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FiG. 6. Centroid position of TV in the CC direction. Broken curve shows the theoretical position as a function of phase: (a) A,N=(5.0 mm,2.0 s), (b)
A,D=(5.0 mm,9.9 s), (c) (A,7)=(10.0 mm,2.0 s), and (d) (4,7)=(10.0 mm,10.0 s).

Il1.C. Comparison of TV, and TVy,y to its theoretical
volume

The ratios of mean TV,p and TVygy size to Vipeor, are
shown in Fig. 9. The volumetric error between TV, size and
Vineory Was within 5% except for T of 2.0 s. TVyyy sizes were
slightly larger than TV,p sizes. Mean = SD of TVy;y/TVyp
was 102.79% = 1.32%. An additional margin of up to 2.5
mm was required to encompass Vipeory for TVyp and TVyy
in the CC direction. Centroid shifts between TV,p and
TVypy were within 0.6 and 0.2 mm in the CC and other
directions, respectively.
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FiG. 7. Volumetric deviation between TV size and V; as a function of phase
range. A positive value indicates that TV size is larger than V.
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IV. DISCUSSION

We evaluated the impact of motion velocity on imaged
objects by varying the amplitude and period of sinusoidal
motion, Both misalignment and motion-blurring artifacts
were caused by high motion velocity. A phase range of 2%
was required even for T of 10.0 s. TV, sizes depended on
the motion period and were smaller than Vi, On the other
hand, TV )y sizes were close t0 Vieory except for T of 2.0 s.

In the current study, projection data over a full gantry
rotation of 1.0 s, which was the maximum rotational speed of
our CT scanner, were used for image reconstruction. Recon-
structed images were based on 1.0 s projection images. The
large motion error with T of 2.0 s was because each recon-
structed image included projection images that spanned 50%
of all phase bins. The numerical results of the current study
would be different if a different gantry rotational speed was
used with a different CT scanner; for example, if a gantry
rotational speed of 0.5 s was used with (A,7)
=(10.0 mm,2.0 s), the results would be similar to that with
(A,T)=(10.0 mm,4.0 s) in the current study.

The phantom moved along the longitudinal axis of the CT
couch according to cos(f), not cos*(f) modeled by some
researchers,”® because of the limitations of our phantom ap-
paratus, Compared to cos(), stationary time length near ex-
halation is longer and motion velocity is higher near midex-
halation and midinhalation in cos*(¢). If the motion pattern of
cos*(t) was applied to phantom motion, volumetric variations
would be smaller near exhalation and motion artifacts would
be more pronounced near midexhalation and midinhalation.

Varying density distribution within the imaging plane
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leads to in-slice artifacts. Rietzel et al."' performed a similar
phantom study on 4D CT and indicated that spiral-like im-
ages of spherical objects in these axial images occurred due
to the motion of the spherical object into or out of the imag-
ing plane, which was particularly noticeable at the sphere
pole. Materials around the spherical object in our
QUASAR™ phantom were not styrofoam/air but acrylic,
which had a CT number of around 130 HU. The effects of
in-slice artifacts might have been less marked than in their
study because of gradual density changes within the imaging
plane.

Irregular respiration during 4D CT data acquisition results
in the misidentification of respiration cycles. Mutaf er al”
concluded that temporal inaccuracies could lead to severe
volumetric inaccuracies of up to 40% in the delineation of
target volumes. Yamamoto et al.'® reported that the root
mean square respiratory irregularity was significantly related
to the occurrence of motion artifacts. Thus, it is important to
assign an accurate respiratory phase to generate temporally

TV,5 (A = 5.0 mm) J TV, (A=5.0mm)

] Vi (4=10.0mm)

] TV, (A=100mm
1o w )

Ratio of mean TV, and TV gy size to Vi, (%)
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FiG. 9. Ratio of mean TV,p and TVygy size t0 Vipeory TVyp sizes show
period dependency and are smaller than V... On the other hand, TVyyy
sizes are slightly larger than TV, sizes and are close to Vypeory except for T
of 2.0 s. Actual averaged periods are 8.1 s*' and 9.9 s* for A of 10.0 and
5.0 mm, respectively.
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coherent 4D CT images.”’lg To narrow the phase range with
the current retrospective sorting method based on respiratory
phase, the following two specific scan parameters for cine
CT data acquisition are available on our CT scanner: (A) to
shorten Tipyees and (B) to lengthen Ti;p.. The number of im-
ages per study will substantially increase when adjusting
these parameters, which might exceed the maximum limit of
3000 slices per study on our CT scanner. Exposure dose to
patients will also increase with (B) and thus these parameters
have to be balanced. Furthermore, adjusting ISD will help
reduce the phase range to some extent. Note, however, that
in-slice and motion-blurring artifacts would remain even
with a phase range of 0%. These artifacts are not attributed to
retrospective sorting methods but can be reduced by a fast
gantry rotational speed. CT images acquired with a fast gan-
try rotational speed can improve temporal resolution and will
be closer to a perfect snapshot in time.

4D CT data are generally analyzed to determine the mean
tumor position and tumor range of motion and allow us to
design patient-specific internal margins;“‘l‘q’m’22 however,
data reliability is degraded under motion artifacts. Although
Rietzel et al."' showed that trajectory differences between
the center of mass calculation and rigid registration were
within one voxel (2.5 mm in the CC direction in their study)
for all motion phases, our maximum positional difference
between TV and the theoretical centroid was 1.35 mm in the
CC direction for (A,7)=(10.0 mm,4.0 s). As evidenced by
the result of TVyp/Vieorys TV4p sizes were smaller than
Vineory due to the centroid difference. Thus, motion artifacts
yield volumetric errors, leading to potential geometric miss;
therefore, geometrical errors should be recognized when de-
termining TVs, especially with a fast period. Additional mar-
gins will be required to compensate for these uncertainties.

In order to improve 4D CT image quality, the American
Association of Physicists in Medicine Task Group 76 recom-
mends respiratory coaching at simulation.”® Kini er al.?* con-
cluded that audio coaching could improve the stability of the
respiration frequency of the patient. Based on the results of
Kini et al., we previously acquired 4D CT images for more
than 20 patients with lung cancers under audio-coached con-
ditions. While misalignment artifacts were substantially re-
duced by audio coaching, motion-blurring artifacts became
more severe. Furthermore, the total tumor movement during
the full respiratory cycle was visually greater on CT images
by audio coaching, which has been introduced by Haasbeek
et al.® On the basis of our results, volumetric deviation be-
tween TV size and V| was larger for A of 10.0 mm than that
for A of 5.0 mm and had a strong correlation with motion
velocity (Fig. 8). Motion-blurring artifacts are generally
caused by interplay between the gantry rotational speed and
respiratory motion.'™ Due to the promotion of interplay by
audio coaching, motion-blurring artifacts might become
more severe than under free breathing. The low variation in
motion velocity could reduce motion artifacts on 4D CT
images.26

TVmy sizes were slightly larger than TV, sizes. A pos-
sible cause of this difference is the method of generating
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MIV. Riegel et al.” compared TVs on MIP,, (MIV gener-
ated from all reconstructed CT data in our terminology) with
those on MIP,p, cr (MIV reconstructed only from sorted 4D
CT volumes in our terminology) and showed that the mean
TVs on MIP,p cr were significantly smaller than those on
MIP,;,.. While MIP,;,. can capture the full extent of motion,
MIP,p or would still underestimate the extent of motion if
0% and 50% phases did not represent the largest motion
extent of the object. Thus, such phase assignment would
cause a difference between TVygy and TV,p sizes.

V. CONCLUSION

This phantom study demonstrated that motion artifacts
were substantially reduced when the phantom moved longi-
tudinally at low motion velocity during 4D CT image acqui-
sition; therefore, geometrical uncertainties due to motion ar-
tifacts should be recognized when determining TVs,
especially with a fast period.
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Summary
Practice of IMRT in Kyoto University

Kyoto University started intensity modulated radio-
therapy (IMRT) in 2000, During a year of 2008, we
performed IMRT for 132 patients. For prostale cancer,
prescription dose ranges from 74 Gy to 78 Gy based on
its visk. Simultaneous integrated boost is used (or head
and neck caneer with 70 Gy for gross tumor, 63 Gy for
high-vigk avea, and 56 Gy for low-risk area, respec-
tively, In this article, practical aspects of our IMRT
procedure are described,
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Recurrence or metastasis of cancer has been considered to occur in the last stage of the
patient’s life. However, the new notions of oligometastases and oligo-recurrence have been
proposed and the paradigm shift in the conceptualization of cancer metastasis or cancer
recurrence. Oligometastases is the state in which the patient shows distant relapse in only a
limited number of regions. Local therapy such as surgery, radiotherapy and radiofrequency
ablation for the relapsed sites could thus improve patient’s survival. On the other hand, oligo-
recurrence is a notion similar to oligometastases. However, the conditions of oligo-recurrence
has a primary site of the cancer controlled, meaning that all gross recurrent or metastatic
sites could be treated using local therapy.

Key words: oligometastases — oligo-recurrence — local therapy — systemic therapy — paradigm shift

Recurrence or metastasis of cancer has usually been con-
sidered to occur in the last stage of the patient’s life. From
this perspective, even if only one site of recurrence or metas-
tasis is present, the cancer can be seeded throughout the
body hematogenously, meaning that local therapy cannot
eradicate all cancer cells. Systemic chemotherapy can then
only prolong life, rather than achieving cure. However,
Hellman and Weichselbaum proposed an alternative notion
in 1995, bringing about a paradigm shift in the conceptualiz-
ation of cancer metastasis or cancer recurrence. This new
notion is that of oligometastases (1).

OLIGOMETASTASES

Oligometastases is the state in which the patient shows
distant relapse in only a limited number of regions. Local
therapy such as surgery, radiotherapy and radiofrequency
ablation for the relapsed sites could thus improve patient’s
survival. The state of oligometastases (Fig. 1) represents an
important concept, but one important problem remains to be

solved. Oligometastases did not eliminate the uncontrolled
primary site with several distant metastases. Then, all meta-
static sites were thoroughly treated with local therapy, which
did not lead to disappearance of all gross tumors and not
might have achieved cure. As the primary site was not or
could not be treated with local therapy, the primary site
would exacerbate sooner.

OLIGO-RECURRENCE

Niibe et al. (2—4) proposed the new notion of
oligo-recurrence to overcome these problems. Oligo-
recurrence is a notion similar to oligometastases. However,
the conditions of oligo-recurrence are: (i) one to several
distant metastases/recurrences (usually one) in one to several
organs (usually one); (ii) primary site of the cancer con-
trolled; (iii) one to several distant metastases/recutrences can
be treated with local therapy; and (iv) no other distant metas-
tases/recurrences other than those in (iii). This state of
oligo-recurrence is shown in Fig. 2 and the differences
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Schema of oligometastases

. Primary lesion

© Distant metatases/
recurrences

1 2

Figure 1. This is a schema of oligometastases. Schema 1 shows one distant
metastasis/recurrence with a primary lesion. Schema 2 shows two distant
metastases/recurrences with a primary lesion.

between oligometastasis and oligo-recurrence are listed in
Table 1. In the state of oligo-recurrence, recurrent or meta-
static sites with a controlled primary lesion were treated with
local therapy, meaning that all gross recurrent or metastatic
sites could be treated using local therapy.

SYSTEMIC THERAPY AND LOCAL THERAPY

Improvement of systemic chemotherapy including
molecular-targeted therapy has allowed micrometastases

Schema of oligo-recurrence

Controlled primary Jesion

@ Distant metatases/
recurrences

1 2

Figure 2. This is a schema of oligo-recurrence. Schema 1 shows one distant
metastasis/recurrence with a controlled primary lesion. Schema 2 shows two
distant metastases/recurrences with a controlled primary lesion. The biggest
difference between oligometastases and oligo-recurrences lies in the uncon-
trolled or controlled primary lesion. Oligo-recurrence requires a controlled
primary lesion.

Table 1. Oligometastases and oligo-recurrence

Oligometastases Oligo-recurrence
Reference Hellman and Niibe et al.
Weichselbaum (1) (2,349
Primary lesion Uncontrolled/controlied Controlled

One to several
(one is better)

No. of distant/metastases/ One to several

recurrences

to be almost completely absent clinically. Theoretically,
if several gross metastatic or recurrent sites could be era-
diated by local therapy, these patients could be cured
with concomitant systemic chemotherapy. Punglia et al.
(5) reported that if systemic therapy improved, the role of
local therapy would improve and proposed a figure for
this correlation. Here, a new figure of the correlation
between local therapy and systemic therapy is proposed
(Fig. 3), showing that the role of local therapy is initially
increasingly important as systemic therapy improves,
depending on the sigmoid curve. The current status of
cancer therapy lies in the range between 0 and
A. However, in the future, extreme improvements in sys-
temic therapy will decrease the importance of local
therapy, because cancers will be diminished by systemic
therapy alone such as intravenous anti-cancer drug infu-
sion or oral anti-cancer drugs. All cancerous lesions
including gross tumors and microinvasive tumors could
be eradicated with systemic therapy alone. This desirable
state is shown as B in Fig. 3. In the present status
(range: 0—A in Fig. 3), systemic therapy is not yet
powerful enough that local therapy is not required for
eradication, particularly for gross tumor.
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Point 0 Point A Point B

Improving systemic therapy

Figure 3. This shows correlations between systemic and local therapies.
Until point A, the role of local therapy increases as systemic therapy
improves. However, after point A, the role of local therapy decreases as sys-
temic therapy improves, as all cancerous lesions can be cured by systemic
therapy at point B.
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BRAIN TUMOR

This section and the following four sections focus on organ-
specific oligometastases and oligo-recurrence. First, oligome-
tastases and oligo-recurrence of brain metastatic tumors are
described.

Classification of metastatic brain tumors such as
oligo-recurrence in recursive partitioning analysis (RPA)
class I is widely recognized and accepted (6). This class I
contains patients with: KPS >70; age <65 years; controlled
primary; and no extracranial metastases. All RPA class I
patients thus show oligo-recurrence. However, RPA class I
requires age <65 years, so if age is >65 years and even
KPS 100, the patient is classified as RPA class II. Rapid pro-
gress has recently been made in reducing the invasiveness of
surgery and radiotherapy. The age of 65 years is thus no
longer the limit of aggressive therapy. The RPA classifi-
cation was developed in 1997, and more than a decade has
passed since the proposal of this classification. Given recent
advances in modern medicine, oligo-recurrence is considered
to be more appropriate.

Kocher et al. (7) compared 117 patients with one to three
previously untreated cerebral metastases who underwent
stereotactic radiosurgery (SRS) between 1991 and 1998 with
138 patients with one to three lesions treated using whole-
brain radiotherapy (WBRT) between 1978 and 1991. The
first modality represents a more powerful treatment of meta-
static brain tumors. Of these patients, 32 were classified as
RPA class I (SRS, n = 23; WBRT, n = 9). Median survival
was 25.4 months with SRS, compared with 4.7 months with
WBRT (P < 0.0001). Furthermore, Andrews et al. (8)
reported a Phase III trial comparing WBRT to WBRT plus
SRS, in which multivariate analysis indicated that patients
with WBRT plus SRS survived longer than those with
WBRT alone in RPA class I (P < 0.0001). These findings
suggest that more powerful local treatment was efficacious
for RPA class 1. As for oligo-recurrence involving the brain,
Niibe et al. (9) reported 17 metastatic brain tumors in 10
patients treated with SRS and surgery achieved 3-year local
control in 90% and 3-year overall survival in 51.9%.

LUNG TUMOR

Survival benefits were being reported for complete resection
of metastatic lung tumors even in the 1990s. The
International Registry of Lung Metastases (IRLM) reported
that 5-year overall survival for patients with complete resec-
tion of metastatic lung tumors was 36%, compared with 13%
for patients without (10). However, clinical outcomes with
stereotactic body radiotherapy (SBRT) for Stage I primary
lung tumors are reportedly almost the same as with surgery.
Onihsi et al. (11) reported a S5-year overall survival of 70.8%
for operable Stage I patients, equivalent to that with surgery.
This indicates that oligo-recurrent patients, who have no
extrathoracic lesions, could receive survival benefit from

Jpn J Clin Oncol 2010;40(2) 109

SBRT. In fact, Bloomgren et al. (12) first reported that 14
metastatic lung tumors in 10 patients treated with SBRT
achieved 92% local control. Uematsu et al. (13) reported
that 43 metastatic lung tumors in 22 patients treated with
SBRT achieved 98% local control. Nagata et al. (14) using
SBRT with 48 Gy in four fractions to the isocenter reported
that nine metastatic lung tumors in nine patients achieved
67% local control. From the same institution as Nagata,
Norihisa et al. (15) using SBRT at 48—60 Gy in four to five
fractions to the isocenter reported that 43 metastatic lung
tumors in 34 patients achieved a 2-year local control rate of
90% and a 2-year overall survival rate of 84.3%. These are
excellent outcomes. However, all these analyses were retro-
spective. In 2009, Rusthoven et al. (16) reported a Phase I/I1
prospective study of SBRT for metastatic lung tumors.
Thirty-eight metastatic lung tumors in 63 patients treated
with SBRT achieved a 2-year local control rate of 96% and
a 2-year overall survival of 39%. This result was inferior to
that of surgery according to the IRLM. One of the important
reasons of poor prognosis in SBRT is that the prospective
study included patients with extrapulmonary lesions,
meaning oligometastases and no oligo-recurrence. Limited to
oligo-recurrence and the small numbers of lung metastases,
overall survival may be better and might be almost equival-
ent to that of the IRLM (16).

LIVER TUMOR

SBRT has also been applied to metastatic liver tumors. In
1998, Blomgren et al. reported that a pilot study using 20—
40 Gy in one or two fractions to the periphery of the plan-
ning target volume (PTV) achieved 95% local control (17).
Several prospective studies have recently been reported.
Herfarth et al. (18) reported 56 metastatic liver tumors in 33
patients treated with SBRT using 14—26 Gy per fraction
(prescribed to 80%), achieving 78% local control. Kavanagh
et al. (19) reported 28 metastatic liver tumors in 21 patients
treated with SBRT using 12—20 Gy in three fractions to the
periphery of the PTV, achieving 93% local control. Mendez
Romero et al. (20) reported 34 metastatic liver tumors in 14
patients treated with SBRT using 37.5 Gy in three fractions
(prescribed to 65%), achieving 94% local control. In 2009,
Rusthoven et al. (21) reported 63 metastatic liver tumors in
57 patients treated with SBRT using 36—60 Gy in three frac-
tions, achieving a 3-year local control rate of 92% and a
2-year overall survival rate of 30%.

BONE

Oligo-recurrence and oligometastases of bone have been
reported in breast cancer. The summary is that high-dose
radiotherapy relieves pain for a long time and can even
improve overall survival.

Niibe et al. (4) reported on solitary bone metastases in
seven patients treated with conventional radiotherapy. Six of
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seven patients achieved complete remission of pain, which
was prolonged at the last follow-up. Only one patient
showed relapse of pain. This patient received 30 Gy in 10
fractions (BED o, 39 Gy), representing the smallest dose in
that series (other patients received 40—50 Gy in 2025 frac-
tions; BED;, > 48 Gy). In 2009, Milano et al. (22) reported
85 metastatic lesions in 40 breast cancer patients treated with
SBRT, achieving a 2-year overall survival rate of 76% and a
4-year overall survival of 59%. Among these, the most
favorable prognostic factor for breast oligometastatic patients
was metastases only involving bone. This indicated high-
dose radiotherapy using SBRT for bone metastases could
contribute to patient survival.

LYMPH NODES

Oligometastases and oligo-recurrence of distant lymph node
metastases have been reported for uterine cervical carci-
noma, Uterine cervical carcinoma spreads through the lym-
phatic route rather than hematogenously (2,23). The first site
of distant metastasis of uterine cervical carcinoma is the
para-aortic lymph node. This has been confirmed in a large
popuiation-based study (2).

Hong et al. (24) reported 35 patients with isolated para-
aortic lymph node recurrence treated with concurrent che-
moradiotherapy achieving a 5-year overall survival rate of
34%. Kim et al. (25) reported 12 patients treated with hyper-
fractionated radiotherapy totaling 60 Gy combined with con-
current chemoradiotherapy, achieving a 3-year overall
survival rate of 19%. To date, the largest study has been
reported by Niibe et al. (3) in Japan. They reported 84
patients treated with conventional radiotherapy with or
without chemotherapy achieved a 5-year overall survival rate
of 31.3%, similar to the 38% for 5-year overall survival rate
in a previous, small, population-based study in Japan (26).
Recently, Choi et al. (27) reported that 30 uterine cervical
and corpus cancer patients with isolated para-aortic lymph
node recurrence treated by SBRT using a cyberknife
achieved a 4-year overall survival of 50.1%.

CONCLUSIONS

Curative local therapy for oligometastases and
oligo-recurrence represents a brilliant opening to the era of
cancer therapy. Several decades ago, most metastatic and
recurrent cancer patients died within a year. However, we
cope with metastases or recurrences considering whether the
state is oligometastases or oligo-recurrence. In the state of
oligo-recurrence, all the gross tumors could be treated with
local therapy, meaning curative treatment. However, in the
state of oligometastases, clinicians should judge a primary
site to be controlled or not before treatment. If the primary
site is controlled, meaning oligo-recurrence, they should
pursue to cure the patients. However, if the primary site is

uncontrolled or extra-target metastases lesions exist, they
intend to prolong survival not to pursue cure.

More appropriate target cancers, treatment modalities and
schedules should be established for oligometastases and
oligo-recurrence. Moreover, adjuvant chemotherapy will
improve dramatically because of molecular-targeted drugs.
Further clinical studies are required in this field.
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CLINICAL OUTCOMES OF STEREOTACTIC BODY RADIOTHERAPY FOR SMALL
LUNG LESIONS CLINICALLY DIAGNOSED AS PRIMARY LUNG CANCER ON
RADIOLOGIC EXAMINATION
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Purpose: Image-guided biopsy occasionally fails to diagnose small lung lesions, which are highly suggestive of pri-
mary lung cancer. The aim of the present study was to evaluate the outcome of stereotactic body radiotherapy
(SBRT) for small lung lesions that were clinically diagnosed as primary lung cancer without pathologic confirmation.
Methods and Materials: A total of 115 patients were treated with SBRT in 12 institutions. Tumor size ranged from
5 to 45 mm in diameter, with a median of 20 mm.

Results: The 3-year and 5-year overall survival rates for patients with a tumor size =20 mm in diameter (n = 58)
were both 89.8%, compared with 60.7% and 53.1% for patients with tumors >20 mm (n = 57) (p <0.0005), respec-
tively. Local progression occurred in 2 patients (3.4%) with a tumor size =20 mm and in 3 patients (5.3%) with
tumors >20 mm. Among the patients with a tumor size <20 mm, Grade 2 pulmonary complications were observed
in 2 (3.4%), but no Grade 3 to 5 toxicity was observed. In patients with a tumer size >20 mm, Grades 2, 3, and 5
toxicity were observed in 5 patients (8.8%), 3 patients (5.3%), and 1 patient (1.8%), respectively.

Conclusion: In patients with a tumor =20 mm in diameter, SBRT was reasonably safe in this retrospective study. The
clinical implications of the high local control rate depend on the accuracy of clinical/radiologic diagnosis for small
lung lesions and are to be carefully evaluated in a prospective study. © 2009 Elsevier Inc.

Lung cancer, Stereotactic radiotherapy, Stereotactic body radiotherapy.

INTRODUCTION often have difficulty undergoing a second surgical resection
because of lowered respiratory function resulting from the
previous surgery. Patients with cancer who are under watch-
ful waiting are at risk for invasive growth of the primary tu-
mor, lymphatic spread, and distant metastasis. Patients who
choose to receive elective surgical resection of the small
lung lesions to quantify the pathologic diagnosis may experi-
ence serious respiratory dysfunction. A proportion of the pa-

Pathologic diagnosis is essential for the treatment of primary
lung cancer. However, image-guided biopsy occasionally
fails to diagnose small lung lesions, which are highly sugges-
tive of primary lung cancer. When patients refuse re-biopsy
or surgical resection, watchful waiting is usually indicated.
There are other groups of patients in whom a pathologic di-

agnosis is very difficult to make, such as those with medical
reasons for not being able to undergo biopsy and those with
a history of surgical resection of non—small-cell lung cancer
(NSCLC) and a small peripheral lung lesion on follow-up
computed tomography (CT). The patients in the latter group

tients who do not have malignant tumors are inevitably
overtreated and experience surgical complications.
Stereotactic body radiotherapy (SBRT) has been one of the
treatments for Stage INSCLC in medically inoperable patients.
Recently, high local control and survival rates of SBRT were
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reported in several studies (1~7). Onishi ef al. summarized the
results of a Japanese series retrospectively and reported that
a pulmonary complication rate of above Grade 2 arose in
only 5.4% of patients (1). For the patients who received
a dose compatible with the biologic effective dose (BED) of
100 Gy or more, the local control rate was 91.6%. For the pa-
tients who were judged to have been operable but who were
treated with SBRT, the 5-year overall survival rate was
70.8%, which is equivalent to that achieved in the previously
mentioned surgery series (1).

A serious question among radiation oncologists is whether
it is ethically justifiable not to give SBRT to those patients
who have peripheral lung lesions highly suggestive of lung
cancer but who failed to have lung cancer diagnosed patho-
logically. If SBRT is as safe as image-guided re-biopsy and
as effective as surgical resection, it may be ethical to give
SBRT to these patients. However, we cannot answer this
question, because the risk and benefit have not been com-
pared between elective surgical resection, watchful waiting,
and SBRT for small peripheral lung lesions without patho-
logic confirmation.

We have found in a national survey of SBRT that a small
number of patients with the clinical diagnosis of NSCLC are
actually treated with SBRT without pathologic confirmation
in each institution. The aim of the present study was to eval-
uate the outcome of SBRT for peripheral small lung lesions
that were clinically diagnosed as primary lung cancer without
pathologic confirmation in 12 institutions during the past 10
years in Japan.

METHODS AND MATERIALS

Eligibility criteria

Twelve institutions were selected from the member institutions of
the Japan Clinical Oncology Group trial, JCOGO0403, for which the
quality of clinical record and dosimetry accuracy of SBRT had al-
ready been evaluated by audit (8). This is a multi-institutional retro-
spective study using the same eligibility criteria, which were that (a)
surgery was contraindicated or refused, (b) the tumor diameter was
<50 mm, (c) tumors were highly suggestive of primary lung cancer
and diagnosed as Stage I lung cancer clinically but the patients did
not have a pathologic diagnosis, and (d) the performance status was
0 to 2 according to World Health Organization guidelines.

Patients

A total of 115 patients who were highly suspected of having lung
cancer but who lacked pathologic confirmation of the disease were
diagnosed with Stage I lung cancer clinically and treated with SBRT
in 12 institutions during the last 10 years in Japan. The patient char-
acteristics are given in Table 1. There were 93 cases of TINOMO and
22 cases of T2ZNOMO disease. The number of medically operable and
inoperable patients was 43 and 72, respectively. Tumor size was re-
corded at the maximum diameter on the CT scan taken at the start of
radiotherapy. The median tumor size was 20 mm (range, 5-45 mm).
The median follow-up period was 14 months (range, 1-142
months). There were 11 patients whose follow-up period was <4
months at the time of this analysis.

Diagnosis was based on CT findings and enlargement of the
lesion on sequential examination with or without fluorodeoxyglu-
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Table 1. Characteristics of patients (115 patients)

Characteristic Value

Age (y)

Median 71

Range 50-92
Gender (n)

Male 87

Female 28
Tumor size (mm)

Median 20

Range 5-45
T stage (n)

T1 93

T2 22
Medical condition (1)

Operable 43

Inoperable 72

cose (FDG)—positron emission tomography (PET) findings. The tu-
mors were diagnosed as highly suggestive of primary lung
cancer by diagnostic radiologists when there was definitive en-
largement of the lesion on sequential CT examination and/or
positive findings on FDG-PET without any metastatic lesion in
the diagnostic evaluation. Several findings such as the configura-
tion of the lung lesion were also used in the diagnosis. Of 72
patients who were examined with FDG-PET, 67 patients had
positive findings on FDG-PET. Other clinical history and find-
ings as well as laboratory findings were also used for diagnosis
as much as possible to prevent inclusion of patients with meta-
static lung tumors or inflammatory or granulomatous lesions in
the study population.

The reasons for the lack of pathologic confirmation were as fol-
lows: (a) bronchoscope- or CT-guided biopsy failed in 59 patients,
and these patients refused re-biopsy or surgical resection; (b) 21 pa-
tients were not indicated for a biopsy procedure or surgery because
of medical complications; (c) 14 patients refused a biopsy procedure
as well as surgery even at the initial examination; (d) a biopsy was
not indicated in 14 patients because their history of NSCLC was
strongly suggestive of the new development of a second primary
NSCLGC, likely inoperable, and they refused surgery; and (e) a biopsy
was not indicated in 7 patients because there was little possibility to
confirm the pathology because of the tumor’s small size, and these
patients refused surgery.

Radiotherapy

All patients underwent irradiation using stereotactic techniques.
Three-dimensional treatment planning was performed using non-co-
planar static ports or dynamic arcs. Various techniques using breath-
ing control or gating methods and immobilization devices such as
a vacuum cushion with or without a stereotactic body frame were
used to reduce respiratory internal margins. Appropriate margins
were adopted for the clinical target volume and the planning target
volume.

A total dose of 30 to 70 Gy at the isocenter was administered in
two to 10 fractions. Using a linear-quadratic model, we defined
the BED as nd(1+d/a/(), with Gray units, where n was the fraction-
ation number, d was the daily dose, and the «/f ratio was assumed to
be 10 for tumors. The BED was not corrected with values for tumor
doubling time or treatment term. The median BED at the isocenter in
this study was 106 Gy (range, 56141 Gy).
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Fig. 1. Kaplan-Meier curve of overall survival rates for the patients
with a tumor size (diameter) of 5 to 10 mm (n = 11), 11 to 20 mm (n
= 47), 21 to 30 mm (n = 35), and 31 to 45 mm (n = 22).

Ethical considerations

Use of SBRT was approved for Stage I lung cancer by the ethics
committee in each institution. Clinically diagnosed Stage I lung can-
cer was not included in the ineligibility criteria at each institution.
Written informed consent to receive SBRT was obtained from all
patients. This retrospective study was approved by the ethics com-
mittee of each institution and was performed in accordance with
the 1975 Declaration of Helsinki, as revised in 2000.

Statistical analysis

Overall survival rates were calculated from the first day of treat-
ment using the Kaplan-Meier method. The log-rank test was used to
calculate statistically significant differences. A value of p <0.05 was
considered to be statistically significant.

RESULTS

Survival

We separated the patients into four groups by tumor size at
its maximum diameter, consisting of the 5 to 10 mm (Group
A; n=11), 11 to 20 mm (Group B; n = 47), 21 to 30 mm
(Group C; n = 35), and 31 to 45 mm (Group D; n = 22)
groups. The 3-year and S-year overall survival rates were
both 100% for Group A, both 87.2% for Group B, 58.7%
and 48.9% for Group C, and both 64.5% for Group D
(Fig. 1). When we excluded the 11 patients whose follow-
up period was <4 months, there was no apparent difference
in these results; 3-year and S-year overall survival rates
were both 100% for Group A, both 87.2% for Group B,
and 58.7% and 39.2% for Group C, and both 67.7% for
Group D.

The 3-year and 5-year overall survival rates were both
89.8% for patients with a tumor size <20 mm (n = 58) com-
pared with 60.7% and 53.1% for patients with a tumor size
>20 mm (r = 57) (p <0.0005; Fig. 2). According to medical
operability, the 3-year and 5-year overall survival rates for
operable patients (n = 43) were both 88.4%, compared with
67.0% and 60.9% for inoperable patients (n = 72) (Fig. 3).
According to BED, the 3-year and 5-year overall survival
rates for the patients with BED <100 Gy (n = 17) were
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Fig. 2. Kaplan-Meier curve of overall survival rates for the patients
with a tumor size (diameter) of 5 to 20 mm (n = 58) and 21 to 45 mm
(n=57). A statistically significant difference was found (p < 0.0005)
between the two groups.

both 71.8%, compared with 76.6% and 61.9% for the patients
with BED = 100 Gy (n = 98) (Fig. 4).

Local tumor response and distant metastases

Local progression occurred in 2 patients (3.4%) with a tu-
mor size =20 mm and in 3 patients (5.3%) with a tumor size
>20 mm. Lymphatic and distant metastasis were observed in
3 patients (5.2%) and 6 patients (10.3%) with a tumor size
=20 mm and in 6 patients (10.5%) and 10 patients (17.5%)
with a tumor size >20 mm, respectively. For the patients
with BED <100 Gy, no local progression occurred.

Toxicities

Pulmonary adverse effects were graded according to the
Common Toxicity Criteria for Adverse Events version 3.0. In
brief, radiation pneumonitis was graded as follows: Grade 1,
asymptomatic, radiologic findings only; Grade 2, symptom-
atic, not interfering with activities of daily life (ADL);
Grade 3, interfering with ADL, O2 indicated; Grade 4,
life-threatening, ventilatory support indicated; and Grade 5,
death.

Of patients with a tumor size =20 mm in diameter, Grade 2
pulmonary complications were observed in 2 patients (3.4%),
whereas no patients experienced Grade 3 to 5 toxicities. In
patients with a tumor size >20 mm, Grades 2, 3, and 5 pulmo-
nary toxicities were observed in 5 patients (8.8%), 3 patients
(5.3%), and 1 patient (1.8%), respectively. A Grade S pulmo-
nary complication occurred in 1 patient with interstitial pneu-
monia, which resulted in acute worsening from SBRT after
1.5 months. One case of radiation pleuritis, one case of inter-
costal neuralgia, and one case of rib fracture were observed,
but these patients’ symptoms were controlled easily by con-
servative treatment. Grade 2 pulmonary toxicity occurred in 3
cases (17.6%) in patients with BED <100 Gy and in 8 cases
(8.2%) in patients with BED =100 Gy.

DISCUSSION

There is no doubt that pathologic diagnosis is the most
accurate diagnosis for lung tumors. When possible, clinicians
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Fig. 3. Kaplan-Meier curve of overall survival rates for operable (n
= 43) and inoperable (n = 72) patients. No statistically significant
difference was found (p = 0.07) between two groups.

should persuade patients to receive pathologic confirmation
before SBRT and to receive surgical resection if they are op-
erable. However, as we have observed in this retrospective
study, for patients with poor respiratory function, pathologic
confirmation of the small lung lesions is often difficult or life
threatening and occasionally abandoned by pulmonologists
and thoracic surgeons. Therefore, it is extremely important
to find a subset of patients who would benefit from SBRT
instead of the conventional strategy of watchful waiting or
elective surgical resection.

In patients with clinically diagnosed lung cancer =20 mm
in diameter, the 3-year survival rate was 89.8% in our series.
Although the median follow-up is still short, the 5-year sur-
vival rate was projected to be 89.8% for these patients. Be-
cause of the very Jow complication rate for these patients,
SBRT for inoperable patients highly likely to have Stage I
lung cancer with tumors =20 mm in diameter may be justifi-
able. However, the excellent survival rates for those patients
with tumors =20 mm may be partly caused by the inclusion
of nonmalignant lesions in the radiation-treated patients. The
clinical implications of the high local control rate depend on
the accuracy of clinical/radiologic diagnosis for small lung
lesions and are to be carefully evaluated in a prospective
study.

Median follow-up period 14 months was relatively short,
including 11 patients whose follow-up period was <4
months. However, 3- and 5-year survival data were not im-
pacted so much by them because follow-up period of the
other patients was much longer.

Onishi et al. reported that the patients treated with BED
<100 Gy had a tendency to have worse clinical outcomes
than those treated with larger dose in SBRT (1). In this study,
there were only 17 patients who received BED <100 Gy.
There was no significant difference in overall survival rates
between those treated with BED <100 Gy and those treated
with BED=100Gy, probably because of the small number
of the patients who received BED <100 Gy.

Improvement of clinical/radiologic diagnosis of small lung
tumors is essential if SBRT is used for clinically diagnosed
Stage I lung cancer. Before the introduction of FDG-PET,

Volume 75, Number 3, 2009

100 4
80 BED < 100Gy
THEY P P
60 L_.I_
g BED 2 100Gy
40
20
0
¢] 10 20 30 40 50 60

{months}

Fig. 4. Kaplan-Meier curve of overall survival rates for the patients
with a biologic effective dose (BED) <100 (n=17) and a BED =100
(n = 98). No statistically significant difference was found (p = 0.95)
between the two groups.

the percentage of benign diseases in the solitary lung nodules
detected by plain chest X-ray or CT was reported to be 25%
to 50%, which is obviously too high (9-12). However,
improvement of imaging modalities has made it possible to
diagnose small peripheral lung cancer much more precisely
than before. There were recent reports that FDG-PET and
PET/CT showed 88% to 96.8% sensitivity, 77% to 77.8%
specificity, and 91.2% accuracy in diagnosis of primary
lung cancer (13, 14). A combination of positive FDG-PET
findings, enlargement of the nodule on CT image, and nega-
tive laboratory tests for worsening of inflammatory diseases
would reduce the false-positive diagnosis of Stage I lung can-
cer. However, Nomori et al. reported that lung nodules that
were <10 mm in size or that showed ground-glass opacity
on CT image cannot be evaluated accurately by FDG-PET
(15). Therefore, for solid round tumors =10 mm and those
with ground-glass appearance, watchful waiting would be
the preferable choice at present, and improvement in diagnos-
tic imaging is warranted. In addition, even if small lung
lesions are highly suggestive of primary lung cancer on clin-
ical/radiologic examination, the possibility of small-cell lung
cancer (SCLC), for which it is better to be given additional
chemotherapy, cannot be excluded. Some tumor markers
such as neuron-specific enolase or progastrin-releasing pep-
tide are shown to have relatively high sensitivity and specific-
ity for SCL.C (16). Tumor marker screening has the potential
to reduce the inclusion of SCLC, although the tumor size may
be too small to detect marker elevation.

Recently video-assisted thoracoscopic surgery (VATS) for
lung cancer has become a safe and common procedure. In
comparison with open surgery, VATS is less invasive and
is associated with less morbidity and mortality (17). How-
ever, a recent review showed that VATS still has a 3.3% to
13.4% complication rate for surgical biopsy and a 7.7% to
36.6% complications rate for lobectomy (17). In 567 patients
with peripheral NSCLC =20 mm who were operable as eval-
uated by cardiopulmonary function tests and had no history
of previously treated cancer, the complication rate was re-
ported to be 6.6% for sublobar resection and 7.3% for lobar
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resection with 1 operative death (18). In the present SBRT
study, for patients with a peripheral lung tumor =20 mm
who were often inoperable based on cardiopulmonary func-
tion tests and who could have a history of previously treated
cancer, only 3.4% (2 of 58) experienced Grade 2 pulmonary
complications and none experienced Grade 3 to 5 complica-
tions. Therefore, although the comparison of the complica-
tion between surgery and SBRT is difficult, SBRT can be
regarded as a safer treatment than lobectomy using VATS
and as safe as biopsy using VATS for patients with a tumor
size =20 mm. On the contrary, for patients with a tumor
size >20 mm, Grade 2, 3, and 5 pulmonary complications
were observed in 8.8% (5 of 57), 5.3% (3 of 57), and 1.8%
(1 of 57) of study patients, respectively. Because the risk of
SBRT is not minimal for these patients, the indication of
SBRT for clinically diagnosed Stage I lung cancer with a
tumor >20 mm should be very carefully evaluated by mem-
bers of the cancer board in each institution.

It is important to state that our study does not give any
guidance for inoperable patients whose tumors are highly
suggestive of benign lesions but that cannot be definitely

determined not to be malignant, as this study looks only at
those with tumors highly suggestive of malignant lesions. Pa-
tients with benign pulmonary lesion such as hamartoma,
granulomatous inflammation, and focal fibrosis may require
pathologic confirmation because these patients sometimes
have tumors highly suggestive of benign lesions but that can-
not be definitely determined not to be malignant. At present,
itis obvious that VATS should be recommended for operable
patients with tumors that are highly suggestive of benign
lesions but that cannot be definitely determined not to be
malignant, as VATS gives us pathologic confirmation.

CONCLUSION

In conclusion, in clinically diagnosed Stage I lung cancer
patients with a tumor =20 mm in diameter, SBRT was rea-
sonably safe in this retrospective study. The clinical implica-
tions of the high local control rate depend on the accuracy of
clinical/radiologic diagnosis for small lung lesions and are to
be carefully evaluated in a prospective study.
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