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We developed the method to efficiently construct recombinant vaccinia viruses based on LC16m8A strain
that can replicate in mammalian cells but is still safe in human. Immunization in a prime-boost strategy
using DNA and LC16m8A expressing SIV Gag elicited 7-30-fold more IFN~y-producing T cells in mice than
that using DNA and non-replicating vaccinia DIs recombinant strain. As the previous study on the DNA-
prime and recombinant DIs-boost anti-SIV vaccine showed protective efficacy in the macaque model
[Someya K, Ami Y, Nakasone T, lzumi Y, Matsuo K, Horibata S, et al. Induction of positive cellular and
humoral responses by a prime-boost vaccine encoded with simian immunodeficiency virus gag/pol. ]
Immunol 2006;176(3):1784-95], LC16m8 A would have potential as a better recombinant viral vector for

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As vehicles for delivering antigens of HIV-1, replication-
defective viral vectors have been extensively studied because of
their safety. For example adenovirus and vaccinia virus-based vec-
tors expressing Gag, Nef, and other components of HIV-1 have been
evaluated in monkeys [1,3] and human trials [2,4,5]. They, how-
ever, generally have not induced sufficient level of immunity nor
protected human from HIV-1 infection although they elicited con-
siderable anti HIV/SIV immunities in animal models [6]. Moreover,
controversial results have been reported on containment of chal-
lenged viruses depending on SIV or SHIV, a hybrid virus between
HIV-1 and SIV, in monkey models [1,7]. Therefore more effective
vehicles may be needed for HIV vaccine development.

Replication-competent vaccinia virus that has been proven to
be safe in human vaccination against small pox could be a good
candidate for a better vehicle. Vaccinia LC16m8 strain has been
shot to 100,000 people without any serious adverse effects [8].
The LC16m8, however, has been found to be genetically unsta-
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ble and to generate spontaneously more virulent revertants from
stock of LC16m8 viruses. To improve LC16m8, we identified the
B5R gene responsible for the reversion, and constructed geneti-
cally stable LC16m8A, which is essentially as same as LC16m8 in
antigenicity and safety in mice, and approximately 1000-fold more
immunogenic than non-replicating vaccinia, MVA strain. In partic-
ular, LC16m8A never elicited any symptoms in severe combined
immunodeficiency disease mice even at 107 pfu dose [9]. Therefore
LC16m8A could be a better vehicle for vaccines against HIV and
other human diseases.

Gag proteins of HIV-1 and SIV are major antigens to elicit cyto-
toxic T lymphocyte (CTL) responses. Activity of anti Gag CTL in
HIV-1-infected people inversely correlates with their viral loads
{10]. In some monkey experiments of SIV infection, the strength of
anti Gag CTL has been reported to correlate with the containment of
SIV[11]. Therefore, we constructed LC16m8 A that expresses the gag
gene of SIVmac239 to compare its ability to elicit anti Gag immu-
nity with replication-defective vaccinia virus DIs strain, which has
been reported to be immunogenically similar to MVA [12], and
to evaluate its potential as a recombinant vector for HIV vaccine
development.

During the course of constructing LC16m8 A-based recombinant
viruses, we encountered a drawback, such as inefficient incorpo-
ration of the foreign gene by conventional method in which an
in vivo recombination process is involved. Therefore, in this paper
we firstly describe our new device including construction of a new
strain m8 Avnc110, which prompts construction of m8A express-
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ing the gag gene of SIV by in vitro ligation of the vaccinia genome
with foreign DNA.

2. Materials and methods
2.1. Cells and viruses

Rabbit RK13 cells were cultured in RPMI1640 supplemented
with 10% FCS. Human HeLa, mouse L929, NIH3T3, hamster BHK, and
primary chicken embryo fibroblast (CEF) cells were maintained in
DMEM supplemented with 10% FCS. Canarypox virus (a kind gift of
National Institute of Animal Health)[13], and LC16m8A [9] and DIs
[14] strains of vaccinia virus were used. Viral titers were calculated
on the basis of the number of plaques on CEF. The titer of LC16mS8A
was similar when titrated on RK13 and CEF monolayers.

2.2. Construction of pfJWSIVgag

To construct the plasmid that expresses the SIV gag gene
under the cytomegalovirus promoter, the gag coding region was
amplified with a pair of primer SIVGAGF1 (GCCAAGCTTGCCACC-
ATGGGCGTGAGAAACTCCGTCTTGTCAGG; the underlined sequence
is Hindlll site) and SIVGAGR1 (CGCGCCCGGGCTACTGGT CTCCTC-
CAAAGAGAGAATTGAGGTGCAGC; the underlined sequence is Xmal
site) using pSIVmac239 [15] as a template under the condition:
2minat94-C, 20 cyclesof 30sat 94=C, 60s at 60°C, 2 min at 72 °*C,
and a final extension for 5min at 72°C. The gag fragment gener-
ated was digested with HindIll and Xmal, and then ligated with
the enzyme-digested pJW322, which harbors the cytomegalovirus
promoter derived from pJW4303 [16] (a kind gift of Dr. Y. Takebe).

2.3. Construction of m8Avnc110

To generate a transfer plasmid pVNC110, the vnc/KE sequence
(5'-GGTACCCGCCCGGGCCGCGACCGGCCGGCCGAATTC-3')  contain-
ing four restriction enzyme sites (Srfl, Sfil, Rsrll, and Fsel), which
are not present in the vaccina virus genomes, was inserted between
Kpnl and EcoRl sites of pSFJ1-10, which harbors a strong composite
promoter consisting of the cowpox A-type inclusion body (ATI)
and multiple mutated-p7.5 promoters (PSF]1-10 promoter), which
are sandwiched with the segments of the vaccinia hemagglutinin
(HA) gene [17,18]. pVNC110 resultant was verified by sequencing
to harbor these sites downstream of PSFJ1-10 promoter, which is
sandwiched by the segments of the vaccinia HA gene.

Next, we transfected 1.5 ug of pVNC110 to 1 x 10° BHK cells,
which had been infected with LC16m8A at 0.05 moi, to construct
m8Avnc110. After the culture at 33°C for 2 days, the progeny
viruses were harvested and their plaques were formed on RK13
cell monolayer. The candidate viruses were selected on the basis
of HA~ phenotype [19]. To ascertain whether the virus contains
the expected sequences of pVNC110 in the HA gene, the virus-
enriched fraction was prepared by disruption of the infected cells
by repeated freeze and thaw followed by clarification by low speed
centrifugation and concentration by centrifugation at 15,000 rpm
for 30min in microcentrifuge at 4°C. Then, it was used as a
template for PCR with a pair of the primers vwvHA867s (GGATC-
TACACATTCACCAGA) and vvHA1009as (CTAGTGTATGTGACGGTGT),
the sequences of which were present in the HA gene, under the con-
dition: 2min at 94 -C, 30 cycles of 30s at 94°C, 60s at 54 °C, 60s at
72°C, and a final extension for 5min at 72 <C. Virus containing the
sequence of VNC110 produced a 1 kb fragment of PCR product.

2.4. Construction of m8ASIVgag

Viral particles of m8 AVNC110 were purified by method includ-
ing banding in sucrose gradient centrifugation [20], and then

viral DNA was isolated by phenol extraction method. The vac-
cinia DNA was digested with Cpol and Fsel followed by purification
with phenol extraction and ethanol precipitation. The gag region
in SIVmac239 genome was amplified by PCR using pSIVmac239
[15] as a template with a pair of the primers CPO-SIV gag f2
(TTTCGGACCGCCACCATGGGCGTGAGAAACTCCGTCTTG; underlined
sequence is Cpol site) and FSE-SIV gag r1 (TATGGCCGGCCTAC-
TGGTCTCCTCCAAAGAGAGA; underlined sequence is Fsel site) under
the condition: 2 min at 94 °C, 20 cycles of 30s at 94-C, 60s at 60 -C,
2minat72°C and a final extension for 10 min at 72+C. The gag frag-
ment was digested with Cpol and Fsel followed by purification with
PCR purification kit (Qiagen, Hilden, Germany). The digested vac-
cinia genome (5 ug) and gag fragment (0.3 ug) were ligated using a
ligation kit (Takara, Otsu, Japan) according to the manual, purified
by phenol extraction and concentrated by ethanol precipitation.
The ligated DNA was transfected with lipofectamine LTX (Invitro-
gen, Carlsbad, USA) to 3.5 x 105 BHK cells that had been infected
at 10 moi with canarypox virus. Usage of avipox viruses as a helper
virus has been well established [21]. After 2 days culture at 33 °C, the
progeny viruses were harvested by repeated freeze and thaw and
titrated on the monolayer of RK13 cells. m8 ASIVgag was cloned
from single plaque and its homogeneity was evaluated by staining
the plaques with sera of monkey infected with SIVmac239 and alka-
line phosphatase-conjugated anti monkey 1gG antibody followed by
NBT/BCIP coloring reaction. All plaques were positively stained.

2.5. Construction of rDIs/PSFJ/SIVgag

To construct a complementary transfer vector for the deleted
region of DIs, we used a pDIsgptmH5 plasmid (a kind gift
of Dr. K. Ishii) that possesses both the modified H5 promoter
and the E. coli guanine phosphoribosyltransferase (gpt) gene
driven by a P75 promoter, which are sandwiched with the
DIs fragments adjacent to the deleted region [22]. A vaccinia
synthetic PSFJ1-10 promoter sequence [17] was amplified by
PCR at 52°C of the annealing temperature using a pair of the
primers: PSFJ1-10s (ACATGCATGCATGAAGTTGAAGATGATG: under-
lined sequence is Sphl site) and PSF}j1-10r (GATATCCTCGAGCA-
GCACACCGTGCAATAAATT: underlined sequence is EcoRV and
Xhol sites). To substitute the PSFj1-10 promoter for the mH5
promoter, the PCR product was inserted into the Sphl and
EcoRV sites of pDIsgptmH5, generating pUC/DIs/PSF] that could
express the foreign antigen gene under the control of the
PSFJ1-10 promoter. A DNA fragment encoding the full-length
gag gene of SIVmac239 was amplified by PCR at 55°C of
the annealing temperature using a pair of the primers: gag-
s (CCCCCCGGGATGGGCGTGAGAAACTCC: underlined sequence is
Smal site) and gag-r (CCGGAGCTCCTACTGGTCTCCTCCAAAGAG:
underlined sequence is Sacl site), and inserted into the Smal
and Sacl sites of pUC/DIs/PSF] to generate the transfer vector,
named pUC/DIs/PSFJ/SIVgag. This plasmid (10 ug) was transfected
by Gene-Pulser (Bio-Rad Laboratories, Inc. Hercules, USA) to CEF
infected with DIs at 1.0 moi. Recombinant DIs clones expressing the
SIV gag gene were selected in the presence of gpt [23].

2.6, Western blotting

m8ASIVgag and rDIs/PSF]/SIVgag were infected to various cells
at 3 or 5moi and cultured for 24 h at 33°C. Then the infected cells
and culture medium were collected and their protein amounts
were quantified by BCA assay. Appropriate amounts of the cell
lysates and medium fraction indicated in the figure legends were
subjected to 12% SDS-PAGE and immunologically detected using
500-fold-diluted sera from SIVmac239-infected monkey and alka-
line phosphatase-conjugated anti monkey IgG antibody (Promega,
Madison, USA) followed by NBT/BCIP coloring reaction.
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2.7. Immunization

Seven-week-old female C57/BL6 mice were purchased from
CLEA Co. Ltd. (Tokyo, Japan). Fifty microgram of pJWSIVgag was
intramuscularly injected into the right and left quadriceps, and
1 x 10° pfu of vaccinia viruses were inoculated intrademally accord-
ing to the schedule indicated in Figs. 3A and 4A. All mice were
maintained according to the institutional animal care and the
guidelines of Hokkaido University. The study was conducted in a
biosafety level 2 facility under the approval of an institutional com-
mittee for biosafety and in accordance with the requirements of the
World Health Organization.

2.8. Assay of cellular immune response by IFN-y ELISPOT

SIV Gag specific IFN-y producing cells were quantified 2 or 3
weeks after the final immunization using an ELISPOT kit for mouse
IFN-y (R&D Systems, Minneapolis, USA). The excised spleens were
disrupted with a syringe plunger and passed through a cell strainer
(Becton Dickinson, Franklin Lakes, USA). Isolated spleen cells were
suspended at 106 cells/m! in RPMI 1640 medium supplemented
with 10% fetal bovine serum, penicillin and streptomycin. Aliquots
(100 1) were plated into wells that were coated with anti-mouse
IFN-v antibody and stimulated with SIV Gag-specific 15 mer over-
lapping peptide pools (0.5 u.g of peptides/10° cells) (A gift of AIDS
Research and Reference Reagent program. Catalog #6204). Cells
mock-stimulated with medium alone served as a negative control
while cells treated with 50 ng/ml of phorbol 12-myristate (PMA)
and 0.5 pg/ml of calcium ionomycin were used as a positive con-
trol to ascertain the number of viable T cells. After 24 h incubation,
IFN-vy secreting cells were detected according to the manufacturer’s
instructions. Numbers of spot forming cells (SFC) were determined
using the ImmunoScan Plate Reader with ImmunoSpot software
(Cellular Technology Limited, Cleveland, USA).

2.9. Proliferation assays

Lymphocyte proliferation was measured by incorporation of
BrdU into the stimulated-lymphocytes using cell proliferation ELISA
BrdU kit (Roche Applied Science, Mannheim, Germany). Isolated
spleen cells (1 x 105) were cultured in a 96-well assay plate (BD
Falcon, Franklin Lakes, USA) in the presence or absence of recombi-

LC16m8A

pVNC110

AVNC110 strain

| ATl promoter | 7.5Ex 10 |
' Seft SH1 Cpol Fsal

nant SIV Gag protein (SIVmac251 p27; Advanced Biotechnologies,
Inc., Columbia, USA) at 5.0 ug/m! for antigen-specific stimulation.
The plates were incubated for 2 days at 37 °C, and then another 24 h
in the presence of BrdU (100 wM). Uptake of BrdU was determined
using luminometer {Wallac 1420; PerkinElmer, Branchburg, USA).
The results were expressed as the stimulation index (SI), which was
calculated as a ratio of relative light unit per second in the presence
to that in the absence of the antigen.

2.10. Statistical analysis

Data were expressed as arithmetic mean +standard error of
means {mean + S.E.M.). The data analysis was carried out by using
Student's t-test (EXCEL version 11.5, Microsoft). A P-value of <0.05
was considered significant.

3. Results
3.1. Construction of m8 ASIVgag

Fig. 1 illustrates the outline for construction of m8ASiVgag.
Firstly we constructed m8 AVNC110 strain by usual method in
which pVNC110 was transfected to BHK cells that had been infected
with LC16m8A. Resultant m8AVNC110 harbors PSFJ1-10 pro-
moter followed by the multi-cloning sites containing the restriction
enzyme sites which are not present in the vaccinia genome. To
construct m8 ASIVgag, the genomic DNA extracted from AVNC110
virions was digested with Cpol and Fsel, which do not cut the other
part of the vaccinia genome, and ligated with SIV gag fragment in
vitro. Then the ligation mixture was transfected to BHK cells that
had been infected with canarypox virus, which cannot replicate in
mammalian cells. A clone, named m8ASIVgag3, that was isolated
from one among six plaques formed by the progeny viruses pro-
duced SIV Gag protein judged by staining the plaques with sera
derived from a SIV-infected monkey.

3.2. Comparison of Gag production by LC16m8A and Dis-based
recombinants

Previously Honda's group constructed replication-deficient vac-
cinia DIs strain-based recombinant, which had immunogenicity
similar to MVA-based recombinant [12]. We now compared by

VNC110 vaccinia genome

i Digestion with REs

SIV gag

T —
\(vitro ligation

Canary poxvirus

Transfection

[ o—

ASIVgag

s |

Fig. 1. Schematic presentation for construction of m8 ASIVgag.
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Fig. 2. Western blotting for p55 Gag produced by vaccinia recombinants. Appro-
priate fractions (1/50-1/10,000) of the cell Iysates and medium prepared from
m8ASIVgag- or rDIs/PSF}/SiVgag-infected cells were subjected to Western blotting.
One hundredth of the ceil lysates contains approximately 1 g of proteins.

Western blotting the amount of Gag protein produced by LC16m8A
and DIs, both of which used the same promoter for expression
of the foreign gene (Fig. 2). In mouse L cells, where DIs is not
able to replicate, approximately 100-fold more amount of Gag
protein was detected in both medium and cells infected at high
multiplicity with m8ASIVgag than that in the cells infected with

rDIs/PSF}/SIVgag, whereas m8ASIVgag produced Gag protein just
several fold more than rDIs/PSF]/SIVgag in CEF in which both
viruses replicate. In human HeLa, mouse NIH3T3, and rabbit RK13
cells m8 ASIVgag again produced Gag protein 100-fold more than
rDIs/PSF]/SIVgag (data not shown). These results suggest that pro-
duction of Gag is affected by not only the promoter just upstream
of the foreign gene but also the replication capability of the vector
virus.

3.3. Immunogenicity of LC16m8A and DIs-based recombinants

Next, we evaluated the immunogenicities of these recombinant
viruses in mice by priming with plasmid pJWSIVgag expressing
the gag gene followed by boosting with these recombinant viruses.
Considering the preceding reports that viral vectors failed to elicit
enough immunities in human although they were nicely antigenic
in mice under optimal immunization schedule {4,24], we com-
pared their immunogenicities under the suboptimal condition that
includes two or three priming with pJWSIVgag followed by boost-
ing once with 1 x 108 pfu of the recombinant viruses. We have
assessed the number of IFN-y producing cells by ELISPOT assay 2
weeks after a shot of the recombinant viruses, and found that sev-
enfold more cells were induced by prime-boost vaccination with
pJWSIVgag and SIVm8Agag than that of rDIs/PSF}/SIVgag (Fig. 3).
We also evaluated the induction of Gag specific IFN-y produc-
ing cells by single immunization with pJWSIVgag, SIVm8Agag or
rDis/PSF}/SIVgag. In contrast to prime-boost regimen, significant
positive spots were not detected by ELISPOT assay (data not shown).
When assayed 3 weeks after final immunization with the viruses,
differences were more prominent in that only one among four
mice immunized with rDIs/PSF]/SIVgag were ELISPOT positive com-
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Fig. 3. Comiparison of booster effect by m8ASiVgag and rDIs/PSF}/SIVgag. (A) Schematic drawing of experimental design for immunization. Mice were immunized twice
with SIVgag DNA followed by one boost with rDIs/PSF}/SIVgag (group 1) or m8ASIVgag (group 2). (B) Frequency of SIV Gag-specific IFN-y-preducing cells in immunized
mice. Spteen cells were stimulated with pooled SIV Gag peptides, and IFN-y-producing cells were detected by IFN~y-specific ELISPOT assays. Data are expressed as the mean
number of SFC per 10° splenocytes + S.E.M. (C) induction of SIV Gag-specific lymphocyte proliferatives response. Spleen cells were cultured in the presence or absence of SIV
p27 antigen, and incorporation of BrdU was measured as described in Section 2. Proliferative responses were presented as the value of the stimulation index (S!). Data are

mean +S.E.M, N.S. means not significant.
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Fig. 4. Comparison of immunogenicities of m8ASIVgag and rDIs/PSF){SIVgag. (A)
Schematic drawing of experimental desigh for immunization. Mice were immunized
three times with SiVgag DNA followed by one boost with rDIs/PSF}/SIVgag (group
3) or m8ASIVgag (group 4). (B) Frequencies of SIV Gag-specific IFN-y-producing
cells in individual immunized mice were presented as the number of SFC per 10°
splenocytes. SFC of individual mouse was counted in triplicate and presented as the
means +S.E.M.

pared with all positive mice with m8Agag and average of ELSPOT
was approximately 30-fold more in mice immunized with m8Agag
than rDIs/PSF]/SIVgag (Fig. 4). To monitor the sensitivity of ELISPOT
assays, we always included positive controls that were splenocytes
stimulated with PMA and ionomycin, and ascertained that they pro-
duced 300-500spots/10° splenocytes in every experiment (data
not shown).

Proliferation capacities of the lymphocytes derived from the
immunized mice were also compared based on BrdU incorpora-
tion. Splenocytes from both immunized groups showed low levels
of T-cell proliferation in response to stimulation with SIV Gag pro-
tein (Fig. 3). But we did not find significant difference between the
mice immunized by either virus in contrast to the results of ELISPOT
assay described above.

4. Discussion

In this study, we devised a new method involving in vitro ligation
to efficiently construct recombinant vaccinia viruses expressing the
foreign genes. We could construct SIV Gag expressing m8A only by
this technique but not by the conventional method, which involves
in vivo ligation. Moreover, we have successfully constructed two
additional recombinant viruses expressing the chimeric genes,
which contain rat MHC class | with an epitope sequence fused
with B2 microglobulin. Approximately 60% of the progeny viruses
expressed the transgenes even when no methods were used to
enrich the recombinants (They will be published elsewhere.), sug-
gesting that this new technique is generally applicable to construct
m8A-based recombinant viruses.

Here, using the same promoter in both recombinant Dis and
LC16m8A strains of vaccinia, we have demonstrated a much more
efficient expression of SIV Gag transgene by the latter in several
mammalian cells, which were infected at a high dose of inoculum.
In contrast, less difference was observed in the level of Gag protein
expression in CEF probably because both recombinant viruses prop-
agated at comparable level in this cell type. These results suggest
that vaccinia viruses, which propagate better, could provide more
efficacious expression of immunogens of interest.

The propagation capability and related efficacy of Gag pro-
duction by these recombinant vaccinia viruses may reflect their
immunogenicity. IFN-y producing T cells evaluated by ELISPOT
were more efficiently elicited by m8 ASIVGag and lasted longer than
those by rDIs/PSF}/SIVgag. Since several non-replicating vaccinia
virus vectors including DIs, MVA, and NYVAC have been shown to
be similarly immunogenic in mice [12,25], replication-competent
vector such as LC16m8A may be more immunogenic than gen-
eral non-replicating vectors. Since anti-SIV vaccination comprising
the DNA-prime and recombinant DiIs-boost has been reported to
elicit protective immunity in the macaque model [26], it may be
expected that m8 ASIVGag would confer better protection against
SIV challenge.

Our results are in contrast with reports by Hirsch et al., that
showed similar level of immunogenicity between SIV Gag recom-
binant MVA and a replication-competent vaccinia vectors when
a very high dose of vaccine was applied [27]. However, it should
be important to evaluate the immunogenicities of vaccinia recom-
binants under the suboptimal immunization schedule, including
a single boost with a low dose of vaccinia recombinants, which
was adopted in this study, given that unsuccessful outcome of the
human trials by the vaccines [2,4] that had been appreciated based
on protective immune responses elicited by optimal immunization
schedule in model animals [24,28].

Mucosal immunity has been suggested to be important for pro-
tection against HIV, because it sexually transmit in most cases.
Since history of exposure of replicating virus in mucosal tissues
has been reported to prime the mucosal immune system and
lead to the induction of secretary IgA [29], it is expected that
LC16m8A vaccination via the mucosal route may induce effective
mucosal immunity. Moreover, replicating adenovirus vector has
also been reported to be more effective than non-replicating one
[30].

In contrast to the more efficient induction of IFN-y producing
T cells by m8ASIVGag, the Gag-specific lymphocyte proliferation
responses were similarly elicited by both recombinants. Vaccinia
viruses produce various kinds of immunomodulatory factors, which
may tend to elicit uneven immunities [31]. Therefore, it is con-
ceivable that quantitative and qualitative differences of the factors
produced by LC16m8A and Dls strains may cause the diverged
immune responses.

In summary, we devised an efficient method to construct a
recombinant virus based on LC16m8A and evaluated it as a vac-
cine candidate. This replication-competent virus vector showed
merits for further development in the viewpoint of its ability to
elicit enhanced cell-mediated and hopefully humoral and mucosal
immune responses.
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Background: Preadministration of high-affinity humanized anti-HIV-1 mAb KD-247 by
passive transfer provides sterile protection of monkeys from heterologous chimeric
simian/human immunodeficiency virus infection.

Methods: Beginning 1 h, 1 day, or 1 week after simian/human immunodeficiency virus-
C2/1 challenge (20 50% tissue culture infective dose), mature, male cynomolgus
monkeys received multiple passive transfers of KD-247 (45 mg/kg) on a weekly basis
for approximately 2 months. Concentrations and viral loads were measured in periph-
eral blood, and CD4" T-cell counts were examined in both peripheral blood and
various lymphoid tissues.

Results: Pharmacokinetic examination revealed similar plasma maintenance levels
ranging from 200 to 500 wg/ml of KD-247 in the three groups. One of the six monkeys
given KD-247 could not maintain these concentrations, and elicitation of anti-KD-247
idiotype antibody was suggested. All monkeys given KD-247 exhibited striking post-
infection protection against both CD4™ T-cell loss in various lymphoid tissues and
atrophic changes in organs compared with control group animals treated with normal
human immunoglobulin G. The KD-247-treated groups were also partially protected
against plasma viral load elevation in peripheral blood samples, although the complete
protection previously reported with preadministration of this mAb was not achieved.

Conclusion: Postinfection passive transfer of humanized mAb KD-247 with strong
neutralizing capacity against challenged virus simian/human immunodeficiency
virus-C2/1 protected CD4™ T cells in lymphoid organs. :
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responses, are critical to good control of HIV-1 [1,2].

Elicitation of virus-specific humoral immune responses,
with their strong CD4% and CD8% Ticell immune

b

’

Although recent vaccine candidates based on active
immunization are intended to stimulate CD4" and
CD8™ Tecell responses, induction of broadly neutralizing
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antibodies by active immunization has been limited to
date [3,4]. In contrast, passive immunization with
neutralizing antibody effectively induced sterilizing
immunity by preventing the establishment of chronic
infection. We and others have reported that chimpanzees
can be protected against acute infection with the T-cell
line-adapted strain HIV-1;;5 by passive transfer of
a mouse—human chimeric anti-HIV-1 V3 mAb [5].
Furthermore, we produced a high-affinity cross-
neutralizing humanized mAb, KD-247, by sequential
immunization with peptides derived from the V3 region
of HIV-1 clade B primary isolates and found that KD-247
yields sterile protection of monkeys against the
highly pathogenic simian/human immunodeficiency
virus (SHIV) [6,7]. KD-247 is thus considered a promising
new immunotherapeutic agent for HIV-1-infected
patients [8]. :

It was demonstrated that intensive, short-term postinfec-
tion therapy with neutralizing immunoglobulin G (IgG)
against simian immunodeficiency virus (SIV) can have
long-term beneficial effects on disease in a pathogenic
primate lentivirus model [9]. Passive transfer of neutralizing
antibodies also conferred postinfection prophylaxis against
pathogenic SHIVs in macaques [10,11]. Furthermore,
passive immunization of pregnant or neonatal monkeys
with combinations of mAbs has been reported to
completely or partially neutralize SHIV in animal models
of mother-to-child transmission of HIV [12,13]. However,
whether neutralizing antibody plays a significant role in
controlling established HIV infection is unclear. The
current aim of antiretroviral therapy remains the main-
tenance of plasma HIV-1 RNA levels below the limit of
detection [14]. In a clinical trial, three passively transferred
mAbs, 2G12, 2F5, and 4E10, were shown to delay the
rebound of HIV-1 after cessation of antiretroviral therapy;
the delay was particularly pronounced in acutely infected
individuals [15]. In this study, we evaluated the postinfec-
tion effect of KD-247 against CD4" T-cell loss and
increased viral loads in the SHIV model.

Materials and methods

Preparation of KD-247

A high-affinity humanized mAb, KD-247 [Chemical
Abstracts Service (CAS) Registry Number: 914257-21-
9], was prepared as previously described [6]. Briefly, the
mouse mAb C25 was elicited by immunization with six
synthetic peptides derived from the V3 region of HIV-1
primary isolates. The complementary-determining
regions and partial framework regions of C25 were
transferred into the variable region of human IgG. Cells
producing the humanized C25, KD-247, were expanded
in large-scale culture, and the antibody was purified from
the culture supernatants by ion exchange and affinity
chromatography.

Pathogenic simian/human immunodeficiency
virus challenge to monkeys and postinfection
transfer of KD-247

All animals used in this study were mature, male
cynomolgus monkeys (Macaca fascicularis) from the
Tsukuba Primate Center, the National Institute of
Infectious Diseases (NIID) (currently known as the
Tsukuba Primate Research Center, National Institute of
Biomedical Innovation), Japan. They were housed in
accordance with the Guidelines for Animal Experimen-
tation of the Japanese Association for Laboratory Animal
Science, 1987, under the Japanese Law Concerning the
Protection and Management of Animals, and were
maintained in accordance with the guidelines set forth
by the Institutional Animal Care and Use Committee of
NIID, Japan.

The pathogenic chimeric SHIV-C2/1 is an SHIV-89.6
variant isolated by in-vivo passage in cynomolgus
monkeys [16]. Cynomolgus monkeys injected intrave-
nously with SHIV-C2/1 exhibited high levels of viremia
and marked CD4" T-cell depletion within 2 weeks after
challenge [16,17]. Six naive monkeys were intravenously
inoculated with 20 50% tissue culture infective dose
(TCIDsp) of SHIV-C2/1 and were then given 45 mg/kg
weight of KD-247 at 1h (Cy-1 and Cy-2), 1 day (Cy-3
and Cy-4), or 1 week (Cy-5 and Cy-6) after viral
challenge; a single preinfection administration of the mAb
at this dosage had exhibited sterile protection against
SHIV-C2/1 infection [7]. Two control monkeys (Cy-7
and Cy-8) received 45 mg/kg of purified human normal
immunoglobulin (control IgG; Nihon Pharmaceutical,
Tokyo, Japan) instead of KIDD-247 at 1 day after viral
challenge. Additional multiple (seven or eight) admin-
istrations of the same concentrations of KD-247 or
control IgG were given weekly from day 7 for a period of
2.5—3 months. Blood samples were drawn to examine the
plasma concentrations of KD-247, SHIV RNA copy
numbers, and CD4" T-cell counts. At approximately 11—
13 weeks after viral challenge, necropsies were performed
and histological examination and flow cytometric
analyses of lymphoid organs were conducted. The
schedules of KD-247 administration, blood drawing,
and necropsy are shown in Fig. 1(a).

Plasma concentration of KD-247

KD-247 concentrations in macaque plasma were measured
by ELISA. Ninety-six-well ELISA plates (MaxiSorp, Nunc
A/S, Roskilde, Denmark) were coated with a KD-247-
specific antigen, SP13 peptide (GPGRAFGPGR AFGP
GRAFC). After blocking and washing, monkey plasma at
appropriate dilutions was added and the plates incubated.
KD-247 was diluted to concentrations ranging from 2.5 to
40 ng/ml and used as a reference. The wells were washed
and then incubated with a detection antibody solution
consisting of peroxidase-conjugated antihuman IgG mAb
(Kaketsuken, in-house preparation). After final washes,
peroxidase substrate was added and the reaction was

— 100 —



