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Risk-Stratified Therapy and the Intensive Use of Cytarabine
Improves the Outcome in Childhood Acute Myeloid
Leukemia: The AML99 Trial From the Japanese

Childhood AML Cooperative Study Group

Ichiro Tsukimoto, Akio Tawa, Keizo Horibe, Ken Tabuchi, Hisato Kigasawa, Masahiro Tsuchida,
Hiromasa Yabe, Hideki Nakayama, Kazuko Kudo, Ryoji Kobayashi, Kazuko Hamamoto, Masue Imaizumi,
Akira Morimoto, Shigeru Tsuchiya, and Ryoji Hanada

A B S T R A C T

Purpose

To improve the prognosis in children with newly diagnosed acute myeloid leukemia (AML) by
introducing a dose-dense intensive chemotherapy regimen and an appropriate risk stratifica-
tion system.

Patients and Methods

Two hundred forty children with de novo AML were treated with continuous cytarabine-based
induction therapy and stratified to three risk groups based on the initial treatment response, age,
and WBC at diagnosis and cytogenetics. All of the patients were treated with intensive
consolidation chemotherapy including three or four courses of high-dose cytarabine. Allogeneic
hematopoietic stem-cell transplantation (HSCT) was indicated for only the intermediate-risk
patients with matched related donors and for all the high-risk subsets.

Results

Two hundred twenty-seven children (94.6%) achieved a complete remission (CR). Four children
demonstrated induction death. The median follow-up of the live patients was 55 months (range,
37 to 73 months). The 5-year overall survival of all 240 children was 75.6% (95% CI, 70.3% to
81.4%) and event-free survival was 61.6% (95% Cl, 55.8% to 68.1%). The 5-year disease-free
survival in each risk group were 71.3% (95% Cl, 63.4% to 80.2%) in the low-risk group (n = 112),
59.8% (95% Cl, 50.6% to 70.7%) in the intermediate-risk group (n = 92), and 56.5% (95% ClI,
39.5% to 80.9%) in the high-risk group (n = 23). Eight children died during the first CR, including
four after HSCT.

Conclusion

A high survival rate, 75.6% at 5 years, was achieved for childhood with de novo AML in the AML99
trial. The treatment strategy was well tolerated with only 1.7% induction death rate and 3.5%
remission death rate. Low-risk children were successfully treated with chemotherapy alone.

J Clin Oncol 27:4007-4013. © 2009 by American Society of Clinical Oncology

The use of intensive chemotherapy and hematopoi-
etc stem-cell transplantation (HSCT) with better fa-
cilities for supportive care over the last two decades
has achieved dramatic improvements in the treat-
ment outcome for children with acute myeloid leu-
kemia (AML). Approximately 80% to 90% of these
children now achieve a complete remission (CR)
and the 5-year overall survival (OS) and event-free
survival (EFS) rates are 50% to 60% and 40% to
50%, respectively."? However, when the results are
compared with those of pediatric acute lymphoblas-
tic leukemia (ALL), they are not so favorable and
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| further improvements are necessary. HSCT may be

the treatment of choice for improving the outcome
in children with AML.>* However, considering
acute regimen-related toxicities and long-term ad-
verse effects of HSCT, the indications for HSCT
during the first CR should be restricted.>®

We conducted a nationwide cooperative
clinical protocol AML99 investigation, in which a
risk-stratified strategy and dose-dense intensive
chemotherapy were introduced. In risk stratifica-
tion, low-risk patients were treated with chemother-
apy alone and allogeneic (Allo) HSCT was indicated
only for the intermediate-risk patients with a
matched related donor and for all of the high-risk

© 2009 by American Society of Clinical Oncology
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patients. In dose-dense intensive chemotherapy, either continuous or
high-dose cytarabine was adopted in all courses of chemotherapy.
This report describes the improved treatment results of the AML99
protocol for children with de novo AML.

AR ]

Between January 2000 and December 2002, a total of 260 children age 0 to 18
years with newly diagnosed AML, excluding children with Down’s syndrome
and acute promyelocytic leukemia, were enrolled in the AML99 trial by 98
centers, which covered approximately two thirds of the Japanese pediatric
population. The French-American-British classification was used for the ini-
tial diagnosis of AML. Ten children were excluded from further analysis
because of the following reasons: misdiagnosis (n = 4), natural killer (NK)
cell/myeloid leukemia (n = 2), granulocytic sarcoma (n = 1), and death before
initiation therapy (n = 3). Ten other children with secondary AML were also
excluded from this analysis.

Treatment Design of the AML99 Trial

The schema and details of the AML99 protocol are shown in Figure 1.
Children younger than age 2 years or those with a WBC lower than 100,000/ L
at diagnosis were treated with induction A. Children older than age 2 years and
with WBC of 100,000/ L or higher were treated with induction B. Induction C
was a rescue regimen for children who showed M3 marrow after induction A.
Consolidation therapy consisted of five (for low- and intermediate-risk group)
or six (for high-risk group) courses and triple intrathecal therapy was given as
a part of each course. After consolidation course 1 (the second course of
therapy) or induction C, patients in remission were stratified into three risk
groups: low-risk children were defined as those with t(8;21) and a WBC lower
than 50,000/p.L, inv(16), or an age younger than 2 years without high-risk
factors; high-risk children were those with CR after consolidation course 1 or
induction C or with abnormalities of monosomy 7,7 5q-7, £(16;21),% t(9;22)
(Philadelphia chromosome (Phl] )%; intermediate-risk children were those
who were not in either a low-risk or high-risk group. Low-risk children were
treated only with chemotherapy, regardless the availability of a suitable HSCT
donor. All high-risk children were allocated to Allo-HSCT in the first remis-

4008 © 2009 by American Society of Clinical Oncology

sion, including unrelated bone marrow transplantation (BMT). Matched re-
lated BMT was recommended for intermediate-risk children with a HLA-
matched-related donor (MRD), whereas the remainder of the children was
randomly assigned between four courses of consolidation chemotherapy plus
autologous BMT (A-BMT) versus five courses of chemotherapy. However, the
random assignment was stopped and the protocol was amended to eliminate
the A-BMT arm in June 2002, because of a very low consent rate for this
random assignment. Only five patients underwent A-BMT and these patients
were included in the chemotherapy group in the current analysis. No prophy-
lactic cranial irradiation was included in the protocol. Patients were treated on
an inpatient basis during each treatment phase. The protocol was approved in

' \\
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T T T T T T
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EFS 240 183 154 149 106 54 0
Year
1 3 5
0S (95% Cl)  93.3% (90.2 to 96.5) 78.8% (73710 84.1)  75.6% (70.3 to 81.4)
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Fig 2. Probability of overall sunaval (OS) and event-free survival (EFS) in the Japanese
cooperative study AML99
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Improvement in the Outcome of Childhood AML

Table 1. Patient and Disease Characteristics
Patients
Characteristic No %
Patients enrolled 260
Patients analyzed 240 100
Age, years
<2 45 19
29 116 48
=10 79 33
Sex
Male 128 53
Female 112 47
WBC, X10%/ulL
<20 115 48
20-< 50 60 25
50-< 100 ) 29 12
= 100 36 15
CNS involvement
Yes 7 3
No ) 233 97
FAB type
MO 10 4
M1 36 15
M2 84 35
M4 39 16
Mb5a 27 11
M5b 17 7
M6 3 1
M7 20 8
Unclassifiable/not known 4 2
Cytogenetics
1(8;21) 77 32
inv16 12 5
11923 abnormalities 41 17
t9:11) 15 6
Other 11923 abnormalities 26 1
Normal 53 22
Others 56 23
Unknown 1 =1
Abbreviation: FAB, French-American-British.

the institutional review board and written informed consent was obtained
from the parents or guardians of all patients.

Statistical Analysis

CR was defined by fewer than 5% blast cells in the bone marrow aspirate
and the absence of extramedullary involvement (EMI) and had to be achieved
before starting of consolidation course 2. CR rates were compared between
induction A and B using the Mantel-Haenzel test for trend and Fisher’s exact
test. The estimation of survival was performed using the Kaplan-Meier
method and the curves were compared by means of the log-rank test. The OS
was defined as time from the start of treatment to death from any cause or last
follow-up. The EFS was defined as time from the start of treatment to first
event (induction failure, relapse, or death from any cause) or the last follow-
up. The disease-free survival (DFS) was defined as time from the date of
remission to first event (relapse or death from any cause) or last follow-up. The
Cls were calculated according to Greenwood’s formula.

A total of 240 children with newly diagnosed de novo AML, excluding
children with Down’s syndrome and acute promyelocytic leukemia,

www.jco.org
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Fig 3. Probability of survival by risk group in the Japanese cooperative study
AML99: (A) overall survival and (B) disease free survival. LR, low risk; IR,
interediate risk; HR, high risk.

were eligible in the current analysis. The median follow-up of the
surviving patients was 55 months (range, 37 to 73 months). The
characteristics of the patients and the diseases are listed in Table 1.

Overall Results

The bone marrow response rate (< 5% blasts in bone marrow
after initial induction course) was 87.1% (209 of 240) and the CR rate
(after the first consolidation course or induction C) was 94.6% (227 of
240). Four patients demonstrated induction death (1.7%) and eight
children had resistant disease. Eight children with resistant disease
were treated with Allo-HSCT, and four of these patients were still alive
at the first CR. In one patient, induction chemotherapy was stopped
because of toxicity, and this patient was treated with chemotherapy
only and still alive in the first CR. Of the 240 children, 214 children
were treated with induction A and 26 were treated with induction B.

© 2009 by American Society of Clinical Oncology
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Table 2. Outcome Data of the Recent Studies for Pediatric AML From Major Groups
CR Rate (%)
Early CR After One
No. of Death  Rate Time of Course of No. of
Study Group Patients Rate (%) (%)}  Evaluation Chemotherapy Induction Regimen {/m?) Courses
EORTC-CLG 58,921'%1? 177 2 84  After2 69 Ara-C 100 mg 24 hours cont [V days 1-2, 4
courses 100 mg/12 hours days 3 to 8; VP-16 150 mg IV day Mai
3-5; MIT or IDA 10 mg days 6 to 8 aintenance
LAME-g113.14 247 4 91  After 2 84 Ara-C 200 mg 24h cont IV days 1 to 7. MIT 12 mg IV 3
courses days 1t0 5 Maintenance
BFM-93'5V7 427 7 83 After4 ND Ara-C 100 mg 24 hours cont IV days 1 to 2, 100 mg/12 4
courses hours days 3 to 8; VP-16 150 mg IV days 6 to 8; DNR .
60 mg or IDA 12 mg IV days 3 to 5 Maintenance
BFM-98'8.1® 473 3 88 Afterdors ND Ara-C 100 mg 24 hours cont IV days 1 to 2, 100 mg/12 4o0r5
courses hours days 3 to 8; VP-16 150 mg IV days 6t 0 8; IDA M
12mgiVdays3to5 aintenance
MRC-AML10%0-2! 303 4 93  After4 68 Ara-C 100 mg/12 hours IV days 1 to 10; DNR 50 mg IV 4
courses days 1, 3, 5; 6-TG 75 mg/12 hours PO days 1 to 10 or
VP-16 100 mg IV days 1to 5
MRC-AML1222.23 455 4 92 After 4 ND Ara-C 100 mg/12 hours IV days 1 to 10; VP-16 100 mg 40r5
courses IV days 1 to 5; DNR 50 mg IV days 1, 3. 5 or MIT 12
mg IV days 1, 3. 5
NOPHO-AML9324.25 223 2 92 After2or3 65 Ara-C 200 mg 24 hours cont IV days 1 to 4; VP-16 100 6-8
courses mg 24 hours cont IV days 1 to 4; DOX 75 mg 8 hours
IV day 5; 6-TG 100 mg/12 hours PO days 1 to 4
POG-882125.27 511 4 77 After 2 ND Ara-C 100 mg 24 hours cont IV days 1 to 7, DNR 45 mg 9
courses 1V days 1 to 3; 6-TG 100 mg PO days 1 to 7
CCG-289128-2° 750 4 78  After 2 74 DEX 6 mg/12 hours; Ara-C 200 mg cont IV; 6-TG 100 8
courses mg/12 hours; VP-16 100 mg cont IV; DNR 20 mg
cont iV days 0 to 4, 10 to 14, or 14 t0 18
TCCSG AML M91-13 and 192 3.6 88 ND ND Ara-C 200 mg 12 hours cont IV days 6 to 12; VP-16 150 7or9
M96-14'° mg 2 hours IV days 1 to 5; MIT 5 mg IV days 6 to 10
AMLI9 240 1.7 94 After2 86 Ara-C 200 mg 12 hours cont IV days 6 to 12; 6
courses VP-16 150 mg 2 hours iV days 1 to 5; MIT 5 mg IV days
61010
{continued on following page)

The bone marrow response rate, the CR rate, and induction death rate
of these two groups were 88.8% (n = 190), 95.8% (n = 205) and 1.4%
(n = 3) with induction A, and 73.1% (n = 19), 84.6% (n = 22), and
3.9% (n = 1) with induction B, respectively. The 5-year OS and EFS
for all 240 children was 75.6% (95% CI, 70.3% to 81.4%) and 61.6%
(95% CI, 55.8% to 68.1%), respectively (Fig 2).

The cumulative risk of relapse was 32.2% (95% CI, 38.1% to
25.7%). The relapse sites were predominantly (86.3%; 63 of 73) lo-
cated in the bone marrow (BM). Ten patients suffered from EMI or
combined BM plus EML Although no prophylactic cranial irradiation
was included in this protocol, CNS relapses occurred only in three
patients (three of 227; 1.3%). One patient suffered a CNS relapse with
a BM relapse, one patient a BM relapse and a skin relapse, and one
patient a testicular relapse. Although AML99 was a highly intensive
protocol, only eight children (3.5%) died in the first CR, four during
chemotherapy and four after HSCT.

Results According to Risk Stratification

Among those who achieved first remission, 112 children were
stratified to the low-risk group, 92 to the intermediate-risk group, and
23 to the high-risk group. The 5-year OS and DFS in each of the risk
groups were 86.2% (95% CI, 80.0% to 93.0%) and 71.3% (95% CI,
63.4% to 80.2%) in the low-risk group, 72.3% (95% CI, 63.2% to
82.8%) and 59.8% (95% CI, 50.6% to 70.7%) in the intermediate-risk
group, and 56.5% (95% ClI, 39.5% to 80.9%) and 56.5% (95% CI,
39.5% to 80.9%) in the high-risk group (Fig 3).

© 2009 by Amerncan Soctety of Chinical Oncology

Among the low-risk children, 96 of 112 underwent five
courses of consolidation chemotherapy without any event. Six
patients relapsed and three died of infection in CR during chemo-
therapy. In seven patients, chemotherapy was stopped because of
other reasons (three for infectious complications, three for proto-
col violation including one who underwent Allo-BMT, and one for
a parent’s refusal).

Among the intermediate-risk children, 22 had a matched related
donor and 70 had no donor. Of 22 patients with a donor, 21 received
MRD HSCT and one did not because of a fungal infection. After
HSCT, two died in CR (one of respiratory distress and one of acute
graft-versus-host disease). Among the 70 patients without a donor, 62
received chemotherapy only, three received Allo-HSCT, and five re-
ceived auto HSCT. Of the 62 patients who received chemotherapy,
seven relapsed, one died of infection during chemotherapy, and chem-
otherapy was stopped in two patients because of infectious complica-
tions. The 5-year DFS in the matched donor group and the no donor
group were 81.8% (95% Cl, 67.2% t0 99.6%) versus 52.9% (95%CI,
42.4% to 65.9%; P =.029), respectively. However, there was no statis-
tical difference in terms of OS in the matched donor group versus the
no donor group (81.8%, 95% CI, 67.2% to 99.6% v 69.2%, 95% CI,
58.3% to 82.1%; P = .380).

Sixteen of the 23 children in the high-risk group received HSCT
in the first CR (six related BMT, six unrelated BMT, and four cord
blood stem-cell transplantation). Two patients who received cord
blood stem-cell transplantation died in CR (one of fungal infection
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Table 2. Outcome Data of the Recent Studies for Pediatric AML From Major Groups (continued)

or2

Cumulative Doses 5-Year EFS 5-Year OS
High-Dose Cytarabine (dose
Anthracyclines Cytarabine [/m?] ¥ times/course X Etoposide
Study Group (mg/m?) (g/m?) number of courses) (mg/m?) % SE (%) % SE (%)
EORTC-CLG 58,921'"12 380 23.32-29.32 3gX6X10or3gx8x1or 1,350 48 4 62 4
3gxXx10Xx1;,2gx6X1
LAME-91'3.14 460 9.8-134 1gXxX8x1 400 48 4 62 4
Amsacrine 450
BFM-93'5"7 300-400 23.141.1 3gX6B6X10or3gXxX6x2 950 51 3 58 2
BFM-98'8-1® 420 41-47 3gx6x%x20r3gx6Xx 950 49 3 62 3
2,1gx6x1
MRC-AML 10202 850 10.6 1gXx6x1 500-1,500 49 58
-‘Amsacrine 500
MRC-AML1222.23 300-610 4.6-34.6 (-)or1gx6x1lor3gx 1,500 56 66
Amsacrine 500 8 X 1 or both
NOPHO-AML9324:2% 300-375 49.6-61.3 1gX6X1,2gxX6X2o0r 1,600 50 3 66 3
3;,3gx6X1
POG-882126:27 360 55.7 3gXx6Xx3 2,250 32 2 42 2
CCG-289128.2° 350 283 3gXxX4x2 1,900 34 3 45 3
TCCSG AML M91-13 and 495 69.4-99.4 3gxXx6X2,3gXxXx5x4o0r2 3,750-5,750 56 62
M96-14'°
AML99 300-375 59.4-78.4 3gX6x2,2gx10x1 3,150-3,200 61 3 75 3

TCCSG-AML, Tokyo Children’s Cancer Study Group-Acute Myeloid Leukemia.

Abbreviations: AML, acute myeloid leukemia; CR, complete remission; EFS, event-free survival; OS, overall survival; EORTC-CLG, European Organization of
Research and Treatment of Cancer-Children Leukemia Group; Ara-C, cytarabine; cont, continuous; IV, intravenously; VP-16, etoposide; MIT, mitoxantrone; IDA,
idarubicin; LAME, French Leucemie Aigue Myeloblastique Enfant; BFM, Berlin-Frankfurt-Munster; ND, no data; DNR, daunorubicin; MRC, Medical Research Council;
PO, orally; DOX, doxorubicin; NOPHO, Nordic Society of Pediatric Hematology and Oncology; POG, Pediatric Oncology Group; CCG, Children’'s Cancer Group;

and one of acute graft-versus-host disease). The 5-year OS of these 16
patients was 68.8%. Of seven patients who did not received Allo-
HSCT in the first CR, five patients relapsed and died despite receiving
Allo-HSCT after the first relapse, and two patients were still alive in the
first CR with chemotherapy only.

The 5-year EFS of 61.6% and 5-year OS of 75.6% achieved in the
AMLI9 is better than those reported in the Tokyo Children’s Cancer
Study Group (TCCSG) study (from August 1991 to September 1998)
conducted preceding to the AML99 (5-year EFS, 56%; 5-year OS,
67%)."° The chemotherapy regimens in TCCSG AML M91-13 and
M96-14 comprised a total nine and seven courses, respectively. In
these two studies, the remission induction course was the same as that
of induction A course in the AML99 protocol and six of eight consol-
idation courses included high-dose cytarabine in M91-13 and four of
six in M96-14. Since the reduction on consolidation chemotherapy
courses from eight to six did not compromise the treatment results in
this TCCSG studies, the chemotherapy regimen in the AML99 proto-
col comprised five consolidation courses. In TCCSG studies, only two

www.jco.org

high-dose cytarabine courses administered at 12-hour intervals and in
the AML99 protocol, three or four high-dose cytarabine courses ad-
ministered at 12-hour intervals including one or two courses of 2g/m”
cytarabine every 12 hours for 5 days. This dose dense use of cytarabine
in the AML99 protocol may be one of the main explanations for the
superior outcome.

Table 2'°*° presents that the results achieved in the Japanese
AML99 protocol is currently the best among the large-scale studies
reported from other major childhood AML study groups.

The induction regimen of AML99 is quite unique regarding its
12-day long duration of treatment and the precedent setting adminis-
tration of etoposide. When comparing the marrow response rate after
one course of chemotherapy, AML99 has a rate of 86% and this result
is better than those of other studies (Table 2). This good marrow
response rate may explain one of the reasons for the superior outcome
observed in AML99.

Table 2 presents cumulative doses of drugs, the number of chem-
otherapy courses, and the survival rates in the major study groups. In
comparison to other studies, AML99 used much more cumulative
doses of cytarabine including two or three courses of high-dose cytar-
abine, more doses of etoposide, and moderate doses of anthracyclines

© 2009 by American Society of Clinical Oncology
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during total six courses of chemotherapy. The good survival rates
achieved by incorporating high cumulative doses of anthracyclines in
the French Leucémie Aigué Myéloblastique Enfant study'*'* and in
the Medical Research Council (MRC) study,”* or the frequent use of
high-dose cytarabine in the Nordic Society of Pediatric Hematology
and Oncology (NOPHO) study”*** shows that these strategies may
improve the outcome of children with AML. However, considering
the long-term adverse effects of cardiotoxicity caused by anthracy-
clines, high-dose cytarabine plays a key role in postremission chemo-
therapy.>*® Cancer and Leukemia Group B showed that the higher
postremission cytarabine dose was associated with a better 5-year contin-
uous CR (3 g/m?, 42%; 400 mg/m’, 33%; 100 g/m’, 17%; P < .001)
especially in core binding factor (CBF) AML, such as AML with £(8;21)
or inv(16) and AML with a normal karyotype.”' Repetitive use of
high-dose cytarabine based postremission chemotherapy in AML99
may be one of the main explanations for the superior outcome. The
treatment of AML is usually very intensive and near-myeloablative
and the hematologic toxicities and related complications, such as
infections, are severe and sometimes fatal. In AML99, the early death
rate was only 1.7% and the death rate in first CR was 3.5%. These rates
were the lowest among the major group studies.'

In the AML99 protocol, 89 patients with CBF AML were in-
cluded and the 37% incidence (89 of 239 patients) was higher than the
31% incidence observed in TCCSG studies,'® 20% in MRC12,%*** or
22% in Berlin-Frankfurt-Munster 98.'®' The patients with CBF
AML tend to show a relatively favorable outcome and appear to profit
from the administration of high-dose cytarabine. This may be one of
the reasons for the superior outcome in the AML99 protocol. In the
AMLY9 trial, low-risk children were treated with chemotherapy alone
and their 5-year EFS and OS was 71.3% and 86.2%, respectively. These
results reveal that children with low-risk AML can therefore be cured with
chemotherapy alone. In the low-risk group, six patients had severe adverse
events in CR (three died of infection and three had cessation of the
protocol due to infection). It may therefore be appropriate to re-
duce the course of treatment for low-risk children, because there
was no difference in the survival or relapse rate between four and
five courses of treatment by the randomized control trial in the
MRC AMLI2 study.****

In AML99, the intermediate-risk children were genetically
randomly assigned to receive MRD HSCT during the first CR.
Patients with MRD had a significantly better DFS, but the OS
between the donor group and no-donor group did not differ
significantly. These results suggest that matched related BMT
should be reserved for the second CR in intermediate-risk children.
MRC AMLIO revealed that in patients treated with Allo-HSCT,

there was a decrease in the relapse rate (donor 26% v no donor 42%
at 7 years; P = .02), but no significant OS advantage (donor 70% v
no donor 60% at 7 years; P = .1).2"*% In the NOPHO-AML93, the
7-year DFS was higher in children treated with Allo-BMT in com-
parison to those treated with chemotherapy (64% v 51%; P = .04),
but an analysis of the OS showed no difference (71% v 69%).>**
This good result in the chemotherapy group can be explained by
the good results in the relapsed patients treated with HSCT in the
second CR.*> Since the outcome of pediatric AML treated only with
intensive chemotherapy has been improved and relapsed children
are still alive at the first CR after a successful subsequent HSCT, the
indications for HSCT during the first remission should therefore
be limited to high-risk children.

Based on these considerations, the following AML-05 study con-
ducted by the Japanese Leukemia/Lymphoma Study Group, which
covers almost all Japanese children with leukemia or lymphoma, is
presently in progress to assess the validity of the reduced number of
consolidation courses with more restrictive indications for HSCT.
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Summary

Mutation analysis of FBXW?7 and NOTCH1 genes was performed in 55 T cell
acute lymphoblastic leukaemia (T-ALL) and 14 T cell non-Hodgkin
lymphoma (T-NHL) patients who were treated on the Japan Association of
Childhood Leukaemia Study (JACLS) protocols ALL-97 and NHL-98.
FBXW7 and/or NOTCHI mutations were found in 22 (40-0%) of 55
T-ALL and 7 (50-0%) of 14 T-NHL patients. FBXW7 mutations were found
in 8 (14:6%) of 55 T-ALL and 3 (21-4%) of 14 T-NHL patients, and NOTCH1
mutations in 17 (30-9%) of 55 T-ALL and 6 (42-:9%) of 14 T-NHL patients.
Three (5:4%) T-ALL and two (1:4%) T-NHL patients had mutations in both
FBXW7 and NOTCHI. FBXW7 mutations included one insertion, one
deletion, one deletion/insertion and nine missense mutations. NOTCHI
mutations were detected in the heterodimerization domain (HD) in 15 cases,
in the PEST domain in seven cases, and in both the HD and PEST domains in
one case. Five-year event-free survival and overall survival for patients with
FBXW?7 and/or NOTCH] mutations were 95-5% (95% CI, 71:9-99-4%) and
100% respectively, suggesting that T-ALL patients with FBXW7 and/or
NOTCHI mutation represent a good prognosis compared to those without
FBXW7 andfor NOTCHI mutations (636%, P = 0007 and 788%,
P = (-023, respectively).

Keywords: ALL, childhood, prognostic factors, genetic analysis, T cells,
molecular diagnosis.

The outcomes of paediatric T cell acute lymphoblastic
leukaemia (T-ALL) have improved in recent years as a result
of intensified therapies, with 5-year relapse-free survival rates
in the range of about 60-85% (Gaynon et al, 2000; Maloney
et al, 2000; Moghrabi et al, 2007; Pui er al, 2004), which
are relatively low compared to those of B-precursor ALL. A
stringent assessment of the risk of relapse is critical in
determining which patients need to receive more effective
therapy. In T-ALL, it has been reported that the abnormal

First published online 24 February 2009
doi:10.1111/.1365-2141.2009.07607 x

expression of TLXI (HOX11) is associated with a favourable
prognosis, although the prognostic significance of this finding
has yet to be determined (Ferrando et al, 2004; Ferrando et al,
2002). On the other hand, a few reports have suggested that
microarray analysis could distinguish high-risk cases in T-ALL
(Ferrando & Look 2003; Winter et al, 2007).

Recently, activating mutations of NOTCH]I gene have been
reported in more than half of T-ALL cases (Weng et al, 2004).
NOTCHI, previously termed TANI, was discovered as a

© 2009 Blackwell Publishing Ltd, British Journal of Haematology, 145, 198-206
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partner gene in T-ALL with a #(7;9)(q34;q34-3), and was found
in <1% of T-ALLs (Ellisen et al, 1991). A good clinical
outcome for T-ALL patients with NOTCHI mutations was
reported in the paediatric ALL-BFM 2000 study (Breit et al,
2006). On the contrary, other papers reported that NOTCHI
mutations were not associated with good clinical outcome in
T-ALL (van Grotel et al, 2008; Zhu et al, 2006). Thus, clinical
significance of NOTCHI mutation in T-ALL still remains
controversial.

F-box and WD40 domain protein 7 (FBXW7; previously
termed FBW7, CDC4, or Archipelago), is also considered a
candidate prognostic factor in T-ALL. FBXW?7 was originally
isolated as a Lin12/NOTCH-negative regulator in Caenor-
habditis elegans (Hubbard ef al, 1997), and plays a critical role
in intracellular NOTCHI1 degradation which depends on an
intact NOTCH1 PEST domain (Fryer et al, 2004; Tetzlaff et al,
2004). Recently, it was reported that the FBXW7 gene was
mutated in various tumours including breast, ovarian, and
endometrial cancers and T-ALL cell lines (Moberg et al, 2001).

In this study, we analyzed the frequencies and clinical
significance of FBXW7 and NOTCH! mutations in paediatric
T-ALL and T cell non-Hodgkin lymphoma (T-NHL). FBXW7
as well as NOTCHI was found to be frequently mutated in
paediatric T-ALL and T-NHL. We firstly described that
mutations of either FBXW7 or NOTCHI genes, rather than
FBXW?7 or NOTCHI alone, were associated with good clinical
outcome in T-ALL.

Methods

Patients and treatments

All children with T-ALL or T-NHL, aged under 15 years were
enrolled into the Japan Association of Childhood Leukaemia
Study (JACLS) protocol ALL-97 between 1997-2001 and
JACLS trial NHL-T98 between 1998-2002 (Oda et al, 2006)
(Fig S1). All T-NHL patients were pathologically diagnosed as
having lymphoblastic lymphoma. Patients who failed to obtain
complete remission (CR) with risk adapted induction chemo-
therapy were scheduled to undergo F-protocol at 6 weeks
following the start of their initial induction chemotherapy.
Samples from 55 newly diagnosed T-ALL and 14 T-NHL
patients were examined in this study. At the time of diagnosis,
bone marrow (BM) and/or peripheral blood (PB) cells were
obtained from T-ALL patients and lymph nodes and/or pleural
effusions were obtained from T-NHL patients. T-lineage
immunophenotypic subtype was defined as simultaneous
expression of two or more T-lineage associated molecules
including CD2, CD3, CD5, CD7, and CD8, on at least 20% of
lymphoblasts. T-ALL was characterized by definition as the
presence of more than 25% bone marrow involvement of
lymphoblasts. Cytogenetic studies were performed on 60
patients by using regular G-banding method. Advanced stage
(stages 3 and 4) T-NHL patients were enrolled in this protocol,
and the histopathology of specimens was reviewed by central
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pathology reviewers. A total of 69 patients were included in the
present study; 49 were male and 20 female; 55 were children
diagnosed with T-ALL (median age of 95 years; range: 2:0-
150 years) and 14 with T-NHL (median age of 11-0 years;
range: 37-15-0 years). The basic clinical and immunological
characteristics of this patient subgroup did not differ from
those of the entire group. The two-year treatment regimen
consisted of induction therapy (vincristine sulfate, high dose-
methotrexate, cytarabine, prednisone, L-asparaginase), five
drug consolidation therapy A and B including high doses of
L-asparaginase, and maintenance therapy with block-rotated
treatment using the drugs listed above. Informed consent was
obtained from the patients or their parents, according to
guidelines based on the tenets of the revised Helsinki protocol.
The institutional review board of Gunma Children’s Medical
Centre approved this project.

DNA and RNA preparation

DNA and RNA were prepared from samples of BM, PB, lymph
nodes, and pleural effusions containing tumour cells of
patients with primary T-ALL and T-NHL, by using the AllPrep
DNA/RNA Mini Kit (Qiagen, Valencia, CA, USA).

Detection of FBXW7 and NOTCH]1 mutations

Mutation detection was performed by polymerase chain
reaction (PCR)-based denaturing high-performance liquid
chromatography (dHPLC) using a WAVE DNA fragment
analysis system (Transgenomic, Omaha, NE, USA) equipped
with a DNASep HT cartridge (Weng et al, 2004). The PCR
products of positive cases detected by PCR-based dHPLC were
purified using the QIAquick PCR Purification Kit (Qiagen).
Sequencing by means of fluorescent-dye chemistry was
performed on an ABI Prism 310 Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA) (Shimada et al, 2006;
Taketani et al, 2004). For further confirmation of insertion and
deletion mutations, the purified PCR products were subcloned
using a TOPO-TA Cloning Kit (Invitrogen, Carlsbad, CA,
USA) and then sequenced (Taketani et al, 2004). FBXW7
mutations were screened from exons 2 to 12 using primers
described previously (Cassia et al, 2003). NOTCHI mutations
in the N-terminal region and the C-terminal region of the HD
domain (exons 26 and 27), the transcriptional activation
domain (TAD) (exon 34), and the PEST domain (exon 34)
were screened by using primers described previously (Weng
et al, 2004).

Statistical analyses

Proportional differences between groups were analyzed by
chi-squared or Fisher’s exact tests. The Kaplan—Meier method
was used to estimate survival rates. Differences in prognosis
between groups were evaluated using the log-rank test. Event-
free survival (EFS) was measured from the time of diagnosis
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to the time of analysis or first event. Failure to achieve
remission, relapse or death that occurred during continuous
complete remission were evaluated as events. Overall survival
(OS) was defined as the time from diagnosis to death.
Multivariate survival analysis was performed using the Cox
proportional-hazards model. A P value of less than 0-05 (two-
sided) was considered statistically significant. All statistical
analyses were performed using stata 81 (STATACORP LP,
College Station, TX, USA).

Results

FBXW7 and NOTCHI1 mutations in T-ALL and
T-NHL patients

FBXW?7 and/or NOTCH1 mutations were found in 22 (40:0%)
of 55 T-ALL and 7 (50:0%) of 14 T-NHL patients
(Tables I-111). FBXW7 mutations were found in 8 (14:6%) of
55 T-ALL and 3 (21-4%) of 14 T-NHL patients, and NOTCH!

Table I. FBW7 and NOTCH1 mutations in T-ALL and T-NHL patients.

FBXW?7 mutation

NOTCH! mutation

Patient no. Nucleotide* Amino acid Nucleotidet Amino acid
T-ALL 4 - - 47787 > C 1.1593P
T-ALL 5 1662C > T R505C 4817_4818insGCCCCC 1606delinsLPP
T-ALL 8 1450_1451ins AGCTGTT 435AVVSHHMPSHH(£X - -
GTCTCTCATCATATG
CCTTCTCAC
T-ALL 20 1542C>T R465C 4847T > A I1616N
T-ALL 22 - - 4775_4776insGAC 1592delinsLT
T-ALL 23 - - 7355_7356insCTGGC 2453WRCTLFCPRKAPPCP
RRCHPRWSHPfsX
T-ALL 26 - - 4818_4819insCTTTATCTC 1606_1607insHYL
T-ALL 30 - - 4732_4734del 1578delV
T-ALL 31 - - 4732_4734del 1578delV
T-ALL 32 2029T > C V627A - -
T-ALL 33 - - 4754T > C L.1585P
T-ALL 34 1543G > A R465H - -
715_718delinsGAC 189RPQNIQVPLGLYHV
QQHQQLLGTSEQPM
AKGNNDAELHLSSHL
QASRNGfsX
T-ALL 35 - - 7412delinsAG 52471X
T-ALL 37 - - 4732-4734del 1578delV
T-ALL 38 1585G > A R479Q - -
T-ALL 41 - - 4754T > C L1585P
T-ALL 46 - - 7318C>T Q2440X
T-ALL 49 1585G > A R479Q 4732-4734del 1578delV
T-ALL 50 - - 7330C > T Q2444X
T-ALL 65 - - 4814_4815delinsCCCCCCCCGA 1606PPDHKPSVTHTASR(sX
CCATAAGCC
T-ALL 67 1543G > A R465H - -
T-ALL 75 - - 4818_4822delinsAGCACACCA 1606delinsLAHQP
GCCCAAGC
T-NHL 18 - - 4709_4718del 1570_1573delinsVDK
T-NHL 25 - - 7541_7542del 2515RVPfsX
T-NHL 54 - - 4793G>C R1598P
7541_7542del 2515RVPfsX
T-NHL 55 1543G > A R465H - -
T-NHL 58 1543G > A R465H 4845_4847delinsCCCCTCGAA 1615_1617delinsIPSNF
T-NHL 59 - - 7326_7327insCGCGGAGGTGC 2443RGGACSHWAPAAWRC
TLFCPRRAPPCP RRCHPR
WSHPfsX
T-NHL 61 2107del 653RVNLEET{sX 7403_7404insGGGGG 2469GGHPRWSHPfsX

*Nucleotide number is according to the GenBank accession number NM_033632.
tNucleotide number is according to the GenBank accession number NM_017617.
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Table II. Association of NOTCHI and FBXW7 mutations with clinical characteristics in 55 T-ALL patients.

NOTCH!1 FBXW7 FBXW7 and/or NOTCH1
Mutation (+) Mutation (—) Mutation (+) Mutation (=) Mutation (+) Mutation (—)

Patient characteristics n (%) n (%) P n {%) n (%) P n (%) n (%) p
Overall 17 38 8 47 22 33
Gender

Male 12 (70:6) 25 (65-8) 0-726 7 (87°5) 30 (63-8) 0250 16 (72:7) 21 (63°6) 0-481

Female 5 (294) 13 (34-2) 1 (12:5) 17 (36:2) 6 (27-3) 12 (36'4)

Age at diagnosis (years) 3 (37'5) 27 (574) 0295 12 (545) 18 (54'5) 10

<10 10 (58-8) 20 (526) 0670 5 (62'5) 20 (42:6) 10 (45'5) 15 (45'5)

>10 7 (412) 18 (47-4)
Presenting at diagnosis WBC (x10°7)

<100 12 (70-6) 18 (474) 0-110 17 (89'5) 26 (72:2) 0238 16 (72:7) 14 (424) 0027

2100 5 (29-4) 20 (52'6) 5 (9-1) 13 (36'1) 6 (27-3) 19 (57-6)
Mediastinal involvement

Yes 12 (70°6) 22 (579) 0-371 4 (50-0) 30 (63-8) 0464 14 (636) 20 (60-6) 0-821

No 5 (29-4) 16 (42:1) 4 (50:0) 17 (362) 8 (36+4) 13 (39-4)
T cell immunophenotype

Pro and Pre 3 (176) 5 (132) 0-665 0 (0) 8 (17:0) 0287 3 (136) 5 (152) 0-164

Cortical 8 (47-1) 14 (36:8) 5 (62'5) 17 (362) 12 (54'5) 10 (30-3)

Mature 6 (35'3) 19 (50-0) 3 (37:5) 22 (46:8) 7 (31-8) 18 (54:5)
Chromosomal abnormalities*

No 11 (68-8) 21 (55-3) 0749 8 (100:0) 24 (522) 0031 16 (76:2) 16 (48°5) 0172

Yes

Abnormalities involving 1 (6:3) 5(13-2) 0 (0:0) 6 (13-0) 4 (19-0) 12 (36:4)

TCR locust (+)
Abnormalities involving 4 (25-0) 12 (31-6) 0 (0:0) 16 (34:8) 1 (4-8) 5 (152)
TCR locus (=)

Relapse

Yes 0(0) 10 (26'3) 0022 1 (12:5) 9 (19:1) 10 1 (45) 9 (27:3) 0-039

No 17 (100) 28 (73-7) 7 (87'5) 38 (809) 21 (955) 24 (727)

Pro and Pre (CD7" and CD17), Corical (CD1%), Mature (CD1%, sCD3").

P, ¥* or Fisher’s exact test; TCR, T cell receptor.
*Total n = 54,
+Chromosomal abnormalities including 14q11, 7p15, and 7q35.

mutations in 17 (30-9%) of 55 T-ALL and 6 (42:3%) of 14
T-NHL patients. Three (5:4%) T-ALL and two (1-4%) T-NHL
patients presented mutations in both FBXW7 and NOTCH1
(Table 1).

The 12 FBXW7 mutations detected included nine missense
mutations, one 31 bp insertion, one single nucleotide deletion,
and one deletion/insertion mutation {Table I). Seven of nine
missense mutations were clustered in a ‘hot spot’ encoding
arginines 465 and 479 residues which are highly conserved in
the WD40 (tryptophan-aspartic-acid) repeat of FBXW7
(Fig S2A). Of the 12 identified FBXW7 mutations, one
insertion (T-ALL 8), one deletion/insertion (T-ALL 34), and
one single nucleotide deletion (T-NHL 61) have not been
previously described in T-ALL or other cancers (Fig $2B-D).
FBXW7 missense mutation encoding V627A (T-ALL 32) was
also a novel mutation. V627 of FBXW7 is evolutionarily

conserved, and V627A was not detected in normal lympho-
cytes from 20 healthy volunteers. One patient (T-ALL 34) had
a FBXW?7 deletion/insertion mutation and a missense muta-
tion that encoded FBXW7 residue R465H (Table I, Fig $2C).

Ofthe 24 NOTCH1 mutations detected in 23 cases, 16 (66:7%)
were located in sequences encoding the HD domain, 8 (33-3%)
in the PEST domain (Table I). In one case (T-NHL 54),
mutations were detected in both the HD and PEST domains. Of
these 24 mutations, 17 (70-9%) were short in-frame insertion or
deletions, 5 (20:8%) were missense mutations, and 2 (8-3%) were
nonsense mutations in sequences encoding the HD or PEST
domains, respectively. Furthermore, a single nucleotide poly-
morphism C5097T was observed in the sequence encoding the
C-terminal region of the HD domain in 63 (91:3%) of 69
patients, as previously reported for Japanese adult patients with
mature T cell malignancies (Shimizu et al, 2007).
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Table 111, Association of NOTCHI and FBXW7 mutations with clinical characteristics in 14 T-NHL patients.

NOTCHI

FBXW7

FBXW?7 and/or NOTCH!

Mutation (+) Mutation (-)

Mutation (+) Mutation (=)

Mutation (+) Mutation (=)

Patient characteristics n (%) n (%) P n (%) n (%) P n (%) n (%) P
Overall 6 8 3 it 7 7
Gender
Male 5 (83-3) 7 (87°5) 10 2 (66'7) 10 (90-9) 0396 6 (857) 6 {857) 1-0
Female 1 (167) 1 (12:5) 1 (333) 1(91) 1(143) 1 (143)
Age at diagnosis (years)
<10 4 (66'7) 2 (25:0) 0277 2 (667) 4 (36:4) 0-538 4 {571) 2 {286) 0592
210 2 (333) 6 (75:0) 1 (333) 7 (636) 3 (429) 5 (714)
Mediastinal involvement
Yes 0 (0-0) 1(12:5) 10 0 (0-0) 1(91) 1-0 0 (0-0) 1(143) 10
No 6 (100:0) 7 (87'5) 3 (100:0) 10 (90'9) 7 (100-0) 6 (857)
T cell immunophenotype
Pro and Pre 0 (00) 0 (0:0) 1-0 0 (0:0) 0 (00) 1-0 0 (0:0) 0 (0-0) 1-0
Cortical 2 (33-3) 2 (286) 1(333) 3 (30-0) 2 (28:6) 2 (333)
Mature 4 (667) 5 (71-4) 2 (66°7) 7 (70:0) 5(71-4) 4 (667)
Chromosomal abnormalities*
No 4 (66'7) 3 (4249) 0755 3 (1000) 4 (40-0) 0217 5(714) 2(333) 0-470
Yes
Abnormalities involving 1 (167) 1(143) 0 (00) 2 (20-0) 1(143) 1 (167)
TCR locust (+)
Abnormalities involving 1 (167) 3 (429) 0 (0-0) 4 (400) 1(14°3) 3 (50-0)
TCR locus (-)
Relapse
Yes 0 (0-0) 2 (250) 0473 0{00) 2(182) 10 0 (0:0) 1(143) 10
No 6 (100-0) 6 (75:0) 3 (100-0) 9 (81-8) 7 (100-0) 6 (857)

Pro and Pre (CD7" and CDI7), Corical (CD1%), Mature (CD1%, sCD3").

P, y? or Fisher’s exact test; TCR, T cell receptor.
*Total n = 13.
+Chromosomal abnormalities including 14q11, 7pl5, or 7g35.

Clinical characteristics of FBXW7 and NOTCH]1
mutations

The clinical and biological characteristics of the patients in this
study are shown in Tables II and III. FBXW7 and/or NOTCH1
mutations were associated only with white blood cell (WBC)
counts. FBXW7 and/or NOTCH1 mutations, but not FBXW7
or NOTCHI alone, were found more frequently in T-ALL
patients with low WBC count, <10 X 10°/1, than in those with
higher WBC count, >10 x 10%/1 (P = 0:027). FBXW7 muta-
tions, but not NOTCHI mutations, were negatively associated
with chromosome abnormalities in both T-ALL and T-NHL.
All T-ALL and T-NHL patients having FBXW7 mutation
lacked a chromosome abnormality (100% vs. 52:2%, P = 0-031
in T-ALL and 100% vs. 40-0%, P = 0-217 in T-NHL).

Prognostic significance of FBXW7 and NOTCH1
mutations

We next analyzed the correlation between FBXW?7 and/or
NOTCHI mutations and clinical outcome. T-ALL patients with

NOTCHI mutation had a better clinical outcome than those
without NOTCHI mutation {100% vs. 65-8% [95% confidence
interval (CI), 48:5-78-5%]; P = 0-008 for 5-year EFS and 100%
vs. 81:6% [95% CI, 652-90-8%]; P = 0-065 for S5-year OS,
respectively} (Fig S3), while the prognostic difference between
patients with and without FBXW7 mutation was not significant
[87:5% (95% CI, 38:7-98:1%) vs. 74-5% (95% CI, 59-4~-84-6%);
P = 0-400 for 5-year EFS and 100% vs. 851% (95% CI, 71-3~
92:6%); P = 0-259 for 5-year OS, respectively] (Fig S4). The
5-year EFS and OS for T-ALL patients with FBXW7 and/or
NOTCHI mutations were extremely high, suggesting a good
prognosis for patients with FBXW7/NOTCHI mutation com-
pared to those without {95:5% (95% CI, 71-9-99-4%) vs. 63-6%
(95% CI, 45:0~77-5%); P = 0-007 and 100% vs. 78:8% (95% ClI,
60-6-89-3%); P = 0-023, respectively] (Fig 1). Notably, all three
patients with both FBXW?7 and NOTCHI mutations were alive
without relapse.

Multivariate analysis of prognostic factors adjusted for
gender, age at diagnosis, and WBC count presented at diagnosis
revealed that FBXW7 and/or NOTCH1 mutation status, risk
group for treatment, and chromosomal abnormalities retained
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Fig 1. Kaplan—Meier estimate of (A) event-free survival and (B) overall
survival of T-ALL patients with or without FBXW? and/or NOTCH1
mutation.

their significant effects on EFS (Table IV). On the other hand,
multivariate analysis adjusted for NOTCH! and/or FBXW7
mutation status, risk group for treatment, and chromosomal
abnormalities, in addition to gender, age at diagnosis, and WBC

FBXW?7 and NOTCH1 Mutations in Childhood T-ALL/NHL

count presented at diagnosis, revealed that none of them
retained EFS significance (Table IV).

In T-NHL, patients with NOTCH1 and/or FBXW7 mutation
also had a good prognosis, although the differences in 5-year
EFS and OS for patients with and without NOTCHI and/or
FBXW?7 mutations were not significant {EFS, 85:7% (95% ClI,
33:4-97-9%) vs. 57-1% (95% CI, 17-2-837%), P = 0-313; OS,
85-7% (95% CI, 33-4-97-9%) vs. 53-6% (95% CI, 13-2-82-5%),
P = 0-286].

Discussion

In this study, we found 14-6% FBXW?7 mutations and 30-9%
NOTCHI mutations in T-ALL patients, and 21-4% FBXW7
mutations and 42-:3% NOTCHI mutations in T-NHL patients.
Frequencies of FBXW7 and NOTCH1 mutations in T-ALL in
this study were similar to those in other recent studies (8:6—
30:8% for FBXW?7 mutations, and 30-8-70-8% for NOTCH]1
mutations) (Akhoondi et al, 2007; Lee et al, 2005; Malyukova
et al, 2007; Mansour et al, 2006; O’Neil et al, 2007; Thompson
et al, 2007; van Grotel et al, 2008). This is the first report
describing high frequencies of FBXW7 and NOTCHI muta-
tions in T-NHL as well as in T-ALL. The types of mutations
identified were similar in T-ALL and T-NHL patients
(Table 1), although it was previously reported that gene
expression profiling revealed intrinsic differences between
T-ALL and T-NHL (Raetz et al, 2006).

Our results demonstrated that FBXW7 and/or NOTCH1
mutations as well as NOTCHI mutations alone had a good
prognosis in T-ALL patients. The P value regarding the
significant difference in prognosis for patients with FBXW7
and/or NOTCHI status (P = 0-007 for EFS) was less than for
those with NOTCH]1 status alone (P = 0-008), although the
difference in prognosis for FBXW7 status alone was not
significant (P = 0-397). All T-ALL and T-NHL patients with

Table IV. Multivariate analysis of effects of FBXW7 and/or NOTCHI mutations on EFS in 55 T-ALL patients.

Crude HR Adjusted HR1* Adjusted HR2¢
(95% CI) Pt (95% CI) Pt (95% CI) Pt
FBXW7 and/or NOTCH1 mutation
Negative 1-00$ 1-00§ 1-00§
Positive 0-10 (0-01-0-78) 0:028 0-10 (0-01-0-77) 0027 0-24 (0-05-1-13) 0-071
Chromosomal abnormalities
No 1-00§ 1-00§ 1-:00§
Yes
Abnormalities involving TCR locus (+) 599 (1-55~23-22) 0-:010 604 (1-54-23-70) 0-010 641 (1-35-30-58) 0020
Abnormalities involving TCR locus (—) 7:63 (1-53-38-11) 0013 1080 (2-03-57-57) 0-005 3-22 (0-89-11:67) 0076

HR, hazard ratio; Cl, confidence interval.

*Adjusted for sex, age at diagnosis and presenting white blood cell count (categorical: see Table I).
tAdjusted for sex, age at diagnosis, presenting white blood cell count, FBXW7 and/or NOTCHI mutations category, determined risk and chro-

mosomal abnormalities) (categorical: see Table I).
1P, X? test.
SReference category.
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FBXW?7 mutations, with the exception of one T-ALL patient,
have survived without relapse. One patient (T-ALL 38) had an
isolated CNS relapse; however, the patient had survived 2 years
after the relapse episode.

The paediatric ALL-BFM 2000 study reported the good
clinical outcome for T-ALL patients with NOTCHI mutations
(Breit et al, 2006), however, other two reports described results
that were not compatible with this (van Grotel et al, 2008; Zhu
et al, 2006). One possible explanation for this discrepancy of
prognostic impact is the different treatment protocols used;
the survival rates reported in other papers were apparently
lower [28-8% 3-year relapse free survival (Zhu et al, 2006) and
65% 5-year disease-free survival (van Grotel et al, 2008)] for
T-ALL patients with NOTCHI] mutation than' those of the
ALL-BFM 2000 study (90% relapse-free survival) and our
study (100% 5-year EFS). On the other hand, there was no
statistically significant impact of NOTCHI mutations on
prognosis in T-NHL patients, perhaps because the number
of T-NHL patients was small in this study. Further study of
T-NHL patients is needed to clarify the association of FBXW7
and NOTCH1 mutations with T-NHL prognosis.

Four novel mutations were found, and two of the four, V627A
in T-ALL 32 and a frame shift mutation at codon 653 in T-NHL
61, were positioned outside of a ‘hot spot’ region. Codon 627 is
localized in the seventh B-propeller blade (B-PB7) of FBXW7
(Orlicky et al, 2003), and a R689W mutation in the B-PB8 was
also reported in T-ALL cases (Malyukova et al, 2007). C-terminal
truncation of FBXW?7 observed in T-NHL 61 was also reported
in an endometrial tumour (nonsense mutation of codon 658)
(Akhoondi et al, 2007), and these mutations result in the absence
of a portion of B-PB7 and all of B-PB8. These findings suggested
that a structural change of any B-propeller blades may have
similar effects on FBXW?7 function. Furthermore, it was also
demonstrated that Fbxw7 deficiency in adult haematopoietic
cells leads to T-ALL in mice (Matsuoka et al, 2008), suggesting
that inactivation of FBXW7 plays a critical role in T-ALL
leukaemogenesis.

Chromosomal abnormalities of the TLX3 (5q35) and TLX1
(10q24) locus have been reported to be associated with poor
and good outcome (van Grotel et al, 2008). In this study,
chromosomal abnormalities involving the TLX! locus were
found in one patient and chromosomal abnormalities involv-
ing the breakpoint at 5q35-1 (TLX3) were not found in any
patients. #(10;11)(q13;q14) [PICALM-MLLT10 (previously
termed CALM-AF10)] was not found. The prognostic signif-
icance of these cytogenetic abnormalities was not clear because
the number of patients was small. .

Notably, FBXW7 mutations were only observed in T-ALL
and T-NHL patients lacking chromosomal abnormalities.
FBXW7 is considered to be a haplo-insufficient tumour
suppressor gene (Mao et al, 2004). Inactivation of FBXW?7
has been reported to cause chromosomal instability in
karyotypically stable colorectal cancer cells, resulting in a
striking phenotype associated with micronuclei and chromo-
somal instability (Rajagopalan et al, 2004). On the contrary,

FBXW?7 mutation has been reported to lack association with
chromosomal instability in colorectal cancer (Kemp et dl,
2005), which was compatible with the present results for
T-ALL. Further studies are needed to clarify this issue.

In conclusion, FBXW7 and NOTCHI1 are functionally related
each other, and the mutations of either FBXW7 or NOTCH1
genes rather than FBXW7 or NOTCHI alone were associated
with good clinical outcome in T-ALL, suggesting that the status
of both FBXW?7 and NOTCHI, rather than FBXW7 or
NOTCHLI alone, is a useful prognostic factor in T-ALL.
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