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Figure 6. Effects of C-RAF depletion or sorafenib on cyclin E expression in
NSCLC cells with mutant KRAS. Cells harboring mutant KRAS ware transiently
transfected for 48 h with nonspecific (control), B-RAF, or C-RAF siRNAs or were
exposed to 15 pmol/L. sorafenib for 24 h in complete medium. Cell iysates were
then prepared and subjected to immunoblot analysls with antibodies to B-RAF,
C-RAF, cyclin E, and p-actin.

proteins, our present data suggest that the observed down-
regulation of cyclin E may contribute to the G, arrest induced by
C-RAF depletion or by sorafenib in NSCLC cells with mutant

Sorafenib inhibits several RTKs that participate in neovascula-
rization, including vascular endothelial growth factor receptor
(VEGFR)-2 and VEGFR-3 (16). Inhibition of angiogenesis might
thus be expected to contribute to the inhibition of tumor growth by
this drug in addition to its effects on RAF signaling. Although
sorafenib was previously shown to inhibit the growth of a variety of
human tumor xenografts in mice (13, 16, 46), it has been difficult to
measure the relative contributions of its antiangiogenic activity
and its direct antitumor activity mediated by RAF inhibition. In the
present study, we have provided insight into the inhibitory effect of
sorafenib on tumor cell growth in vitro that is mediated by
inhibition of BAF signaling pathways. Our results suggest that
sorafenib targets B-RAF in NSCLC cells with wild-type KRAS and C-
RAF in those with mutant KRAS, and they provide a rationale for
future clinical investigation of the therapeutic efficacy of sorafenib
for NSCLC patients.
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A phase-ll trial of dose-dense chemotherapy in patients with

disseminated thymoma: report of a Japan Clinical Oncology
Group trial (JCOG 9605)
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BACKGROUND: To evaluate the safely and efficacy of dose-dense weekly chemotherapy in the treatment of advanced thymoma,
METHODS: Subjects comprised patients with histologically documented chemotherapy-naive thymoma with stage-Va or Vb disease.
Thymic carcinoma, carcinoid or lymphoma cases were excluded. Patients received 9 weeks of chemotherapy: cisplatin (25 mg m~?)
on weeks | --9; vincristine (1 mgm™2) on weeks 1, 2, 4, 6 and 8; and doxorubicin (40mgm™%) and etoposide (80 mg m~%) on days
I -3 of weeks 1, 3,5, 7 and 9. Chemotherapy courses were supported by granulocyte colony-stimulating factor. Post-protocol local
therapy was allowed.

RESULTS: From July 1997 to March 2004, 30 patients were entered. Three were ineligible due to different histology. Chemotherapy-
| associated toxicity was mainly haematological and was well tolerated, with no deaths due to toxicity, and 87% of patients completed
| the planned 9-week regimen. Overall response rate was 59%, with 16 of the 27 eligible patients achieving partial response. Median
| progression-fee survival (PFS) was 0.79 years (95% confidence interval: 0.52—1.40 years), and PFS at | and 2 years was 37 and 15%,
respectively. Overall survival rates at 2 and 5 years were 8% and 65%, respectively.

CONCLUSION: In stage-IV thymoma patients, weekly dose-dense chemotherapy offers similar activity to conventional regimens,
British Journal of Cancer (2009) 101, 15491554, doi:10.1038/sj.bjc.6605347 www.bjcancer.com
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Thymoma is a rare thoracic tumour, but remains one of the most
common tumours originating in the mediastinum (Thomas et al,
1999; Giaccone, 2005; Girard et al, 2009). Clinical behaviour tends
to be indolent, but dissemination into the pleural space eventually
occurs and sometimes distant metastasis arise (Thomas et al,
1999). Thymoma is frequently associated with paraneoplastic
syndromes such as myasthenia gravis or pure red cell aplasia
(Thomas et al, 1999; Giaccone, 2005). No International Union
Against Cancer (UICC) TNM classification is available, and the
Masaoka classification has been widely used for clinical staging
(Masaoka et al, 1981; Girard et al, 2009).
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The majority of thymomas are discovered at a limited stage,
representing Masaoka stage-I or II, and surgical resection is the
treatment of choice for such cases (Thomas et al, 1999; Giaccone,
2005; Girard et al, 2009). Even when the tumour invades
neighbouring organs, as stage-1II disease, surgical resection with
postoperative radiotherapy is the preferred treatment when
complete resection can be achieved (Curran et al, 1988; Urgesi
et al, 1990; Ogawa et al, 2002; Strobel et al, 2004).

Systemic chemotherapy is usually used for stage-IVa (with
pleural or peticardial dissemination) or stage-IVb disease (with
lymphogenous or haematogenous metastases), but optimal manage-
ment is less well established (Thomas et al, 1999; Girard et al,
2009). Several reports have described favourable outcomes in
limited numbers of patients with stage-IVa disease treated using
multimodal treatment including surgery (Kim et al, 2004; Yokoi
et al, 2007).

Conversely, thymomas are generally reported to be chemo-
therapy-sensitive tumours, with response rates of 50-70% to
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combination chemotherapy (Fornasiero et al, 1990; Loehrer et al,
1994, 1997, 2001; Giaccone et al, 1996; Berruti et al, 1999; Kim et al,
2004; Lucchi et al, 2006; Yokoi ef al, 2007). Active agents include
cisplatin (CDDP), vincristine (VCR), doxorubicin (ADM), etopo-
side (ETP), cyclophosphamide (CPM) and ifosfamide (IFX).
Recent reports have shown marginal activity of pemetrexed
(Loehrer et al, 2006) and combined carboplatin and paclitaxel
(Lemma et al, 2008).

Dose-dense chemotherapy with the CODE combination
(CDDP-VCR-ADM-ETP) and addition of granulocyte colony-
stimulating factor (G-CSF) can be safely administered to patients
with advanced lung cancer (Murray et al, 1991; Fukuoka et al,
1997). Theoretically, this approach might be suitable for chemo-
sensitive tumours such as small-cell lung cancer and thymoma
(Goldie and Coldman, 1983, 1984; Levin and Hryniuk, 1987; Murray,
1987). Because some pilot data in Japan suggested that administra-
tion of 12 weeks of the CODE chemotherapy was barely feasible,
subsequent Japanese trials used a modified schedule, which was
shortened to 9 weeks (Fukuoka et al, 1997; Puruse et al, 1998).

In 1996, the Japan Clinical Oncology Group (JCOG) initiated two
clinical trials for advanced thymoma: one aimed at evaluating the
safety and efficacy of the CODE regimen in stage IV, disseminated
thymoma (JCOG 9605), and the other aimed at evaluating the
safety and efficacy of CODE combination chemotherapy followed
by surgical resection and postoperative radiotherapy in initially
unresectable stage-1I1 thymoma (JCOG 9606). The primary end-
point in each study was progression-free survival (PFS). The
results of JCOG 9605 are reported herein,

PATIENTS AND METHODS

Eligibility criteria

Patients with chemotherapy-naive, histologically documented
thymoma at Masaoka stage IVa or 1Vb were eligible for entry into
the study. Thymoma must have been confirmed histologically and
thymic tumours with other histology, such as thymic carcinoma,
carcinoid or lymphoma, were excluded. Each patient was required
to fulfil the following criteria: age, 15~ 70 years; Eastern Cooperative
Oncology Group (ECOG) performance status (PS), 0-2; adequate
organ function, that is, leukocyte count 24000 ui™}, platelet count
>10° ™", hemoglobin >10.0gdl™', serum creatinine <15mg
dl”!, creatinine clearance 60 mlmin~', serum bilirabin <1.5mg
di™}, serum alanine transaminase and aspartate transaminase levels
less than double the upper limit of the institutional normal
range; and Pa0, >70mmHg. Exclusion criteria included un-
controlled heart disease, uncontrolled diabetes or hypertension,
pulmonary fibrosis or active pneumonitis as evidenced on chest
radiography, infections necessitating systemic use of antibiotics,
disease necessitating emergency radiotherapy such as superior vena
cava obstruction syndrome, active concomitant malignancy and
women who were pregnant or lactating. Also excluded were those
patients with grave complications of thymoma, such as pure red cell
aplasia or hypogammaglobulinemia, Myasthenia gravis was allowed
and these patients were not excluded per se.

Patient eligibility was confirmed by the JCOG Data Center
before patient registration. This study protocol was approved by
the institutional review board at each participating centre and
written informed consent was obtained from all patients prior to
enrolment.

Treatment Plan

Chemotherapy Patients received the 9-week CODE combination
chemotherapy as described below. Each chemotherapeutic agent
was administered intravenously.
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Week 1: CDDP 25 mgm ™ on day | with antiemetics and ample
hydration; VCR (1 mgm™2) on day 1; ADM (40mgm™?) on day 1
and ETP (80 mgm™?) on days 1-3.

Weeks 2, 4, 6 and 8 CDDP (25mgm™) on day 1 with
antiemetics and ample hydration and VCR (1 mgm™?) on day 1.

Weeks 3, 5, 7 and 9: CDDP (25mgm %) on day 1 with
antiemetics and ample hydration, ADM (40mgm™?) on day 1 and
ETP (80 mgm™?) on days 1-3.

Each week, G-CSF (filgrastim (50 ugm~>day™") or lenograstim
(2 ugkg ' day™")) was administered by subcutaneous injection,
except on days when chemotherapy was administered or when
leukocyte count was 3> 10000 ul ™", Corticosteroid was used only as
part of the antiemetic regimen, and the specific drug and dosage
were not regulated by the protocol.

Dose and schedule modifications were performed as follows:
when leukocyte count decreased to <2,000 ul™" or platelet count
decreased to <50 000 ul™*, chemothierapy was delayed by 1 week.
If PS decreased to 3~4 or temperature reached >38.0°C, therapy
was likewise delayed for 1 week. No dose modification of
chemotherapy drugs was adopted for toxicity.

Post-protocol therapy

Surgery or radiotherapy was allowed after the completion of
chemotherapy, at the discretion of the attending physician, even in
the absence of apparent tumour regrowth. Conversely, additional
chemotherapy without evidence of disease progression was not
allowed.

Post-treatment after disease progression was not limited by the
study protocol.

Patient evaluation and follow-up

Before enrolment into the study, each patient underwent complete
medical history taking and physical examination (including
neurological check-up for signs of myasthenia gravis), determina-
tion of blood cell counts, serum biochemistry testing, arterial
blood gas analysis, pulmonary function testing, electrocardio-
graphy, chest radiography, computed tomography (CT) of the
chest, CT or ultrasonography of the upper abdomen, whole-brain
CT or magnetic resonance imaging (MRI) and an isotope bone
scan. Blood-cell counts, serum biochemistry testing and chest
radiography were performed weekly during each course of
chemotherapy.

The toxicity of chemotherapy was evaluated according to the
JCOG Toxicity Criteria (Tobinai et al, 1993), modified from
version 1 of the National Cancer Institute Common Toxicity
Criteria (NCI-CTC). Tumour responses were assessed radio-
graphically according to the standard, two-dimensional WHO
criteria (Miller et al, 1981), and were classified as complete
response (CR), partial response (PR), no change (NC), progressive
disease (PD) or non-evaluable (NE). After completion of the
protocol therapy, patients were followed up with periodic
re-evaluation, including chest CT every 6 months for the first 2
years and annually thereafter,

Central review

Radiographic reviews for the eligibility of enrolled patients and
clinical responses were performed at the time of the study
group meeting, held every 3-4 months, The study coordinator
(H Kunitoh) and a few selected investigators from the group
reviewed the radiographic films. The clinical response data
presented below were all confirmed by this central review. Reviews
of pathological specimens were not performed, because of
insufficient logistics of the study group at the time of the study
activation in 1997.

© 2009 Cancer Research UK



Endpoints and statistical considerations

The primary endpoint in each study was PFS. Due the rarity of the
tumour and the accrual reported in US trials, which required 10
years to register 26 patients with locally advanced (stage-1II)
disease (Loehrer et al, 1997) and 9 years for 31 patients with
disseminated (stage-1V) disease (Loehrer et al, 1994), we presumed
we would be capable of accruing 30 patients in the target accrual
period of 4 years. The sample size was, therefore, not determined
based on statistical calculations. The expected PFS for the JCOG
9605 study was 2 years, which would give a 95% confidence
interval of 1.3-3.0 years with 30 cases.

The initial study design thus envisioned enrolment of 30 fully
eligible cases over 3 years for the study, with a follow-up period of
2 years.

Secondary endpoints included toxicity and safety, objective
tumour response to chemotherapy, pattern of relapse, and overall
survival (OS).

Progression-free survival and OS were calculated from the
date of enrolment and estimated using the Kaplan-Meier
method. Progression-free survival was censored at the last date
verifiable as progression-free, and OS was censored as of the date
of last follow-up. During the accrual period, an interim analysis
for futility was planned after half of the patients had been
registered and followed for >3 months. All analyses were
performed using SAS software version 8.2/9.1 (SAS Institute, Cary,
NC, USA).

RESULTS

Patient characteristics

A total of 30 patients from seven institutions were enrolled from
July 1997 to March 2004. Three patients were later found ineligible
due to wrong histology, with two cases of thymic carcinoma and
one case of carcinoid. These mistakes occurred due to technical
problems in the patient registry. Since the ineligible cases did
receive the protocol therapy, all 30 patients were analysed for
characteristics and toxicity. Twenty-seven eligible patients were
analysed for clinical response and survival (PES and OS). Patient
characteristics are shown in Table 1.

Chemotherapy delivery and toxicity

Nine weeks of chemotherapy were performed for 26 of the original
30 patients (87%). The other four patients included one patient
receiving 7 weeks, two receiving 6 weeks and one receiving 3 weeks
of therapy. Median duration of chemotherapy for the 26 patients
who underwent the planned nine cycles was 10 weeks (range, 912
weeks).

Table 2 summarises the major toxicities of chemotherapy, which
were mainly haematological. Although 70% of patients experienced
grade-1V neutropenia, this was generally transient and rarely
complicated by infection/fever. Overall, toxicities were well
tolerated and no deaths due to toxicity occurred.

Other and late complications

Four patients showed thymoma-related complications. One patient
suffered from myasthenia gravis crisis occurring during chemo-
therapy, but subsequently recovered. Another patient showed
newly diagnosed myasthenia gravis 2.5 years after completion of
the protocol therapy, and thymectomy and resection of the
residual tumour were performed. Two other cases had pure red
cell aplasia occurring later in the clinical course with disease
progression of the thymomas.
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Table | Patient characteristics

Item

Sex
Male/female 16/14
Age (yeors)
Median/range 47.5029~-69
ECOG performance status
PSO/PS1/PS2 HH8/
Masaoka stage
Va/tvb 228
Smoking tistory
No
Yes (median pack—years)

9
20 (22)

Myasthenia gravis
Nolyes 28/2
Histology: thymoma and eligible
Lymphocyte predominance
Mixed cell
Epithelioid cell
Clear cell
Spindle cell
Unclassified

P . -
o) oo Oy

Histology: not thymoma (ineligible)
Carcinorna
Carcinoid
Lymphoma

O =N

Prior therapy
None
Surgery
Surgery and radiation

N

Abbreviations: ECOG = Eastern Cooperative Oncology Group; PS = performance
status,

Table 2 Toxicity of chemotherapy (n==30)

Toxicity Grades 1/2 Grade3 Graded4d %Grade 3/4
Leukopenia 3/6 12 8 67
Neutropenta 3/ 5 24 87
Anernia 0/5 25 ND 83
Thrombocytopenia ~ 4/6 5 3 27
ALT 9/0 0 0 0
Creatinine 2/1 0 0 0
PaQ, 912 0 0 4]
Emesis 13/11 2 ND 7
Diarrhoea 42 0 0 0
Stomatitis 413 0 0 0
Constipation 34 2 0 7
Neuropathy Hn 0 ND 0
Infection 3/4 3 0 10

Abbreviations: ALT = alanine transaminase; ND = not defined (the JCOG toxicity
criteria did not define grade IV in these toxicities).

Clinical response to chemotherapy

Clinical responses of the 27 eligible patients to chemotherapy were
judged radiologically and confirmed by central review. Responses
were as follows: CR, 0 patients; PR, 16 patients; NC, 10 patients and
PD, 1 patient. Overall response rate was 59% (95% confidence
interval, 39-78%]).
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Post-protocol therapy

Post-protocol local therapy was administered to 18 of the 27
eligible patients (67%). Eight patients (all with stage-IVa disease)
underwent surgical resection and 13 patients (nine with stage-IVa
disease and four with stage-IVb disease) received thoracic radio-
therapy, with three patients receiving both. Whether patients
received local therapy after disease progression was not recorded
on case report forms.

After disease progression, 16 of the 27 patients (59%) received
additional chemotherapy. Post-protocol chemotherapy included
platinum re-challenge, irinotecan, taxanes and investigational
agents. Clinical response data to those therapies are not available,

PES and OS

Survival data were finally updated in March 2006, 2 years after
accrual of the last patient. Figure 1 shows PFS and OS curves of the
27 eligible patients. Median PFS was 0.79 years (95% confidence
interval, 0.52-1.40 years) and PFS at 1 and 2 years was 37 and
15%, respectively. Median OS was 6.1 years and OS at 2 and 5 years
was 89 and 65%, respectively,

Overall survival was longer for stage-IVa patients than for
stage-IVb patients (Figure 2, median, 6.8 years and 3.5 years,
respectively), but PFS was similar (Figure 3, median, 0.79 years for
1Va patients and 0.78 years for IVb patients).

Pattern of relapse

As of the data cut-off, 26 of the 27 eligible patients had experienced
tumour relapse. Sites of initial relapse comprised the primary site
only in seven cases (27%), pleural or pericardial dissemination
in seven cases (27%) and primary site and pleural/pericardial
dissemination in nine cases (35%). Thus, 23 of the 26 patients with
relapse initially showed regrowth of the primary and/or pleural or
pericardial dissemination, with only three patients (12%) showing
initial relapse at distant organs.

DISCUSSION

Few prospective trials of chemotherapy have been described for
patients with advanced thymoma. Most prior studies have
combined stage-I1I, localised disease and stage-1V, disseminated
disease (Table 3). In addition, most have also included both
thymoma and thymic carcinoma histology.

We have reported results for patients with stage-IV disease, for
which systemic therapy should be the first choice. Among previous
studies, only those from the ECOG separately reported results for
stage-1I1 and stage-1V patients (Loehrer et al, 1994, 1997). The
ECOG took 9 years to accrue 31 patients with stage-1V disease,
including patients with thymic carcinoma (Loehrer et al, 1994).
We prospectively accrued patients with thymoma only and
excluded thymic carcinoma, as thymoma and thymic carcinoma
clearly differ in clinical presentation and prognosis, and trials
involving these pathologies should, thus, be reported separately
(Eng et al, 2004; Giaccone, 2005; Lemma ef al, 2008).

Trials of systemic chemotherapy for thymoma have reported
response rates of 50-90%, so this tumour is generally considered
sensitive to chemotherapy (Thomas et al, 1999). Dose-dense
chemotherapy such as the CODE four-drug combination has been
argued to be theoretically suitable for the treatment of such
chemosensitive tumours (Murray, 1987).

Although our results showed that dose-dense CODE chemo-
therapy could be safely administered to thymoma patients, efficacy
was not remarkable. The overall response rate was about 60%, no
different from prior reports employing conventional-dose
chemotherapy (Table 3). Progression-free survival was 9 months,
falling far short of the expected 2 years. Although OS studies
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compared favourably with the corresponding ECOG trial (Loehrer
et al, 1994), attempting to reach a valid conclusion would be
difficult due to the small sample sizes. In addition, O3 could be
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Table 3 Reports of combination chemotherapy for thymoma

Regimen Stage Patients® ORR Reference
Anthracycline-containing regimens
ADOC (5) 7Y 32 91% Fornasiero et o (1990)
PAC (G) v 30 50% Loehrer ¢t al (1994)
PAC (G) 1] 23 70% Loehrer et of (1997)
ADOC (5) v 16 81% Berruti et ol (1999)
PAC (G) 7Y 22 77% Kim &t al (2004)
PAE (S) 7Y 30 73% Luechi et ol (2006)
CAMP (S) v 14 93% Yokoi et al (2007)
CODE (G) v 27 59% Current study
Non-anthracycline-containing regimens
PE (G) A 16 . 56% Giaccone et al (1996)
VIP (G) v 20 35% Loehrer et al (1997)
CP (G) v 23 35% Lemma et al (2008)
Abbreviations:  ADOC = doxorubicin, cisplatin,  vincristine,  cyclophosphamide;

CAMP = displatin, doxorubicin, methylpredonisolone; CODE = cisplatin, vincnstine,
doxorubicin, etoposide; CP = carbaplatin, paclitaxel; G = prospective muiticenter
group trial, ORR=overall response rate; PAC = cisplatin, doxorubicin, cyclo-
phosphamide; PAE = cisplatin, epidoxorubicin, etoposide; PE = cisplatin, etoposide;
S =single-center experience; VIP= etoposide, ifosfamide, cisplatin, *Number of
assessable patients,

greatly affected by post-study local therapy especially in patients
with stage-1Va disease, as combined therapy trial including stage-
IVa patients suggested (Kim et al, 2004). In fact, this might be one
reason why OS of stage-IVa patients was much longer than that of
stage-1Vb patients, whereas PFS was similar,

It could be argued that shortened CODE chemotherapy, used
in Japan due to feasibility problem, led to inadequate results due
to insufficient total dosages of chemotherapy drugs. However,
another intensive chemotherapy, ETP-IFX~-CDDP (VIP)
supported by G-CSF, has also reported disappointingly low response
rates and no better survival (Loehrer et al, 2001). Hanna ef al (2001)
reported five patients with prior chemotherapy treated with high-
dose chemotherapy and stem cell support, but concluded that no
superiority to conventional therapy was evident. Taken together
with our results, intensification of chemotherapy does not appear
sufficiently promising for treating advanced thymoma.
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Many prior chemotherapy studies have included platinum and
anthracyclines in their regimens. Non-anthracycline approaches
contained regimens such as VIP (Loehrer ef al, 2001), ETP-CDDP
(Giaccone et al, 1996) and paclitaxel ~carboplatin (Lemma et al,
2008) tended to yield lower response rates of 32-56% as compared
with regimens including anthracycline (Table 3). It might, thus, be
suggested that both anthracycline and platinum should, thus, be
included in thymoma chemotherapy, at least in current clinical
practice.

Favourable results have recently been reported with multi-
modality therapy, including surgical resection of stage-IVa disease
(Kim et al, 2004; Yokoi et al, 2007). In fact, about two-thirds of
eligible patients in our trial received local therapy after
chemotherapy, including surgery in eight patients. This could
have affected the outcome of the patients, as discussed above.
However, small sample size and patient selection preclude
reaching any definitive conclusion, When and what local therapy,
if any, would benefit patients with disseminated thymoma, remains
yet to be established, Further studies are warranted.

The present study shows several additional limitations. One is
that we did not perform a central review of histology, and, thus,
could not provide WHO classifications of histology (Okumura
et al, 2002; Travis et al, 2004). This makes comparisons with
results from other reports difficult. Central pathology review and
preferably tissue collection would be very important in future
trials.

In addition, due to the shorter-than-expected PFS, the planned
CT scan interval of every 6 months might not have accurately
evaluated PFS (Freidlin et al, 2007). Future trials might require
more frequent scans.

In conclusion, we have reported that weekly dose-dense
chemotherapy can be safely administered to patients with
thymoma. However, efficacy seems similar to that in patients
treated with conventional doses. More research on optimal
systemic therapy and the role of local modalities would appear
to be necessary.
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Abstract

N-myc downstream regulated gene 1 (NDRG1)/Cap43 expres-
sion is a predictive marker of good prognosis in patients with
pancreatic cancer as we reported previously, In this study,
NDRG1/Cap43 decreased the expression of various chemoat-
tractants, including CXC chemokines for inflammatory cells,
and the recruitment of macrophages and neutrophils with
suppression of both angiogenesis and growth in mouse xeno-
graft models. We further found that NDRG1/Cap43 induced
nuclear factor-kB (NF-«B) signaling attenuation through
marked decreases in inhibitor of kB kinase (IKK) B expression
and IxBa phosphorylation. Decreased IKKP expression in
cells overexpressing NDRG1/Cap43 resulted in reduction of
both nuclear translocation of p65 and p50 and their binding
to the NF-kB motif. The introduction of an exogenous IKKp3
gene restored NDRG1/Cap43-suppressed expression of mela-
noma growth-stimulating activity a/CXCL1, epithelial-derived
neutrophil activating protein-78/CXCL5, interleukin-8/CXCL8
and vascular endothelial growth factor-A, accompanied by in-
creased phosphorylation of IxBa in NDRG1/Cap43-expressing
cells. In patients with pancreatic cancer, NDRG1/Cap43 ex-
pression levels were also inversely correlated with the number
of infiltrating macrophages in the tumor stroma, This study
suggests a novel mechanism by which NDRG1/Cap43 modu-
lates tumor angiogenesis/growth and infiltration of macro-
phbages/neutrophils through attenuation of NF-xB signaling,
[Cancer Res 2009;69(12):4983-91}

Introduction

N-myc downstream regulated gene 1 (NDRG1)/Cap43 is one of the
metastasis suppressor genes (1), and expression of NDRG1/Cap43
is regulated by oncogenes (N-myc and C-myc) and tumor suppres-
sor genes (p53, VHL, and PTEN; ref, 2). Expression of NDRG1/Cap43
protein is often elevated in many types of human tumors. In hu-
man cancer, expression of NDRG1/Cap43 depends on tumor type
and differentiation status (2). Consistent with this idea, NDRG1/

Note: Supplementary data for this article are available at Cancer Research Gnline
(http://cancerres.aacrjournals.org/).
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Cap43 expression in cancer cells is a predictive marker of good
prognosis in patients with neuroblastoma or cancers of the pros-
tate, breast, esophagus, colon, and pancreas (3-10), whereas its ex-
pression is a predictive marker of poor prognosis in patients with
liver and cervical cancer (11, 12).

We previously identified NDRGI/Cap43 as one of the nine
genes that are highly expressed in cancerous regions of human
renal cell carcinoma (13), and its expression is closely associated
with the VHL oncosuppressor gene (14). We further showed that
expression of NDRG1/Cap43 is associated with a marked de-
crease of tumor angiogenesis in mice bearing human pancreatic
cancer xenografts and that NDRG1/Cap43 markedly suppresses
the expression of matrix metalloproteinase-9, vascular endothe-
lial growth factor (VEGF), and interleukin (IL)-8/CXCL8. More-
aover, expression of NDRG1/Cap43 has been associated with
decreased microvessel density (MVD) and differentiation or
depth of invasion in cancer cells in patients with pancreatic
cancer (5).

In the present study, we further examined how NDRG1/Cap43
modulates tumor growth and angiogenesis in pancreatic cancer.
Because microarray analysis in this study and our previous studies
showed that expression of some angiogenesis- and inflammation-
related factors were markedly down-regulated by NDRG1/Cap43,
we hypothesized that inflammation could be somehow associated
with the NDRG1/Cap43-induced suppression of tumor growth and
angiogenesis. Our results indicated that down-regulation of CXC
chemokines and VEGF expression by NDRG1/Cap43 was actively
involved in its suppression of angiogenesis and growth in pancre-
atic cancer as well as infiltration of macrophages and neutrophils,
and we discuss whether attenuation of nuclear factor-<B (NF-xB)
signaling plays a key role in this process.

Materials and Methods

Materials and cell lines, MIApaca-2 transfectants (Mock#2, Cap#11 and
Cap¥#14) were maintained in DMEM supplemented with 10% fetal bovine
serum and G418, The anti-NDRG1/Cap43 antibody was generated as de-
scribed previously (5). Other antibodies were purchased as follows: anti-
@-actin antibody (Abcam); anti-NIK, anti-TAB1/2, anti-TAK1, anti-inhibitor
of kB kinase (IKK) «, anti-IKKP, anti-IKKy, anti-p-IxBao, anti-pé5, anti-p50,
anti-RelB, anti-p52, and anti-ubiquitin antibodies (Cell Signaling Technolo-
gy): anti-p65 and anti-p50 antibodies for supershift analysis by electromo-
bility shift assay (EMSA; Santa Cruz Biotechnology); anti-Flag M2 antibody
(Sigma); and anti-CD68 and anti-neutrophil elastase antibodies (DAKO).
Human tumor necrosis factor-o (TNF-a) and MG-132 was purchased from
R&D Systems and Calbiochem.
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Plasmid constructs. To obtain full-length ¢cDNA of human IKK8, PCR
was carried out on a SuperScript cDNA library (Invitrogen) using the fol-
lowing primer pairs: 5’-ATGAGCTGGTCACCTTCCCTGACAAC-3' and 5'-
TCATGAGGCCTGCTCCAGGCAGCTG-3’ (IKKP). The PCR product was
ligated into the pGEM-T easy vector (Promega), and Flag-IKKB was ligated
into the p3xFLAG-CMV10 vector (Sigma).

Oligonucleotide microarray analysis. Duplicate samples were pre-
pared for microarray hybridization. Total RNA (2 pg) was reverse tran-
scribed using a GeneChip 3'-Amplification Regents One Cycle cDNA
Synthesis kit (Affymetrix) and labeled with Cy5 or Cy3. The labeled cRNA
was applied to the oligonucleotide microarray (Human Genome U133 Plus
2.0 Array; Affymetrix), the microarray was scanned on a GeneChip Scan-
ner3000, and the image was analyzed using GeneChip Operating Software
version 1 as described previously (15).

Determination of melanoma growth-stimulating activity o/CXCL1,
epithelial-derived neutrophil activating protein-78/CXCL5, 1L-8/
CXCLS, and VEGF-A levels by ELISA. The concentrations of IL-8/CXCL8,
VEGF-A, melanoma growth-stimulating activity o (Groa)/CXCL], and epi-
thelial-derived neutraphil activating protein-78 (ENA-78)/CXCL5 in the ho-
mogenized supernatant of mouse xenograft tumors and conditioned
medinm were measured using commercially available ELISA kits (R&D Sys-
tems) in accordance with the manufacturer's instructions.

EMSA. EMSA was done as follows. Nuclear extract (6 pg) was incubated
for 15 min at room temperature with a 1 x 10" counts/min 32p_Jabeled ol-
igonucleotide probe in binding buffer [10 mmol/L HEPES-NaOH (pH 7.9),
1 mmol/L EDTA, 50 mmol/L NaCl, 10% glycerol, 0.1 mg/mL bevine serum
albumin, 0.05% NP-40, 0.005 mg/mL DTT, 0.05 mg/mL poly(deoxyinosinic-
deoxycytidylic acid)] as described previously (16). The reaction mixtures
were separated on a nondenaturing 4% polyacrylamide gel, and radioactiv-
ity was detected with a FLA 5000 image analyzer (Fuji Film).

Immunoprecipitations and Western blotting. The cells treated with
or without MG-132 (10 pmol/L) under 2% serum condition for 8 h were
Iysed in lysis buffer [50 mmol/L Tris-HCI (pH 8.0), 250 mmel/L NaCl,
0.3% NP-40, 1 mmol/L EDTA, 10% glycerol, 0.1 mmol/L NagVO,] supple-
mented with a mixture of protease inhibitors. Lysates were incubated with
anti-ubiquitin antibody for 2 h at 4°C and with protein A/G agarose for
additional 1 h. After all immunoprecipitates were washed three times with
lysis buffer, Western blotting was done with anti-IKK$ antibody as de-
scribed previously (17). The intensity of the luminescence was quantified
using a CCD camera combined with an image analysis system (LAS-1000;
Fuji Film),

Animals. All animal experiments were approved by the Ethics of Animal
Experiments Committee at Kyushu University Graduate School of Medical
Sciences. Male athymic nu/nu mice were purchased from Charles River
Laboratories and housed in microisolator cages maintained under a
12-h light/dark cycle. Water and food were supplied ad libitum. Animals
were observed for signs of tumor growth, activity, feeding, and pain in
accordance with the guidelines of the Harvard Medical Area Standing Com-
mittee on Animals.

Immunchistochemical analysis, MIApaca-2 transfectants were in-
jected subcutaneously into mice (1.0 x 107 cells/0.1 mL/mouse). At day
49 after transplantation of MIApaca-2 transfectants, the tumors were fixed
and immunohistochemical analysis was done as described previously
(5, 18). All human tissue samples were fixed and embedded in paraffin,
and immunchistochemical analysis was done as described previously
(5. 18). In all tissue samples, the mean value of the number of infiltrating
macrophages and neutrophils and the MVD were calculated from four or
five hotspots. All counts were done by three independent observers.

Statistical analysis, Data are expressed as mean + SD. All calculations
(Welch's £ test, Student's ¢ test, and Wilcoxon/Kruskal-Wallis test) were
done using JMP version 5.0 (SAS Institute),

Patients and specimens. Surgically respected specimens from 37 pa-
Hents with pancreatic ductal adenocarcinoma were studied. All patients
underwent surgical resection between 1991 and 1998 at the Department
of Surgery, Kurume University Hospital. Informed consent was eobtained
from all patients, and the study protocol was approved by the Ethies Com-
mittee of Kurume University.

Resulits

NDRG1/Cap43 down-regulates the expression of angiogene-
sis- and inflammation-related genes. To understand how
NDRGI1/Cap43 modulates tumor angiogenesis and growth in pancre-
atic cancer cells, we compared the expression profiles of NDRG1/
CapA43 transfectant (Cap#11) and the parental low-expression coun-
terpart (Mock#2) of MIApaca-2 cells using a high-density oligonucle-
otide microarray (Supplementary Table S1).

We selected eight genes predicted to be associated with adhe-
sion, growth, and chemotaxis (Supplementary Table $2). Because
our previous study showed that NDRG1/Cap43 overexpression in
pancreatic cancer cells reduced the expression of angiogenesis-re-
lated factors such as VEGF-A and 1L-8/CXCLS8 (5), we also selected
these genes, the expression of which showed a decrease of ~0.7
(Supplementary Table $2).

We confirmed the expression of NDRG1/Cap43 in two NDRG1/
Cap43 transfectants (Cap#11 and Cap#14) and their mock transfec-
tants (Mock#2) of MIApaca-2 cells (Fig. 14). We compared the ex-
pression of these genes in high- and low-NDRG1/Cap43-expressing
MlApace-2 cells by quantitative real-time PCR. From the array re-
sults, we selected NCAM], which was up-regulated by NDRG1/
Cap43, as a control. The mRNA expression levels of Groa/CXCLL,
ENA-78/CXCLS5, 1L-8/CXCL8, and VEGF-A were significantly de-
creased in two NDRG1/Cap43 transfectants (Cap#11 and Cap#14)
in comparison with Mock#2 cells (Supplementary Fig, 81).

We used ELISA assays to compare protein levels of chemokines
among pancreatic cancer cells showing low and high expression of
NDRG1/Cap43 (Fig. 1B). We observed that Cap#11 and Cap#14
cells showed a marked decrease in the production of Groa/CXCL1
and ENA-78/CXCL5 as well as IL-8/CXCL8.

NDRG1/Cap43 suppresses the NF-kB signaling pathway in
pancreatic cancer cells. Representative angiogenic factors such
as IL-8/CXCLS8 and VEGF-A are regulated by NF-xB (19). We inves-
tigated whether NDRG1/Cap43 expression interfered with the
NF-«B signaling pathway in pancreatic cancer cells, The phosphor-
ylation of IxkBa was activated in Mock#2 cells cultured in the pres-
ence of 2% serum compared with Cap#11 and Cap#14 cells (Fig. 1C,
Ieft). By contrast, in the absence of serum, there appeared to be
weak activation of 1kBa in Mock#2 cells. However, NDRG1/
Cap43 expression level was not affected with or without serum
in NDRG1/Cap43 transfectants (Fig. 1C, lefl), Next, we determined
the expression levels of proteins related to the NF-kB signaling
pathway to examine which molecules are responsible for the dif-
ference in the phosphorylation level of IkBa between NDRG1/
Cap43 and mock transfectants. Phosphorylation of IxBa is regulat-
ed by the IKK complex, which consists of two catalytic subunits,
IKKa and 1IKKB, and a regulatory component, JKKy/NEMO. The
expression of IKKB was markedly reduced in Cap#11 and
Cap#14 cells compared with Mock#2 cells (Fig, 1C, middle). There
were no differences in the expression levels of other NF-«B signal-
ing pathway-related proteins (NIK, TAB1/2, TAKI, IKKe, and
IKK+v) between NDRG1/Cap43 and mock transfectants, and the ex-
pression levels of NF-kB subunits such as p65, p50, RelB, and p52
in Cap#11 and Cap#14 cells were similar to those in Mock#2 cells
(Fig. 1C, right). Expression of IKKB mRNA is slightly, but not sig-
nificantly, decreased in NDRG1/Cap43 transfectants (Supplemen-
tary Fig, 52). In Cap#11 and Cap#14 cells, nuclear translocation
of p65 was decreased by ~50% to 70% and that of p50 was de-
creased by ~80% compared with Mock#2, respectively (Fig. 1D,
lef?). Expression of p65 and p50 showed only a slight increase in
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cytosol fraction of Cap#11 and Cap#14 compared with that of
Mock#2 (Fig. 1D, right).

We next performed EMSA to assess whether NDRG1/Cap43 al-
tered the binding ability of NF-xB. One major shifted protein-DNA
complex was observed after incubation of nuclear extracts pre-
pared from Mock#2 cultured with 2% serum for 24 h (Fig. 24).
These complexes were specifically competed out with a 2-fold ex-
cess of the same unlabeled oligonucleotide but not with an unla-
beled TRE and GC-box oligonucleotide. The protein-DNA complex
after incubation of nuclear extracts was markedly decreased in
Cap#11 and Cap#14 compared with Mock#2 when cultured with
2% serum. When protein-DNA complexes were incubated with
antibodies against p65 and p50, supershifted bands were observed

in Mock#2 (Fig. 24). We next examined whether the reduced level
of p-IkBa could be restored by a potent inflammatory cytokine,
TNF-a, in NDRG1/Cap43 transfectants (Fig. 2B). TNF-a induced
phosphorylation of IkBa in both Cap#11 and Cap#14 at similar le-
vels as their parental counterpart. However, cellular levels of IKKpB
in Cap#11 and Cap#14 were not affected by TNF-a. Figure 2C
shows that TNF-o also restored the expression of 1L-8/CXCL8 in
Cap#11 and Cap#14 cells to levels comparable with those in
Mock#2 cells, Treatment with TNF-a also enhanced the affinity
of p65 and p50 for NF-«B binding sites in Cap#11 and Cap#14 at
similar levels to those in their parental counterparts (Fig, 2D). Tak-
en together, NDRG1/Cap43 was not involved in TNF-a-induced
NF-kB signaling pathway.
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IKKB overexpression overcomes NDRG1/Cap43-induced
suppression of IkBa phosphorylation and chemokine expres-
sion, Expression of IKKR was decreased in two NDRG1/Cap43
transfectants (Cap#11 and Cap#14). We examined whether exoge-
nous IKKP expression was able to restore the IxBa phosphorylation
in NDRG1/Cap43 transfectants, Expression of IKKR was augmented
in both NDRG1/Cap43 and mock transfectants after transfection of
the exogenous IKKpR gene (Fig. 34). The phosphorylation of IxBa
was increased in Cap#11 to a level comparable with that in Mock#2.
Expression of Groa/CXCL1, ENA-78/CXCLS, and IL-8/CXCL8 was
also significantly increased after transfection of IKK@ in Cap#11
cells when there was no apparent difference in the expression levels
of these chemokines between empty and IKK@ transfection in

Mock#2 (Fig. 3B). Expression of VEGF-A was also increased in
IKKB-transfected Cap#11 cells compared with that in empty-trans-
fected Cap#11 cells. We observed that VEFG-A expression was
decreased in IKKR-transfected Mock#2 compared with empty-
transfected Mock#2 cells, but the reason for this remains unclear.

IKKp has been reported to hold a putative ubiquitin-like domain
(20). We examined whether the reduced expression of IKKR pro-
tein was restored by proteasome inhibitor, MG-132, in Cap#11
cells, MG-132 inhibited degradation of p-lIkBa in both Mock#2
and Cap#11 cells (Fig. 3C). Furthermore, expression of IKKB in
Cap#11 cells was restored to similar levels as in Mock#2 cells when
treated with MG-132. MG-132 did not significantly affect IKK@
mRNA expression in Mock#2 (P = 0.65) and Cap#11 (P = 048) cells
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Figure 2. Suppression of binding activity of
NF-kB by NDRG1/Cap43. A, EMSA using the
NF-kB binding olligonucleolide. Nuclear
extracts from three transfectants cultured In the
presence of 2% serum were Incubated with
oligonucleotide as described in Materlals and
Methods. Black arrowheads, shifted bands;
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A 2-fold molar excess of unlabeled
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as a nagative control for this competition assay.
Arrows, positions of the supershifted bands
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B, Western blot analysis of kBa
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or without TNF-a {20 ng/mL) stimulation for
30 min. C, ELISA assay analysls of IL-8/CXCL8
proteln levels In NDRG1/Cap43 and mock
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{20 ng/mL) for 24 h. Columns, mean of {hree
independent experiments; bars, SE. *, P <
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(Fig. 3D, top). We further examined whether IKKR was ubiquiti-
nated or not in the presence of MG-132. As shown in Fig. 3D (bot-
tom), ubiquitination of IKKp was shown in Cap#11 cells,
suggesting that a proteasomal degradation plays a role in down-
regulation of IKKB in the NDRG/Cap43-expressing cells.

NDRG1/Cap43 suppresses infiltration of inflammatory cells,
expression of angiogenesis-related factors, tumor growth, and
tumor angiogenesis. Consistent with our previous study (5), there
was no difference in growth rates among Mock#2 and Cap#11 cells
in culture (Fig. 44). By contrast, tumor growth of Cap#11 was
markedly reduced in comparison with Mock#2 in a subcutaneous
mouse xenograft model (Fig, 4B, bottorn). Immunoblotting analysis
showed that NDRG1/Cap43 protein was consistently and highly ex-
pressed in Cap#11 tumors on day 49 after inoculation compared
with Mock#2 tumors (Fig. 4B, top).

NDRG1/Cap43 was found to reduce the expression of chemo-
kines and growth factors that function in chemotaxis of mono-
cytes/macrophages and neutrophils (Fig. 1B; Supplementary
Fig. $1). Mock#2 and Cap#11 tumor sections were further analyzed
by immunchistochemistry for expression of microvessels (CD31),
macrophages (F4/80), and neutrophils (Gr-1; Fig. 4C, top). MVD
staining showed a markedly higher number of tumor neovessels
in Mock#2 tumors than in Cap#11 tumors on day 49 after implan-
tation (Fig. 4C, bottom). There appeared to be much lower infiltra-
tion of F4/80-positive macrophages and also Gr-1-positive
infiltrating neutrophils in the stroma of Cap#11 tumors compared
with that of Mock#2 tumors (Fig. 4C, bottom). NDRG1/Cap43 ex-
pression was thus closely associated with decreased MVD and also
with a decreased number of infiltrating macrophages and neutro-
phils in mouse xenograft tumors. Expression of I1L-8/CXCL8 and
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VEGF-A was significantly reduced in Cap#l1l tumors compared
with Mock#2 tumors (Fig. 4D), suggesting that reduced expression
of such chemokines and growth factors was continuously main-
tained during tumor growth in this mouse xenograft model.
Association of NDRG1/Cap43 expression level with infiltrat-
ing inflammatory cells in tumors of pancreatic cancer pa-
tients. Expression of NDRG1/Cap43 was previously shown to be
inversely correlated with MVD in the tumors of patients with pan-
creatic cancer (5). Based on the expression level of NDRG1/Cap43
in resected specimens from 37 patients with pancreatic ductal ad-
enocarcinoma, we divided them into two groups: NDRG1/Cap43
positive (1 = 18) and NDRG1/Cap43 negative (2 = 19). Supplemen-
tary Table §3 shows the association between NDRG1/Cap43 ex-
pression and clinicopathologic variables such as age, gender,
depth of invasion, lymph node metastasis, and pathologic stage

in patients with pancreatic ductal adenocarcinoma. High
NDRG1/Cap43 expression was significantly correlated with inva-
sion depth (Supplementary Table S3).

In the human tumor stroma, some cases showed a lower num-
ber of infiltrating CD68* macrophages/monocytes in NDRG1/
Cap43-positive pancreatic cancer (Fig, 54, @ and b), whereas others
showed a higher number of infiltrating CD68* macrophages/mono-
cytes in NDRG1/Cap43-negative pancreatic cancer (Fig. 54, ¢ and
d). Quantitative analysis indicated that the number of infiltrating
macrophages/monocytes was relatively higher in patients with
NDRG1/Cap43-negative tumors than in those with NDRG1/
Cap43-positive tumors (Fig. 54, right), the mean number of infil-
trating macrophages/monocytes being 97.5 and 62.3, respectively.
However, similar numbers of infiltrating neutrophils were observed
in the tumor stroma of patients with NDRG1/Cap43-positive and
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NDRG1/Cap43-negative pancreatic cancer (Fig. 58). Quantitative
analysis showed that the mean number of infiltrating neutrophils
was 40.2 in NDRG1/Cap43-negative specimens and 46.7 in NDRG1/
Cap43-positive specimens, with no significant difference (Fig. 5B,
right).

Our previous study showed that NDRG1/Cap43 expression
levels were inversely correlated with MVD (5). Therefore, we fur-
ther examined whether infiltration of macrophages/monocytes
and neutrophils was associated with MVD in patients with
NDRG1/Cap43-positive and NDRG1/Cap43-negative pancreatic
cancer (n = 37). The number of infiltrating macrophages/mono-
cytes was positively correlated with MVD (Fig. 5C; P < 0.05). How-
ever, there was no correlation between the number of infiltrating
neutrophils and the MVD (Fig. 5D).

Discussion

We reported previously that NDRG1/Cap43 averexpression sup-
pressed the expression of VEGF-A, IL-8/CXCLS8, and matrix metal-
loproteinase-9 in pancreatic cancer cells (5). In the present study,
we showed that NDRG1/Cap43 down-regulated the expression of
several other genes, including chemoattractants for inflammatory

cells. We also observed that decreased expression of IL-8/CXCL8
and VEGF-A in mouse tumors was associated with high expression
of NDRG1/Cap43. These chemoattractants down-regulated by
NDRG1/Cap43 had chemotactic effects on monocytes/macro-
phages and neutrophils. Our results showed that overexpression
of NDRG1/Cap43 resulted in marked decrease in infiltration of
macrophages and neutrophils in xenograft models.

One critical step in progression from a benign to a malignant
state is angiogenesis, Infiltration of activated fibroblasts (21),
macrophages/monocytes (22), and neutrophils (23) is expected
to play a key role in the angiogenic switch of cancer (23-25). From
our laboratory, we have also reported that infiltration of macro-
phages in the tumor stroma markedly promoted angiogenesis
through the secretion of various proangiogenic cytokines and ex-
tracellular matrix-degrading proteases (18, 26-29). Groa/CXCL1,
ENA-78/CXCL5, and IL-8/CXCL8 play an important role in tu-
mor-associated angiogenesis and tumorigenesis in cancers of the
kidney, pancreas, head and neck, and lung (30-33). Also, expres-
sion of CXC chemokines and VEGF-A would thus be expected to
be closely involved in NDRG1/Cap43-induced suppression of tumor
angiogenesis (Fig. 6). However, it is important to elucidate in more
detail the underlying mechanism by which cytokines and growth
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Figure 6. NDRG1/Cap43 plays a critical rofe as an antlangiogenic regulator
through modulation of the tumor microenvironment In pancreatic cancer. NDRG1/
Cap43 attenuates activatlon of the NF-kB/AKK signaling, resulting in decreased
expression of CXC chemokines (Groa/CXCL1, ENA-78/CXCLS5, and 1L-8/
CXCL8) and VEGF-A. NDRGi1/Cap43 might thus remodel the tumor
microenvironment by affecting the accumutation of inflammatory cells
(macrophages and neutrophils), lumor anglogenesls, and fumor growth.

factors are directly involved in the NDRG1/Cap43-dependent sup-
pression of inflammatory cell infiltration and angiogenesis.

Constitutive activation of NF-kB signaling pathway has been re-
ported in many cancers, including pancreatic cancer (34). Fujioka
and colleagues reported that pancreatic cancer cells expressing
phosphorylation-defective IxBa showed decreased tumorigenicity
in an orthotopic nude mouse maodel (35). In this mouse model, de-
letion of IKKB in intestinal epithelial cells led to a decrease in tu-
mor incidence without affecting tumor size (36). These studies
suggested that the IKKR-NF-kB signaling pathway plays an impor-
tant role in tumor development.

In our present study, NDRG1/Cap43 reduced the expression of
p-IkBa and its upstream regulator IKKS in pancreatic cancer cells.
However, we found no apparent phosphorylation of IKKe and
IKKPB in NDRG1/Cap43 and mock transfectants under 2% serum
condition (data not shown), suggesting that decreased expression
of IKKp is responsible for the loss of p-IkBo in NDRG1/Cap43
transfectants. The loss of p-IkBa results in reduction of both nu-
clear translocation of p65 and p50 and their binding to the NF-xB
motif. NDRG1/Cap43-induced suppression of IKKp was almost
completely restored by a proteasome inhibitor. Introduction of
an exogenous IKKPR gene was able to restore IsBa phosphorylation
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Abstract

The underlying mechanism regulating the expression of the
cancer stem cell/tumor-initiating cell marker CD133/prom-
inin-1 in cancer cells remains largely unclear, although
knowledge of this mechanism would likely provide important
biological information regarding cancer stem cells. Here, we
found that the inhibition of mTOR signaling up-regulated
CD133 expression at both the mRNA and protein levels in a
CD133-overexpressing cancer cell line. This effect was can-
celed by a rapamycin-competitor, tacrolimus, and was not
modified by conventional cytotoxic drugs. We hypothesized
that hypoxia-inducible factor-1o0 (HIF-Ia), a downstream
molecule in the mTOR signaling pathway, might regulate
CD133 expression; we therefore investigated the relation
between CD133 and HIF-1o. Hypoxic conditions up-regulated
HIF-1o expression and inversely down-regulated CD133
expression at both the mRNA and protein levels. Similarly,
the HIF-1cx activator deferoxamine mesylate dose-dependently
down-regulated CD133 expression, consistent with the effects
of hypoxic conditions, Finally, the correlations between CD133
and the expressions of HIF-1o. and HIF-13 were examined
using clinical gastric cancer samples. A strong inverse
correlation (r = —0.68) was observed between CD133 and
HIF-1ci, but not between CD133 and HIF-13. In conclusion,
these results indicate that HIF-lo down-regulates CD133
expression and suggest that mTOR signaling is involved in the
expression of CD133 in cancer cells. Our findings provide a
novel insight into the regulatory mechanisms of CD133
expression via mTOR signaling and HIF-la in cancer cells
and might lead to insights into the involvement of the mTOR
signal and oxygen-sensitive intracellular pathways in the
maintenance of stemness in cancer stem cells. [Cancer Res
2009;69(18):7160-4]

Introduction

The CD133/prominin-1 protein is a five-transmembrane mole-
cule expressed on the cell surface that is widely regarded as a stem
cell marker, Growing evidence indicates that CD133 can be used as
a cell marker for cancer stem cells or tumor-initiating cells in colon
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cancer, prostate cancer, pancreatic cancer, hepatocellular carcino-
ma, neural tumors, and renal cancer (1), Strict regulatory
mechanisms governing CD133 expression are thought to be deeply
related to inherent cancer stemness; however, such mechanisms
remain largely unclear, especially in cancer cells. In brain tumors,
the Hedgehog (2), bone morphogenetic protein (3), and Notch (4)
signaling pathways have been implicated in the control of CD133+
cancer stem cell function,

Some investigators have shown a relation between hypoxia and
CD133 expression in brain tissue. The percentage of CD133-
expressing cells was found to increase in a glioma cell line cultured
under hypoxic conditions (5), and mouse fetal cortical precursors
cultured under normoxic conditions exhibited a reduction in
CD133(hi)CD24(lo) multipotent precursors and the failure of
the remaining CD133(hi)CD24(lo) cells to generate glia (6). With
the exception of these studies in brain tissue, however, data on the
expression of CD133 and the involvement of hypoxia and other
signaling pathways in cancer cells remains limited,

Several reports have indicated that mTOR is a positive regulator
of hypoxia-inducible factor (HIF) expression and activity (7), and
the inhibition of HIF-mediated gene expression is considered to be
related to the antitumor activity of mTOR inhibitors in renal cell
carcinoma (8), We found that mTOR signaling was involved in
CD133 expression in gastric and colorectal cancer cells, Thus, we
investigated the regulatory mechanism of CD133 in cancer cells.

Materials and Methods

Reagents. 5-Fluorouracil, irinotecan (CPT-11), and rapamycin were
purchased from Sigma-Aldrich. Gemcitabine was provided by Eli Lilly.
Tacrolimus (LKT Laboratories), LY294002 and wortmannin (Cell Signaling
Technology), and deferoxamine mesylate (DFO; Sigma-Aldrich) were
purchased from the indicated companies.

Cell cultures and hypoxic conditions. All of the 28 cell Jines used in
this study were maintained in RPMI 1640 (Sigina) supplemented with 10%
heat-inactivated fetal bovine serum (Life Technologies), except for LoVo
(F12; Nissul Pharmaceutical), WiDr, IM95, and HEK293 (DMEM; Nissni
Pharmaceutical), and Huvec (Humedia; Kurabo). Hypoxic conditions (0.1%
0,) were achieved using the AnaeroPouch-Anaerc (Mitsubishi Gas
Chemical) with monitoring using an oxygen indicator.

Real-time reverse transcription-PCR. The methads were previously
described (9). The primers used for the real-time reverse transcription-PCR
(RT-PCR) were as follows: CD133, forward 5-AGT GGC ATC GTG CAA ACC
TG-3' and reverse 5-CTC CGA ATC CAT TCG ACG ATA GTA-3}
glyceraldehyde-3-phosphate dehydrogenase (GAPD), forward 5-GCA CCG
TCA AGG CTG AGA AC-3' and reverse 5-ATG GTG GTG AAG ACG CCA
GT-3. GAPD was used to normalize the expression levels in the subsequent
quantitative analyses.

Clinical samples. The mRNA expression levels of CD133, HIF-1a, and
HIF-18 in gastric cancer specimens were obtained from previously
published microarray data (9).
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Immunoblotting, A Western blot analysis was performed as described
previously (10). The experiment was performed in triplicate. The following
antibodies were used: monoclonal CD133 antibady (W6B3C1; Miltenyi Biotec),
rabbit polyclonal HIF-1a antibody (Novus Biologicals, Inc.), B-actin antibody,
and HRP-conjugated secondary antibody (Cell Signaling Technology).

Resuits

Inhibition of the mTOR signal up-regulates CD133 expres-
sion in CD133-overexpressing gastrointestinal cancer cells, We
examined the mRNA expression levels of CD133 in 26 cancer cell
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Figure 2. Rapamycin down-regulates HIF-1a expression and up-regulates CD133 expression at the transcriptional level, A, WIDr cells were exposed to rapamycin, the
rapamycin-competitor tacrolimus, and the phospholnositide-3-kinase Inhlbltors LY224002 and wortmannin for 48 h at concentrations of 10 ymol/L. The nhibition of
mTOR signaling up-regulated CD133 expression, 8, rapamycin up-regulated the expression of CD133 mRNA In WIDr cells In a time-dependent and dose-dependent
manner. Columns, mean determined using real-ime RT-PCR; bars, SD. C and D, rapamycin exposure and HIF-1a expresslon. WiDr cells were exposed to rapamycin
with/without tacrolimus at the Indlcated concentratlon for 48 h. Rapamycin down-regulaled HIF-1a expresslon and inversely up-regulated CD133 expression;

these effects were canceled by tacrolimus. Rel. CD133 mRNA, normalized mRNA expression levels (CD133/GAPD % 10*; Rapa., rapamycin.
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lines using real-time RT-PCR. Several gastric, colorectal, and lung
cancer cell lines such as SNU16, IM95, HSC43, WiDr, and H69,
overexpressed CD133 (Fig. 14). The increased expression of CD133
protein was also confirmed in these cell lines (Fig. 1B). The mTOR
inhibitor rapamycin, but not cytotoxic drugs (5-fluorouracil, CPT-
11, and gemcitabine), increased the expression of CD133 in a dose-
dependent manner in CD133-overexpressing WiDr cells (Fig. 1C
and D). These results indicate that mTOR signaling is involved in
the expression of CD133 in cancer cells,

Rapamycin down-regulated HIF-1a expression and up-
regulated CD133 expression at the transcriptional level. To
examine the signal transduction of rapamycin-induced CD133
expression, we used the rapamycin-competitor tacrolimus and the
phosphoinositide-3-kinase inhibitors LY294002 and wortmannin,
Tacrolimus (10 pmol/L) completely canceled the up-regulation of
CD133 induced by rapamycin. The inhibition of phosphoinositide-
3-kinase by LY294002 (10 wmol/L) and wortmannin (10 pmol/L)
also up-regulated CD133 expression (Fig. 24). Rapamycin up-
regulated CD133 expression at the transcriptional level in a dose-
dependent and time-dependent manner (Fig, 2B),

The inhibition of mTOR signaling is likely to lead to the down-
regulation of the expression of certain molecules bhecause the
mTOR complex positively regulates the general translational
machinery. Under the inhibition of mTOR signaling, HIF-1q,
among several downstream molecules of mTOR, can activate
transcription by acting as a repressor of specific transcription
factors such as the MYC-associated protein X homodimer (11).
Therefore, we focused on the possible role of HIF-la in the
regulation of CD133 expression, Rapamycin down-regulated HIF-
la expression but up-regulated CD133 expression (Fig. 2C).
Meanwhile, tacrolimus canceled the effect of rapamycin on the

expressions of HIF-1a and CD133 (Fig. 2D). These results suggest
that the down-regulation of HIF-1a: may mediate the up-regulation
of CD133 expression in cancer cells. Up-regulation of CD133
expression by rapamycin was reproducibly observed in the CD133
high-expressing cell lines, but not in CD133 low-expressing cell
lines (Supplemental Fig, $2).

Induction of HIF-lo down-regulates CD133 expression in
cancer cells. Hypoxia mediates the stabilization of HIF-1a protein
and enables its escape from rapid degradation, facilitating the up-
regulation of HIF-la expression (12). Hypoxia strongly induced
HIF-1a expression, whereas CD133 expression was down-regulated
in all three CD133-overexpressing cell lines (Fig. 34). Rapamycin
dose-dependently up-regulated CD133 expression under normoxic
conditions, but no effect was seen under hypoxic conditions, We
speculated that the effect of hypoxia on the induction of HIF-1e is
much higher than the effect of rapamycin on the down-regulation
of HIF-1a, The expression of CD133 mRNA was also strongly down-
regulated under hypoxic conditions in all three cell lines (Fig. 3B)
and in three additional cell lines (Supplemental Fig, S1).

In addition, DFO, a lmown HIF-la activator, induced HIF-la
expression in a dose-dependent manner but down-regulated the
expression of CD133 at both the mRNA and protein levels in
WiDr cells (Fig. 3C and D), and in three additional cell lines
(Supplemental Fig, 82). These results were consistent with those
obtained under hypoxic conditions. Both hypoxia and DFO
exposure markedly down-regulated CD133 expression, strongly
suggesting that induction of HIF-1a resuits in the down-regulation
of CD133 expression.

Inverse correlation between CD133 and HIF-1o in clinical
samples. Finally, to address whether CD133 and HIF-1a expression
are inversely correlated in clinical samples of gastric cancer
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Figure 3. Induction of HIF-1« down-regulates CD133 expresslon in cancer cells. A, three gastrolntestinal cancer cell lines were exposed to rapamycin under normoxic
or hypoxic conditions for 24 h. Hypoxla Induced HIF-1a expression and Inversely down-regulated CD133 expression. B, hypoxia strongly down-regulated CD133
exprassion at the mRNA level. Columns, mean determined using real-ime RT-PCR; bars, SD. C, DFO, a known HIF-1a activator, induced HIF-1a expression and
down-regulated CD133 expression In WIDr cells. D, DFO Induced these effects at bath the mRNA and protein levels, Note that both hypoxia and DFO exposure had
similar eflects on HiF-1a induction and CD133 down-regulation. Rel. CD133 mANA, normalized mRNA expression levels (CD133/GAPD x 10%; Rapa., rapamycin.
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