-4C inhibited HIV-1
envelope-mediated membrane fusion and viral entry at
the level of CXCR4 use (22). CGP64222 is a hybrid
peptoid/peptide oligomer of 9 residues, which was also
selected as a potent inhibitor of Tat-TAR interaction
(32). In fact, it was able to block the formation of the
Tat/TAR RNA complex in vitro at nanomolar concen-
trations. However, CGP64222 proved inactive against
HIV-1 strains resistant to the bicyclams, suggesting that
CGP64222 inhibits HIV-1 replication through selective
interaction with CXCR4 (15). Clinical development of
these molecules does not seem to be feasible due to vari-
ous disadvantages derived from their structures (pep-
tides), such as high cost, possible immunogenicity, and
no oral bioavailability.

KRH-1636 (Fig. 3b) is a small-molecule and non-
peptide CXCR4 antagonist with potent and selective
anti-HIV-1 activity in vitro and in vivo (38). The com-
pound efficiently inhibited the replication of various
X4 HIV-1 in cell cultures by blocking viral entry and
membrane fusion via CXCR4 but not via CCRS. It also
inhibited binding of SDF-1 to CXCR4 and subsequent
intracellular signal transduction. The anti-HIV-1 activ-
ity of KRH-1636 could be reproduced in human periph-
eral blood lymphocyte severe combined immunodefi-
ciency (PBL-SCID) mice. Furthermore, KRH-1636 was
absorbed into the blood after intraduodenal administra-
tion. However, the clinical efficacy of KRH-1636 and its
derivatives is still unclear and remains to be further
investigated.

The first small-molecule CCRS antagonist described
in the literature is TAK-779 (Fig. 4a), which is a potent
and selective inhibitor of HIV-1 replication (5). This
compound inhibited RS HIV-1 replication at nanomolar
concentrations in vitro. TAK-779 antagonized the bind-
ing of RANTES and other natural CCRS ligands to
CCRS and blocked CCRS-mediated signaling at nano-
molar concentrations. TAK-779 inhibits HIV-1 replica-

tion at the membrane fusion stage by blocking the inter-
action of gp120 with CCRS. Furthermore, it was found
that the binding site for TAK-779 on CCRS is located
near the extracellular surface of the receptor and within
a cavity formed between transmembrane helices 1, 2, 3,
and 7 (24). Since TAK-779 is an anilide derivative with
a quaternary ammonium moiety, it is not orally bioavail-
able. Therefore, it could not be further developed as an
anti-HIV-1 agent. In the meantime, several groups have
identified different classes of small-molecule and orally
bioavailable CCRS antagonists. Among the compounds,
a small-molecule CCRS antagonist to be described is
SCH-C (Fig. 4b). This compound is an oxime-piperidine
derivative and was shown to selectively bind to CCRS
and potently inhibit R5 HIV-1 replication at nanomolar
concentrations (84). Although SCH-C displayed excel-
lent oral bioavailability and was well tolerated in early-
phase clinical studies, this compound was found to affect
cardiac functions, such as dose-dependent prolongation
of the QT interval in electrocardiogram. Thus, further
development of SCH-C was terminated.

Maraviroc (Fig. 4c) is the first CCRS antagonist
that has recently been licensed by the U.S. Food and
Drug Administration for the treatment of HIV-1-
infected patients. It was approved for use in combination
with other antiretroviral medications for the treatment
of RS HIV-1 in adults whose viral loads remain detect-
able despite existing antiretroviral treatment or who
have multidrug-resistant HIV-1. The currently approved
dosage of maraviroc is 300 mg twice daily. Maraviroc
has potent anti-HIV-1 activity and favorable pharmaco-
logical properties (23). This compound displayed potent
antiviral activity against a wide range of RS HIV-1 clini-
cal isolates at nanomolar concentrations. Maraviroc
had potent cross-subtype anti-HIV-1 activity; neverthe-
less, a three- to sixfold reduction of antiviral activity
was observed against subtype G clinical isolates. Its in-
hibitory effect was highly specific to CCRS, and it did
not affect the functions of a wide range of receptors and
enzymes, such as CCR2 and the cardiac potassium chan-
nel hERG. Pharmacokinetic and metabolic properties of
maraviroc were reported to be different from one ani-
mal species to another (99). For instance, the compound
was incompletely absorbed in rats (20 to 30%) but was
well absorbed in dogs (more than 70%). In vitro studies
suggested the involvement of P-glycoprotein in restrict-
ing oral absorption. In initial clinical studies, maraviroc
had good oral bioavailability, and its terminal half-life
on multiple dosing was approximately 17 h and did not
alter significantly with dose. When treatment-naive RS
HIV-1-infected patients received maraviroc monother-
apy at multiple doses (up to 300 mg) for 10 days, the
compound was well tolerated at all doses. Maximum
reduction in viral load was observed at a median of
10 to 15 days, with a mean reduction of more than
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Figure 4. Chemical structures of CCRS inhibitors. {a) TAK-779; {b) SCH-C (SCH 351125); (c) maraviroc (UK-427,857);
(d) vicriviroc (SCH-D}; (€) aplaviroc (GW873140/ONO4128); (f) TAK-220; (g) TAK-652; (h) CMPD167; (i) AMD3451.

1.6 log,, at all twice-daily doses of more than 100 mg
(27). Recently, the 24-week results of two identical, ran-
domized, and controlled phase II/III clinical studies in
heavily treatment-experienced patients with triple-class
antiretroviral resistance have been reported (48, 71).
The patients were randomly assigned to receive oral
maraviroc at doses of 150 mg once daily or 150 mg
twice daily or to receive a placebo in combination with
an optimized background therapy. Both once-daily and
twice-daily maraviroc demonstrated significantly greater
virologic suppression than the placebo, when used in
combination with optimized background therapy.
Vicriviroc (Fig. 4d) is an SCH-C derivative and a
more potent inhibitor of HIV-1 replication than SCH-C,
which also acts as a CCRS-specific antagonist. This
compound exhibited broad-spectrum antiviral activity
against a genotypically diverse panel of RS HIV-1 iso-
lates at subnanomolar concentrations (83). This com-

pound showed synergistic anti-HIV-1 activity in combi-
nation with all other classes of approved antiretrovirals.
Vicriviroc appeared to have less potential for cardiac
effects than did SCH-C. Furthermore, vicriviroc was
found to be fully active against the subtype G isolate
RU570, which had reduced susceptibility to SCH-C. A
phase I clinical study of vicriviroc monotherapy for 14
days demonstrated that the compound was well toler-
ated and produced significant (1.0-log,, or greater) de-
clines in plasma HIV-1 RNA at total oral daily doses of
50 or 100 mg (80). In a double-blind, randomized phase
II study in antiretroviral-treatment-experienced individ-
uals experiencing virologic failure, vicriviroc at 5, 10, or
15 mg or placebo was added to the failing regimen for
14 days, after which the antiretroviral regimen was op-
timized. Mean changes in plasma HIV-1 RNA level were
greater in the vicriviroc groups than in the placebo group
(30). Recently, the 48-week results of this study have
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been presented, in which sustained viral suppression
was achieved with a vicriviroc-containing regimen in
treatment-experienced patients with advanced disease
(29). Based on results from phase II clinical trials, the
manufacturer will select a dose of vicriviroc to move for-
ward into phase III clinical development in treatment-
experienced patients.

Aplaviroc (Fig. 4e) is a spirodiketopiperazine deriv-
ative, which specifically blocked the binding of macro-
phage inflammatory protein 1la (MIP-1a) to CCRS with
high affinity (59). The compound had potent antiviral
activity against a wide range of laboratory and primary
RS HIV-1 isolates, including multidrug-resistant mu-
tants at subnanomolar concentrations in vitro. Different
from TAK-779 or SCH-C, the compound was found to
preserve RANTES and MIP-1B binding to CCRS-
expressing cells and their functions (59, 100). The anti-
viral activity was also confirmed in human peripheral
blood mononuclear cell (PBMC)-transplanted RS HIV-
1-infected nonobese diabetic-SCID interleukin-2 recep-
tor y-chain-knocked-out mice, in which massive and
systemic HIV-1 replication was observed (69). An ap-
proach of combining the site-directed mutagenesis and
molecular modeling of CCRS revealed that the binding
site of aplaviroc as well as other CCRS antagonists
(TAK-779 and SCH-C) was located predominantly in a
lipophilic pocket in the interface of extracellular loops
and the upper transmembrane domain of CCRS (58). A
double-blind, randomized, placebo-controlled oral-dose
escalation study was conducted with healthy subjects
(1). Single and repeated (every 12 h for 8 days) doses of
50 to 800 mg were well tolerated without serious ad-
verse events, including significant changes in electrocar-
diogram. In treatment-naive and -experienced RS HIV-
1-infected subjects, aplaviroc achieved a mean maximum
viral load reduction of 1.66 log,, from baseline (49).
Unfortunately, the manufacturer announced that further
development of aplaviroc was terminated because of its
severe hepatotoxicity to some infected patients during
phase IIb/III clinical studies.

The orally bioavailable CCRS antagonists TAK-
220 and TAK-652 (current names, TBR-220 and TBR-
652, respectively) are successors of TAK-779. TAK-220
(Fig. 4f) is a novel series of compounds whose chemical
structures totally differ from that of TAK-779. TAK-220
strongly inhibited the binding of RANTES and MIP-1a
to CCRS but had no effect on MIP-1p binding (87). The
compound inhibited the replication of RS HIV-1 clinical
isolates in PBMCs at nanomolar concentrations. The
activity of TAK-220 was found to be HIV-1 subtype
independent. Pharmacokinetic studies of TAK-220 in
animals demonstrated that its oral bioavailability was
dependent on animal species (9.5% in rats and 28.9% in
monkeys). TAK-220 displayed synergistic antiviral ac-
tivity in vitro when combined with several licensed anti-

retrovirals (89). Analysis for the interacting molecules of
CCRS revealed that TAK-220 shared some amino acid
residues of CCRS5 with TAK-779 (72). However, the in-
volvement of additional amino acid residues was identi-
fied, which appeared to further enhance the affinity of
TAK-220 to the binding pocket in CCRS. The other
compound, TAK-652 (Fig. 4g), is a derivative of TAK-
779. Different from TAK-220, TAK-652 was equally in-
hibitory to the binding of RANTES, MIP-1c, and MIP-
18 to CCRS (6). Furthermore, like TAK-779, TAK-652
also strongly inhibited ligand binding to CCR2b. The
compound was highly active against RS HIV-1, includ-
ing NRTI-, NNRTI-, and Pl-resistant clinical isolates at
subnanomolar concentrations. The activity of TAK-652
was HIV-1 subtype independent, and it was fully active
against the subtype G isolate RUS570, which was re-
ported to be resistant to some CCRS antagonists. Fur-
thermore, this compound was found to have favorable
drug interactions with other antiretrovirals in vitro (88).
A single oral administration of TAK-652 of up to 100 mg
was safe and well tolerated in humans. The compound
also displayed favorable pharmacokinetics (a long half-
life) in vivo, suggesting that once-daily administration
may be feasible. Further clinical studies of TAK-220 and
TAK-652 are currently under consideration.

Other CCRS antagonists to be described are
CMPD167 and AMD3451. CMPD167 (Fig. 4h) is a
small-molecule CCRS antagonist with potent antiviral
activity against RS HIV-1 and simian immunodeficiency
virus in vitro (96). Based on a concept of vaginal micro-
bicides for prevention of HIV-1 transmission, this com-
pound was administered intravaginally to macaques and
examined for its inhibitory effect on simian-human im-
munodeficiency virus infection. Significant protection
was achieved with CMPD167 alone and in combination
with other entry inhibitors having different mechanisms
of action (97). Furthermore, oral CMPD167 was able
to protect a substantial proportion of macaques from
vaginal infection with simian-human immunodeficiency
virus (98). The macaques that became infected despite
receiving CMPD167 had reduced plasma viremia levels
during the earliest stages of infection. However, taking
account of the fact that a microbicide must be active
against multiple HIV-1 variants, double and triple com-
binations with different classes of entry inhibitors, such
as viral attachment and fusion inhibitors, would be rec-
ommended (41). AMD3451 (Fig. 4i) is not a CCRS-
specific antagonist but a CCR5/CXCR4 antagonist. It
inhibited a wide range of RS, R§X4 (dualtropic), and
X4 HIV-1 and HIV-2 at micromolar concentrations in
vitro (74). Although such antiviral profiles of this com-
pound seem to be attractive, further optimization, in-
cluding structural modification for increasing activity,
and pharmacokinetic and toxicity tests in vivo are re-
quired for its clinical development.
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Fusion Inhibitors

As described above, gp41 plays a key role in fusion
between viral envelope and cell membrane. A series of
peptides were synthesized based on various regions of
gp41 and examined for their anti-HIV-1 activity. Among
the peptides, enfuvirtide (T-20 or DP-178), a 36-amino-
acid peptide corresponding to amino acid residues 643
to 678 (Fig. 5), was found to be a highly potent and se-
lective inhibitor of HIV-1 replication in vitro (104). It
blocked cell fusion and viral entry at concentrations of
<5 ng/ml. Enfuvirtide proved inhibitory to primary
clinical isolates as well as laboratory strains of HIV-1.
The active peptides, including enfuvirtide, likely work
by binding to the trimeric coiled coils of gp41, thereby
acting through a dominant-negative mechanism (13, 57,
102). A clinical study of intravenous enfuvirtide mono-
therapy for 14 days in 16 HIV-1-infected adults at four
doses (3, 10, 30, and 100 mg twice daily) revealed sig-
nificant, dose-related declines in plasma viral RNA in all
subjects who received higher doses (42). Thus, this study
has provided proof-of-concept that viral entry can be
successfully blocked not only in vitro but also in vivo. In
a 28-day randomized study involving 78 HIV-1-infected
adults with extensive treatment experiences, dose-
related decreases in viral load were observed for pa-
tients who received enfuvirtide in addition to a failing
regimen (43). Two phase III clinical studies, T-20 versus
Optimized Regimen Only study 1 (TORO 1) and TORO
2, were conducted with a large number of treatment-
experienced patients in North and South America and in
Europe and Australia, respectively (50, 51). These stud-
ies clearly demonstrated that the addition of enfuvirtide
to an optimized antiretroviral regimen provided signifi-
cant antiretroviral (decreasing HIV-1 RNA copy num-
ber) and immunological (increasing CD4+ T-cell count)
benefits over a 24-week period in patients who had pre-
viously received multiple antiretrovirals and had multi-
drug-resistant HIV-1. Furthermore, 48-week follow-up

gp4l

studies of TORO 1 and TORO 2 also demonstrated the
durable efficacy of enfuvirtide plus optimized antiretro-
viral regimens and no exacerbation of adverse events
commonly associated with existing antiretrovirals (70,
92). Based on the favorable results in clinical studies,
enfuvirtide became the first entry inhibitor licensed for
treatment of HIV-1 infection, although there were cer-
tain disadvantages of this compound, such as the neces-
sity for twice-daily subcutaneous administration, injec-
tion-site skin reactions, and high production cost.

RESISTANCE TO ENTRY INHIBITORS

Viral Attachment Inhibitors

There may be no compound that will prove to be
an exception to the fact that drug-resistant HIV-1 will
emerge under selective pressure of any single antiretrovi-
ral agent. The selection of drug-resistant strains in vitro
and their characterization are extremely important,
since they may be able to predict the emergence of drug
resistance in vivo. In addition, the analysis of resistant
viruses for their amino acid mutations often provides
useful information on the inhibitor’s mechanism of ac-
tion. An HIV-1 strain resistant to dextran sulfate was
selected by cultivation of infected cells in the presence
of the compound (26). This study demonstrated that
several mutations were found in gp120 of the dextran
sulfate-resistant strain but not in a wild-type strain.
Cross-resistance was observed for polyanionic com-
pounds structurally related to dextran sulfate. These re-
sults suggest that the molecular determinants of polyan-
ion resistance seem to be located in the HIV-1 envelope
proteins, especially in the V3 loop domain. A CV-N-
resistant strain was also selected by serial passages of X4
HIV-1 with increasing concentrations of CV-N (106).
The selected virus exhibited a variety of amino acid mu-
tations that eliminated N-linked glycans from gp120

v Fp = HR1 — HR2 |~ M H/—-coon

—A

463

478

\

YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF
Enfuvirtide (T-20)

Figure 5. A schematic presentation of gp41 and enfuvirtide structure. gp41 consists of the fusion peptide (FP), two regions of
the hydrophabic heptad repeat (HR-1 and HR-2), the transmembrane segment (TM), and the cytoplasmic region (not drawn
in this schema). Enfuvirtide is a synthetic 36-amino-acid peptide corresponding to residues 643 to 678 in HR-2.
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and had cross-resistance to concanavalin-A, another
mannose-binding lectin. However, the virus did not have
cross-resistance to the CXCR4 antagonist AMD3100. A
recent study of resistance to CV-N identified eight differ-
ent mutations exclusively located at N-glycosylation
sites in gp120 (9). Six of the eight mutations resulted in
the deletion of high-mannose type N-glycans, and two
mutations deleted a complex type N-glycan from the
variable V1/V2 domain of gp120. HIV-1 variants resis-
tant to CV-N or cross-resistant to additional carbohy-
drate-binding agents were generated and examined for
their biological properties (37). This study demonstrated
that the resistant variants had increased susceptibility to
immunoglobulins and sera obtained from HIV-1-in-
fected patients and particularly to V3-loop-directed
monoclonal antibodies. With regard to resistance to
BMS-378808, initial studies reported that the resistant
variants had several amino acid mutations within the
CD4-binding pocket of gp120 (31, 54).

Coreceptor Inhibitors

HIV-1 variants with reduced susceptibility to the
CXCR4 ligand SDF-1 or the CXCR4 antagonist
AMD3100 could be isolated in vitro, and they have
multiple amino acid mutations in gp120. However, these
variants still utilized CXCR4 for entering the cells (78).
Relative resistance to AMD3100 was conferred by differ-
ent single amino acid substitutions inthe second extracel-
lular loop (ECL2) or in the adjacent membrane-spanning
domain (TM4) of CXCR4 (47). Only substitutions of a
neutral residue for aspartic acid and of a nonaromatic
residue for phenylalanine were associated with drug re-
sistance, suggesting a direct interaction of AMD3100
with these amino acids rather than indirect effects of their
substitutions on the structure of CXCRA4. Interestingly, a
T22 analog, which represents another class of CXCR4
antagonists, retained full activity against AMD3100-
resistant strains (2).

HIV-1 resistant to CCRS antagonists was obtained
when an RS clinical isolate was passaged in PBMCs with
increasing concentrations of AD101, a CCRS5 antagonist
structurally related to SCH-C (91). The strain was highly
resistant to AD101 and cross-resistant to SCH-C, yet it
was unable to use CXCR4. Genetic and phenotypic
analyses revealed that four amino acid changes in the
V3 region of gp120 were necessary and sufficient to
confer resistance {45). Furthermore, there was a correla-
tion between the susceptibility of RS clinical isolates to
RANTES and AD101 (44). HIV-1 strains highly resistant
to vicriviroc were also isolated through cultivation of
RS HIV-1 isolates in mitogen-stimulated primary CD4+
T cells (60). These strains were found to be completely
dependent on CCRS for entry. Interestingly, they had
cross-resistance to not only SCH-C but also RANTES

derivatives, which were inhibitory to RS HIV-1 replica-
tion. Unlike AD101-resistant strains, the vicriviroc-resis-
tant mutants had no amino acid changes in the V3 region
compared to their parental viruses. Instead, several se-
quence changes were present elsewhere in gp120 (V2, C3,
and V4). In phase IIb clinical studies, protocol-defined vi-
rologic failure in six of seven treatment-experienced sub-
jects receiving a vicriviroc-containing regimen was not
associated with phenotypic evidence of vicriviroc resis-
tance (94). V3 loop sequence changes occurred in these
subjects, but neither consistent nor stereotypic amino acid
substitutions were observed, suggesting that some other
mechanisms explain vicriviroc failure.

Serial passages of infected cells in vitro with increas-
ing maraviroc concentrations failed to select drug-
resistant variants from some laboratory-adapted and
clinical isolates of HIV-1. However, high-level resis-
tance to maraviroc was selected from three of six pri-
mary isolates passaged in PBLs (103). The SF162 strain
acquired resistance to maraviroc in both treated and
control cultures; all resistant variants were able to use
CXCR4 as a coreceptor. In contrast, maraviroc-resistant
viruses derived from isolates CC1/85 and RUS70 re-
mained CCRS-tropic. The maraviroc-resistant RS HIV-1
retained full susceptibility to SCH-C and aplaviroc,
suggesting that although the CCRS binding sites for
these agents are similar, their impacts on the surface
conformation of the receptor are different. The results
of this study also suggest that the envelope proteins of
maraviroc-resistant viruses are able to recognize and
utilize inhibitor-bound CCRS, which involves the or-
dered accumulation of mutations in the viral envelope,
both in the V3 loop and elsewhere within gp120. This
mechanism of resistance is characterized phenotypically
by dose-response curves with a reduced maximal per-
centage inhibition. These observations were confirmed
by the analysis of the samples obtained from treatment
failure patients carrying RS HIV-1 in phase III clinical
studies (64).

A long-term culture experiment with RS HIV-1-
infected PBMCs was conducted with escalating concen-
trations of TAK-652. After serial passages of the infected
cells for more than 1 year, an escape virus was obtained
(4). This virus displayed complete resistance to TAK-652,
in contrast to the wild type. The escape virus appeared to
have cross-resistance to the structurally related com-
pound TAK-779 but retained full susceptibility to TAK-
220, which is a totally different class of CCRS antago-
nists. Furthermore, the escape virus was unable to use
CXCR#4 as a coreceptor. Analysis for Env amino acid se-
quences of the escape viruses at certain points of passage
revealed that amino acid changes accumulated with an
increasing number of passages. Several amino acid
changes not only in the V3 region but also in other Env
regions seemed to be required for RS HIV-1 to acquire
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complete resistance to TAK-652. A similar experiment
was also conducted with TAK-220. However, no viruses
with reduced susceptibility to TAK-220 could be ob-
tained even after 2 years (my unpublished observations).

Fusion Inhibitors

It was reported that enfuvirtide-resistant HIV-1
emerged after in vitro passage for 6 weeks in the pres-
ence of increasing concentrations of the compound (75).
Sequence analysis of the resistant isolates suggested that
a contiguous 3-amino-acid sequence at positions 36 to
38 within the HR-1 of gp41 was associated with enfu-
virtide resistance. Site-directed mutagenesis studies con-
firmed this observation and indicated that changes in
two of these three residues were necessary for develop-
ment of the resistant phenotype. A similar result was
obtained in a phase I clinical study (101). All four pa-
tients who received an intermediate dose of enfuvirtide
(30 mg twice daily) showed an initial decline in plasma
viral load over the first 10 days but a rising trend by day
14. HIV-1 obtained from one patient developed a muta-
tion in the 3-amino-acid sequence after 14 days of ther-
apy, specifically an aspartic acid substitution for glycine
at position 36. Viruses obtained from phase II clinical
study patients treated with enfuvirtide as functional
monotherapy for 28 days or in combination with oral
antiretrovirals for more than 48 weeks were analyzed
for their amino acid substitutions at positions 36 to 45
(82). The viruses from patients experiencing the rebound
of viral load exhibited reduced susceptibility to enfu-
virtide and substitutions in amino acids 36 to 45. Fur-
thermore, on-treatment changes in the phenotypic sus-
ceptibility of virus isolates to the compound were
generally associated with genotypic changes in amino
acids 36 to 45. A study using recombinant viruses carry-
ing enfuvirtide resistance mutations revealed that their
replicative fitness and drug susceptibility were inversely
correlated (56). In phase III clinical studies, the amino
acid sequence at positions 36 to 45 was highly conserved
at baseline except for polymorphism at position 42. In
contrast, amino acid substitutions within positions 36
to 45 on treatment were observed for the viruses ob-
tained from most of the patients who met protocol-
defined virological failure criteria (61).

FUTURE DIRECTIONS

In addition to the inhibitors described in this chap-
ter, several antibodies have been shown to interact with
the molecules essential for HIV-1 entry to the host cells.
These include the anti-CD4 monoclonal antibody TNX-
355 (46) and the anti-CCRS monoclonal antibody PRO
140 (90). They may exert synergistic antiviral activity in

combination with other entry inhibitors (110). A phase
I clinical study in a small number of HIV-1-infected sub-
jects demonstrated that single doses of TNX-355 re-
duced plasma viral RNA levels and increased CD4+*
T-cell counts (46). In a phase I clinical study, TNX-355
was administered intravenously once a week for the first
9 weeks and then once every other week. On the other
hand, a randomized double-blind placebo-controlled
study of PRO 140 was conducted with subjects infected
with exclusively RS HIV-1 (76). In this study, the partic-
ipants received single intravenous infusions of PRO 140,
and viral load, pharmacokinetics, and safety assessments
were performed through day 59. Single-dose PRO 140
was well tolerated, and potent and dose-dependent anti-
viral activity was demonstrated in HIV-1-infected sub-
jects, suggesting that the antibody is able to act as a po-
tent and long-acting antiretroviral agent.

Another class of entry inhibitors that should be ex-
tensively explored is small-molecule compounds that
bind to gp41 and block the fusion between viral enve-
lope and cell membrane. Although enfuvirtide has been
used in clinical settings, a small-molecule fusion inhibi-
tor will have several advantages over the peptide in
terms of oral bioavailability and production cost. Fur-
thermore, HIV-1 mutants resistant to either CCRS or
CXCR4 antagonists may not have cross-resistance to a
small-molecule fusion inhibitor. However, only a few
compounds have been reported as fusion inhibitors until
now. Two N-substituted pyrroles, designated NB-2 and
NB-64, inhibited HIV-1 replication in vitro (39). They
blocked fusion and entry of HIV-1 by interfering with
the gp41 six-helix bundle formation and disrupting the
a-helical conformation. Although the anti-HIV-1 potency
of NB-2 and NB-64 are not high enough for them to be
considered as candidates for clinical development, they
have broad anti-HIV-1 activity against a variety of pri-
mary HIV-1 isolates and high specificity to gp41. Thus,
NB-2 and NB-64 may be used as lead compounds for
designing more-potent small-molecule fusion inhibitors.

Since the machinery of HIV-1 entry to the host cells
is complex, the viral and cellular factors involved in this
process have not been fully elucidated yet. Therefore, it
would not be surprising that more-potent and specific in-
hibition of viral entry could be achieved by small-molecule
compounds with a novel mechanism of action. Hopefully,
such compounds can be identified in the near future and
added as new members of HIV-1 entry inhibitors.
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Porcine endogenous retrovirus (PERV) is persistently integrated into the host genomic DNA as a provirus
and released from a variety of porcine cells. PERV infects a certain range of human cells, which is a
major concern in xenotransplantation. Therefore, the use of viral gene expression inhibitors could be
envisaged, if they reduce PERV production from porcine organs and minimize viral transmission to human
recipients. In the present study, four HIV-1 gene expression inhibitors were examined for their inhibitory
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retroviral gene expression inhibitors may be able to reduce the risk of PERV transmission.

© 2009 Elsevier B.V. All rights reserved.

Xenotransplantation, the grafting of cells, tissues, or organs
into different species, is a possible solution to overcome the
extreme shortage of human allografts for transplantation (Cooper
and Keogh, 2001). Among the animals, non-human primates and
pigs are considered to be suitable donors for xenotransplantation.
The use of non-human primates as organ donors is associated with
a high risk of transmitting various infectious pathogens to humans
(Allan, 2003). Apart from immunological rejection, pigs may be
more suitable donors than non-human primates because of the
resemblance of their organ sizes and a lower risk of transmit-
ting various infectious pathogens. However, porcine endogenous
retrovirus (PERV) is still a major obstacle to successful xeno-
transplantation with sufficient safety. PERV is a type C retrovirus
persistently integrated into the host genomic DNA as a provirus.
Multiple copies of PERV proviral DNA exist in all of the breeds exam-
ined to date (Louz et al., 2008). PERV is classified into three subtypes,
such as PERV-A, -B, and -C, based on the divergence of its envelope
genes.

It has been demonstrated that PERV particles are released from
a variety of porcine cells and infect a certain range of human cells
(Martin et al., 1998; Patience et al., 1997; Wilson et al., 1998). There
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are a number of patients who received porcine tissues, such as
pancreatic islet cells, skin, liver, and kidney; nevertheless PERV
infection has not been observed in these individuals {(Heneine et al.,
1998; Paradis et al., 1999; Patience et al., 1998). However, long-lived
microchimerism was found in some patients treated by extracor-
poreal splenic perfusion, which might increase a potential risk of
PERV infection through the activation of viral replication (Paradis
et al.,, 1999). An immunosuppressive treatment upon organ trans-
plantation may also increase a risk of PERV transmission. The use
of antiretrovirals would be the first option to minimize the pos-
sibility of PERV transmission to recipients, if they could have an
inhibitory effect on PERV replication without serious side effects.
Among the antiretrovirals, zidovudine (AZT) and didanosine (ddI)
proved to be active against PERV replication in cell cultures (Powell
et al.,, 2000; Qari et al.,, 2001). We have previously demonstrated
that the acyclic nucleoside phosphonate tenofovir (PMPA), an HIV-1
reverse transcriptase {RT) inhibitor, selectively inhibits PERV repli-
cation in human cells (Shi et al,, 2007). However, such RT inhibitors
cannot suppress the production of PERV from the porcine cells in
which its proviral DNA is integrated. Therefore, it would be very
useful if an inhibitor of PERV gene expression could be identified.
In the present study, we have examined four inhibitors of HIV-1
gene expression for their antiviral activity against PERV replication
in porcine cells persistently infected with the virus and found that
the fluoroquinolone derivative K-37 (Baba et al., 1998) and the bac-
terial product EM2487 (Baba et al., 1999) are potent and selective
inhibitors of PERV replication.

K-37 and the nuclear factor kB (NF-kB) inhibitor cepharanthine
(Okamoto et al., 1998) were provided by Daiichi Pharmaceutical
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Fig. 1. Chemical structures of test compounds.

Co.(Tokyo, Japan) and Kaken Shoyaku {Mitaka, Japan), respectively.
JTK-101 (Wang et al., 2007) was synthesized by Japan Tobacco Co.
(Takatsuki, Japan). EM2487 was provided by Esai Co. (Tsukuba,
Japan). These compounds (Fig. 1) were chosen for this study,
because their antiviral activity against HIV-1 replication in chroni-
cally infected cells had been demonstrated (Baba et al., 1998, 1999;
Okamoto et al., 1998; Wang et al,, 2007). All compounds were
dissolved in dimethy! sulfoxide (DMSO) at 10 mM or higher con-
centrations to exclude any antiviral or cytotoxic effect of DMSO
and stored —20 °C until use. The porcine embryonic kidney cell line
PK15, which produces PERV particles, was obtained from the Amer-
ican Type Culture Collection. The cells were maintained in Eagle’s
minimal essential medium supplemented with 10% fetal bovine
serum, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate,
1.5 g/l sodium bicarbonate, and antibiotics.

The activity of the compounds against persistent PERV infec-
tion was based on the inhibition of PERV particle production from
PK15 cells. PK15 cells were seeded in a 24-well plate (2.5 x 10%
cellsfwell). After incubation for 16 h at 37°C, the culture super-
natants were removed and the cell monolayer was washed by
phosphate-buffered saline (PBS), and then 2 ml of fresh medium
containing various concentrations of the test compounds was
added to each well. After a 48-h incubation period, the culture
supernatants were collected and filtered (0.45 wm pore size). Then
the filtrates were mixed with 22% (w/v) polyethylene glycol 6000
solution. After incubation for 5h at 4°C with continuous stirring,
the mixture was centrifuged at 15,000 rpm for 15 min at 4°C. The
pellets contained PERV particles released from PK15 cells. The inhi-
bition of PERV particle production was determined by the decrease
of PERV reverse transcriptase activity using a commercial RT assay
kit (Roche, Mannheim, Germany). The pellets obtained above were
resuspended in lysis buffer supplied by the assay kit and subjected
to reverse transcription reaction for 2 h, according to the Manufac-

turer's instructions, except that MgCl, in the reaction mixture was
replaced by MnCl; (Phan-Thanh et al., 1992). All experiments were
carried out in duplicate.

The antiviral activity of test compounds was also determined by
the inhibition of PERV mRNA expression in PK15 cells. PK15 cells
were seeded and cultured in the medium containing test com-
pounds in the same manner as described for the antiviral assay.
After a 48-h incubation, the culture supernatants were removed,
and the cells were extensively washed with PBS, trypsinized,
and washed again with PBS. Total RNA was extracted from
the cells with RNeasy Mini Kit (Qiagen) and subjected to real-
time RT-PCR analysis. The PERV mRNA level was determined
using the sense primer (5'-AGCTCCGGGAGGCCTACTC-3’), the anti-
sense primer (5-ACAGCCGTTGGTGTGGTCA-3), and the Tagman®
probe (5’-FAM-CCACCGTGCAGGAAACCTCGAGACT-TAMRA-3'). The
primer pair amplifies a region of the pol gene of PERV (Paradis et
al., 1999). The nucleotide sequences used for the construction of the
primers and probe were based on the reports by B. Bartosch, RA.
Weiss and Y. Takeuchi (GeneBank accession numbers: AY099323
and AY099324). The final concentrations of the primer pairs and
probe were 200 and 100 nM, respectively. The Tagman® PCRreagent
kit and Tagman® Multiscribe™ reverse transcription reagent kit
(Applied Biosystems, Roche, Branchburg, NJ) were used according
to the Manufacturer’s instructions. Each sample was run in tripli-
cate. Nonspecific inhibition of host cellular mRNA synthesis by the
test compounds was determined with the Tagman 18S rRNA reagent
kit (Applied Biosystems).

Cytotoxicity of the test compounds was determined by a tetra-
zolium dye method (Tetracolor One®, Seikagaku Corporation,
Tokyo, Japan) (Yamamoto et al., 2001). PK15 cells were seeded and
cultured in the medium containing test compounds in the same
manner, as described in the antiviral assay. After a 48-h incubation,
1.5mi of the culture supernatants were removed and 25 pl of the
dye was added to each well. After a 4-h incubation at 37 °C, the spe-
cific (450 nm) and reference (630 nm) absorbances were monitored
for each well by a microplate reader.

When four HIV-1 gene expression inhibitors were examined for
their inhibitory effect on PERV replication in PK15 cells, K-37 and
EM2487 displayed dose-dependent reduction of PERV RT activity
in culture supernatants (Fig. 2A and C). K-37 and EM2487 did not
show a directinhibitory effect on PERV RT activity (data not shown).
These compounds did not display apparent cytotoxicity to PK15
cells at concentrations up to 1 and 10 pM, respectively, indicating
that K-37 and EM2487 are selective inhibitors of PERV replication
in porcine cells. In contrast, JTK-101 and cepharanthine did not
show any activity against PERV replication at the highest concen-
tration tested (1 wM) (Fig. 2B and D). Since PERV proviral DNA is
integrated in the genome of the host cells, the compounds were
also examined for their inhibitory effect on viral mRNA synthesis
in PK15 cells. As shown in Fig. 3, dose-dependent suppression of
PERV mRNA synthesis was observed for K-37 and EM2487 but not
for JTK-101 or cepharanthine. These results are in accordance with
those obtained in the RT assay (Fig. 2). The 50% effective concen-
tration (ECsg) of K-37 for PERV replication and its 50% inhibitory
concentration (ICsq) for viral mRNA synthesis were 0.35 +0.04 and
0.34£0.05 uM, respectively (Table 1). On the other hand, its 50%
cytotoxic concentration (CCsg) was 4.63 + 1.62 M, suggesting that
K-37 is a selective inhibitor of PERV gene expression. Similarly, the
ECsg, ICsg, and CCsq of EM2487 were 5.44 +1.40, 4.36 4 0.30, and
>10 M, respectively.

K-37 is a potent and selective inhibitor of HIV-1 replication in
both acutely and chronically infected cells at submicromolar con-
centrations (Baba et al., 1998). K-37 could inhibit Tat-dependent
transactivation, yet it was not an inhibitor of Tat itself or its cofac-
tor CDK9/cyclin T1. Since PERV does not generate Tat protein, it is
apparent that the anti-PERV activity of K-37 is not due to the inhi-
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