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Objective, The signaling by thrombopoietin (TPO) via its receptor, c-MPL, plays a crucial role
in the maintenance of hematopoietic stem cells (HSCs). Small-molecule c-MPL agonists have
recently been shown to be beneficial in the treatment of thrombocytopenia.: However, their
effects on ' HSCs have not yet been explored. In this study, we evaluated the effects of NR-
101, a novel small-molecule ¢-MPL agonist, on the ex vivo expansion of human cord blood
(hCB) HSCs.

Materials.and Methods. hCB CD34" or CD34*CD38" hematopoietic stem and progenitor cells
were cultured for 7 days in the presence of thrombopoietin (TPO) or NR-101, and then sub-
jected to flow cytometric analyses, colony-forming cell assays, and severe combined immuno-
deficiency-repopulating cell assays.

Results, During a 7-day culture of €D34" or CD34*CD38" hematopoietic stem and progenitor
cells, NR-101 efficiently increased: their numbers, with a greater than twofold: increase
compared to TPO, although its effect on megakaryocytopoiesis. was comparable to: that of
TPO. Correspondingly, severe combined immunodeficiency-repopulating cells were increased
2.9-fold during a 7-day culture with NR-101 compared to freshly isolated CD34" cells, and
2.3-fold compared to that with TPO. Of note, NR-101 persistently activated signal transducer
and activator of transcription (STAT) 5 but not signal transducer and activator of transcrip-
tion 3. Furthermore, NR-101 induced a long-term accumulation of hypoxia-inducible factor-
1o profein and enhanced activation of its downstream target genes.

Conclusion. 'This is the first time that a small-molecule c-MPL agonist has been demonstrated to
promote net expansion of HSCs. NR-101 is more efficientin ex vivo expansion of HSCs than TPO.
NR-101 could be a useful tool for the therapeutic manipulation of human HSCs. - © 2009 ISEH -
Society for Hematology and Stem Cells. - Published by Elsevier Inc.

Thrombopoietin (TPO): is a cytokine initially identified as receptor, myeloproliferative leukemia. virus protooncogene
the - primary. regulator: of 'megakaryocyte . differentiation {c-MPL), triggers the activation of three major pathways:
and platelet production [1-5]. The binding of TPO to.its Janus kinase (JAK)/signal transducer and activator of tran-

scription (STAT), . Ras/mitogen-activated . protein : kinase
(MAPK) - and - phosphatidylinositol-3-kinase . (PI3K)/AKT
[6-12].- Activation: of ‘these signal transduction- pathways

Offprint requests to: Atsushi Iwama, M.D:, Ph.D., Department of Cellalar promotes  differentiation: toward - the . megakaryocytic
and Molecular Medicine, Graduate School of Medicine, Chiba University. lineage. Recent studies have' revealed that ¢-MPL. is
1-8-1 Imzhzma,' Chuo-ku, Chiba, 260:8670" Japan;  E-mail:" aiwama@ expressed not only in the megakaryocytic lineage, but
faculty.chiba-uJp also in hematopoietic stem cells (HSCs) and hematopoietic
Supplementary: data: associated: with- thig: article. can be found, in the progenitor: cells (HPCs). and plays a crucial role-in the
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botie imarrow (BM) niche activated ¢-MPL on HSCs and
regulated the maintenance of quiescent HSCs {17,18]. In
addition, mice lacking either TPO or ¢-MPL exhibited not
only fewer megakaryocytes, but also severe reductions in
HSCs and defects in supporting HSC self-renewal
[13.16,19]. TPO knockout mice showed a reduced capacity
to support the engraftment of wild-type HSCs, which was
substantially compensated by the administration of TPO
[20]. Also loss of Lok, which negatively regulates TPO/c-
MPL signaling, resulted in. the expansion of: HSCs
|16,21]. These findings have established a critical role for
TPO/c-MPL signaling in the development and function of
HSCs in vivo.

HSCs are definied by their capacity to self-renew and to
differentiate into all blood cell types, and have been applied
to HSC transplantation and gene therapy [22-25]. Various
attempts have recently been made to expand human cord
blood (hCB) HSCs in cultures ex vivo to acquire a sufficient
number of transplantable. HSCs; particularly. to: accelerate
applications for adult patients {26-29]. Most ex. vivo culture
systems employ key cytokines, including stem cell- factor
(SCF), fms-like tyrosine kinase 3 ligand (FL), and TPO.
TPO appears to better support the survival and maintenance
of HSCs in vitro [14,30;31]: However, attempts to expand
HSC numbers ex vivo with: these cytokine combinations
have not yielded sufficient results. Optimal culture condi-
tions for ex vivo HSC expansion need to be determined.

Although recombinant human TPO (thTPO) was initially
developed to treat thrombocytopenia, clinical trials were
unsuccessful due to immunogenicity [32,33]. Alternatively,
several nonpeptidyl small-molecule compounds have been
developed to activate c-MPL and promote platelet produc-
tion, e.g., SB-497115 (Eltrombopag), AKR-501, NIP-004,
and - butyzamide ' [34-39].  §B-497115 . (Eltrombopag),
a first-in-class, orally ‘available c-MPL. agonist, is being
developed: as a drug for thrombocytopenia of various etiol-
ogies [35,36}1. We have also screened such small-molecule
compounds and identified” several ¢-MPL. agonists [38].
During the course of screening; we noficed that although
the overall activity of these small-molecule agonists was
similar to TPO; actual signaling downstream c-Mpl: could
vary. For example, ability to induce megakaryocytic differ-
entiation or ability to induce cell proliferation varied among
small-molecule agonists: Based on these observations, we
assumed that some compounds may preferentially activate
signals that facilitate self-renewal of HSCs. TPO has been
characterized as a key factor for human HSCs and applied
to ex vivo HSC expansion and: gene transduction [26-31}].
However, to our knowledge, there has: been no report on
the effect of nonpeptidyl small-molecule c-MPL agonists
on-HSCs.

In'this study, we evaluated the effects'of NR-101,a novel
nonpeptidyl small-molecule c-MPL. agonist, on the expan-
sion’ of hCB HSCs, using in vitro proliferation assays and
severe ‘combined’ immunodeficiency (SCID)-repopulation

assays. We demonstrated that NR-101 increases numbers
of CD34%7CD38™ primitive hematopoietic cells as well as
SCID-repopulating cells (SRCs) more efficiently than
does TPO. We also found that NR-101 activates unique
profiles of signal transduction downstream of c-MPL and

- induces stabilization of hypoxia-inducible factor-la

(HIF-12). Our results provide the first evidence that
a small-molecule ¢-MPL agonist can be applied to ex
vivo HSC expansion.

Materials and methods

Reagents

NR-101"  (5-{[(2E)-2-{ I-[5-(3 4-dichlorophenyl}-4-hydroxythio-
phen-3-yljethylidene }hydraziny!jcarbonyl }-N-[(1-methyl-1 H-imi-
dazol-4-yymethyljthiophene-2-carboxamide; molecular weight:
548.47, Fig. 1), a novel small-molecule agonist of human ¢-MPL.,
and SB-497115 (Eltrombopag free acid; 3/-{(22)-2-[1-(3,4-dime-
thylphenyl)-3-methyl-5-oxo- .5-dihydro-4H-pyrazol-4-ylidene Jhy-
drazino}-2/-hydroxy-3-biphenylcarboxylic - acid), another ¢-MPL
agonist, were chemically synthesized by Nissan Chemical Industries
(Chiba, Japan).

Mice

Nonobese  diabetic/severe . combined: immunodeficient (NOD/
SCID) mice were purchased from the Sankyo Lab Service (Tokyo,
Japan). “All experiments using these ‘mice were performed in
accordance with our institutional ‘guidelines for the use of labora-
tory animals:

Cells

Human myeloblastic leukemia cell lines:originally obtained from
bone: marrow,. UT-7.. UT-7/erythropoietin. (EPO), and UT-7/TPO
[40:421, were: :maintained . in [scove’s modified Dulbecco’s
medium (Invitrogen, San Diego, CA, USA) containing 10% fetal
bovine serum and [0:ng/mL recombinant human (rh) interleukin
(IL)-3; 0.5 U/mL rthEPO, and 10 ng/mL rhTPO, respectively.
Human. cord blood. (hCB) CD34" cells were purchased from
Lonza (Basel, Switzerland) and - AliCells (Berkeley, CA, USA)
or purified from hCB. Fresh hCB cells were obtained from the To-
kyo Cord: Blood. Bank (Tokyo, Japan). Mononuclear cells were
separated by density gradient: centrifugation. CD34™ cells were
immunomiagnetically enriched using a magnetic-activated cell
sorting’ CD34: progenitor: kit (Miltenyi Biotech, Auburn, CA,
USA). The purity of hCB CD34% cells was >90%. CD34*CD38"
cells: were. isolated. by fluorescence-activated cell sorting using
a JSAN desktop cell sorter (Bay Bioscience; Kobe, Japan). Puri-
fied CD34" and CD347CD38" cells were cryopreserved or used
freshly for experiments. This study was approved by the institu-
tional review committees of the Chiba University.

Human cell culture

hCB CD34™" and CD34*CD38™ cells were plated at 1 x 10% cells/
well in a 24-well plate precoated with 25 pg/mL fibronectin frag-
ment CH=296 (Takara: Shuzo; Otsu,: Japan) {43] and cultured in
serum-free medium (StemSpan; Stem Cell Technologies, Vancou-
ver,  British- Columbia,. Canada) at:37°C_in a humidified atmo-

sphere flushed with 5% COj in- air. Cytokines were added "at

concentrations: of 100 ng/mL" for: thSCE; 100. ng/mL for thFL,
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Figure 1. Chemical structure of NR-101, a small-molecule c-MPL agonist.

and 3 to 30 ng/mL for rhTPO, and indicated amounts of NR-101
were added.

Plasmids

The complementary DNAs™ (cDNAs) of human TPO receptor
(¢-MPL); human"EPO receptor (EPOR), human' IL-3- receptor
o (JL3RA), and human granulocyfe macrophage colony-stimu-
lating factor receptor B chain (CSF2RB) were amplified by reverse
transcription-polymerase: chain- reaction: (RT-PCR).: Full-length
c¢DNAs were cloned into the vector pcDNA3.1 (Invitrogen).

Proliferation assay

UT-7 and UT-7/TPO cells were starved of cytokines for 17 hours.
The cells were resuspended at a density of 6 x 107 cells/mL in Ts-
cove’s modified Dulbecco’s medium containing 10% fetal bovine
seram and  incubated: with' indicated: concentrations  of NR-101,
cytokines, or vehicle (0.1% dimethy! sulfoxide) for 4 days. For
chemical ‘screening, CB hCD34! cells were plated-at I X 1o
cells/well in: a: 96-well plate with: StemSpan: medium containing
100 ng/mL thSCF and . library compounds and.: cultured  for 7
days. WST-8 reagent (Kishida: Chemical, Osaka, Japan). was
used for the measurement of cell proliferation [44].

Cell ¢ycle analysis

The BrdU Flow Kit (BD Biosciences, San Diego, CA; USA) was
used for cell cycle analysis of cultured hCB CD34* cells. After 7
days of culture; the cells were pulsed for 45 minutes with 10 uM
bromodeoxyuridine (BrdU), harvested, and stained with anti-
bhodies: against. CD34 or CD38 (o identify CD347CD38 cells.
Cells: were: fixed  and permeabilized to allow staining with the
anti-BrdU - antibody  conjugated to ' fluorescein isothiocyanate
(FITC). Cells were further stained: with: 7-amino-actinomycin. D
to assess their position in the cell cycle. To detect Ki-67 expres-
sion, cells not treated with BrdU were fixed, permeabilized, and
then stained with the anti—Ki-67 antibody conjugated to FITC.

Immunoprecipitation: and Western blotting

UT-7/TPO cells: were starved of thTPO. for 17 hours and stimu-
lated with™ 25 pig/mL: NR-101; 10 ng/mL: thTPO, and: vehicle
(0.1% dimethyl sulfoxide) for: various periods. Cells were lysed
with a lysis buffer (pH 7.0).comprising 20 mM: Tris-HCI buffer,
300 'mM: NaCl, 5 mM ethylenediaminetetraacetic acid;, 0.1%
NP40, PhosSTOP. (Roche “Applied- Science, Indianapolis, IN;
USA), and ‘a protease inhibitor: cocktail (Complete: Midi, Roche
Applied Science), and then sonicated. After removal of insoluble
materials by centrifugation, the supernatant was immunoprecipi-
tated with protein G-Sepharose-conjugated -anti-c-MPL" (IBL,

Gunma, Japan), anti-JAK2 (Upstate Technology, Waltham, MA,
USA), - anti-STATSa - (Upstate - Technology), and - anti-STAT3
(Upstate Technology): The immunoprecipitate or total cell:lysate
was separated by sodium dodecyl! sulfate polyacrylamide gel elec-
trophoresis, - electroblotted - onto . polyvinylidene - difluoride
membranes, and - probed. with - anti-phosphotyrosine -antibody
(4G10), anti—phospho-AKT (Cell Signaling Technology; Beverly,
MA, USA), or anti—phospho-p41/p44 or anti-c-MPL, anti-JAK2,
anti-STAT5a, . anti-STAT3; “anti-AKT;~ or - anti-p42/44- MAPK
(Upstate Technology). To detect the nuclear localization of HIF-
T, nuclear extracts were prepared from' UT-7/TPO-cells using
the NE-PER  Nuclear “and’: Cytoplasmic™ Extraction’ Reagents
(Thermo Fisher Scientific, Rockford, IL. USA). The nuclear frac-
tions were separated by sodium dodecyl sulfate polyacrylamide
gel electrophoresis, transferred to PVDF membranes, and probed
with: anti-HIF-10, antibody - (Santa Cruz Biotechnology, Santa
Cruz. CA, USA) or anti-histone H3 (Abcam, Cambridge, UK).

Luciferase assay

HEK?293 cells were transfected with pcDNA-HuMPL;, HUEPOR,
or. both HulL-3RA “and HuCSF2RB- in combination with
a STATS expression vector; pGCDNsam-STATS5 A, and a STAT-
responsive luciferase reporter gene, ST5BS-Luc (kindly donated
by Dr. T. Kitamura and Dr. H: Nakajima, respectively) [45] by
using Lipofectamine Plus reagent (Invitrogen) and starved for 7
hours, after which: they were stimulated with indicated cytokines
or NR-101 for 17 hours. After the ONE-Glo reagent (Promega,
Madison, WI; USA) was. added-to. the cells, luciferase. activities
were measured.

Colony-forming. cell assay

hCB CD347 cells, which were cultured with NR-101 or thTPQ for
7. days, were plated in’ Methocult GE H4435 methylcellulose
mediuni containing 50 ng/mL human SCF, 10 ng/mL human gran-
ulocyte-macrophage colony-stimulating factor, 10 ng/mL human
1L-3; and 3. U/mL human. EPO. (StemCell- Technologies). After
12 to 14 days of culture; the colonies were counted. The number
of megakaryocyte colony-forming units (CFU-MK) was assessed
using ‘MegaCult-C. (StemCell Technologies) according to manu-
facturer’s directions.

RNA extraction and real-time: PCR

UT-7/TPO-and hCB CD34% cells were incubated in the presence
of thTPO ‘or NR-101 for predetermined: periods, and then total
RNA was extracted using an RNeasy Mini kit (Qiagen, Valencia,
CA; USA).:The total RNA (1'jg) was reverse-transcribed. with
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a SuperScript one-step RT-PCR kit (Invitrogen). PCR was carried
out for 40 to 45 cycles of 1 minute at 60°C and 15 seconds at 95°C
in an ABI PRISM 7700 Sequence Detector (Applied Biosystems,
Foster City, CA, USA). 18S ribosomal RNA {18Sr) or B-2-micro-
globulin was used as an internal control. Tagman primers and
probes were obtained from Applied Biosystems; 185r
(Hs99999901_st). B-2-microglobulin (Hs99999907_m1), Oncos-
atin M (Hs00171165_m1), SOCS3 (Hs00269575_s1), Pim-1
(Hs00171473_m1), EGR (Hs00152928_ml), GATA2 (Hs00
231119_m1), p2! (Hs00355782_m1), p57 (Hs00175938_ml),
HBEGF (Hs00181813_m1), TNFRSFI2A (Hs00171993_m1l), c-
Myc (Hs00153408_m1), HOXB4. (Hs00256884_ml), Bmi-l
(Hs00180411_m1), vascular endothelial growth factor (VEGF)
(Hs00173626_m1), SLC2A3  (Hs00359840_ml1), HIFIA
(Hs00936368:m1), - CXCL12. . (Hs00171022_ml), P4HAI
(Hs00914594.-m1),’ TFRC (Hs00174609_ml), LDHA = (Hs0
0855332_¢1). PGK1 (Hs99999906_m1), HK1 (Hs00175976_m1),
SLC2A I (Hs00197884.m1), EPOR (Hs00181092._m1), NOS2A
(Hs00167257_m1), SERPINE! (Hs01126606_m1), ALDOA (Hs
00605108_g1), PEKL (Hs00160027_m1), PKM2 (Hs00987255
_mil), ENOL (Hs00361415_m1).

VEGF enzyme-linked immunosorbent assay

After-incubation of the UT-7/TPO cells with indicated concentra-
tions of NR=101; thTPO, or vehicle (0.1% dimethyl sulfoxide) for
24 hours, the culture medium was collected. The amount of VEGF
in the supernatant was measured with a Quantikine kit from R&D
Systems (Minneapolis, MN; USA).

Transplantation: of hematopoietic-cells into NODISCID. mice
NOD/SCID mice at 8 to 10 weeks age were sublethally irradiated
at 2.75 Gy. Limiting doses of fresh hCB CD34* cells and cultured
progenies of hCB CD34™ cells were injected through tail veins. At
8 weeks  after transplantation;” bone marrow. (BM) cells. were
analyzed by flow cytometry for the presence of human CDh45t
cells [46-49]. For the limiting dilution analysis, mice were consid-
ered to be positive for the human HSC engraftment when at least
1.0% human CD45." cells were detected among the BM cells. The
data from several experiments were pooled and analyzed by using
L-Calc software (StemCell. Technologies).

Flow cytometry

Human hCB cells were stained with anti-human CD34-allophyco-
¢yanin and - anti-human- CD38-phycoerythrin.or anti-human
CD41a-FITC antibodies (BD Pharmingen). Then I' jig/mL propi-
dium jodide (Sigma, St Louis, MO; USA) was added to exclude
norviable cells. Cells were analyzed on an EPICS-XL. flow cytom-
eter (Beckman: Coulter, Franklin- Lakes, NJ, USA) or a JSAN
deskiop cell sorter: For analyzing human hematopoietic engraft-
ment in NOD/SCID mice, BM cells were stained with anti-human
CD45 -allophycocyanin antibody (BD Pharmingen).

Immunostaining

hCB CD34 ¢cells in a serum-free medium supplenented with 0.1%
bovine serum albumin and either 10 ng/mL thTPO or | jig/ml NR-
101 were incubated on fibronectin-coated glass slides for 24 hours at
37°C, After fixation with 2% paraformaldehyde and blocking in
10% goat serum for I hour at room temperature,: cells were incu-
bated with anti-HIF-lo. antibody (Santa Cruz Biotechnology) for
12 hours at 4°C. Cells were washed and inicubated with an Alexa
488-conjugated: goat anti-mouse antibody ' (Invitrogen): for' 30

minutes at room temperature. 4, 6-Diamidino-2-phenylindole
was used for DNA staining. Immunofluorescence was observed
with an ECLIPSE SE 80i fluorescence microscope (Nikon, Tokyo,
Japan).

Statistical analysis

Data are presented as the mean * standard error of mean. Statis-
tical significance was analyzed with Student’s ¢-test. The level of
significance was set at (.05,

Results

Hdentification of NR-101 as a novel human

c-MPL agonist

To ascertain the effect of small-molecule c-MPL agonists on
human HSCs/HPCs, we screened >400 human c¢-MPL
agonists, which were synthesized during the process of iden-
tifying NIP-004 [38], for activity to promote the proliferation
of 'hCB CD347F cells (data not: shown). -Among. several
compounds identified, we selected one of the most active,
NR-101; and examined its effect on human HSCs/HPCs
more closely. NR-101 is a chemically synthesized compound
with a structure shown in Figure 1. NR-101 supported the
proliferation of UT-7/TPO. cells, a_human leukemia cell
line expressing c-MPL, in a dose-dependent manner, and ex-
hibited amaximum effect at 100 ng/mL (Fig: 2A), which was
equivalent to 98% of that of rhTPO at 10 ng/mL. The median
effective concentration (ECsg) of NR-101; SB-497115 and
thTPO was 0.36 ng/mL (0.65 nM), 49.6 ng/mL (112 nM),
and 0.24 ng/mL (0.013 nM), respectively. The. activity of
NR-101 was dependent on c-MPL as NR= 101 did not support
the proliferation of other cell lines, UT-7 and UT-7/EPO,
which do not express c-MPL but do express IL-3 receptor
(IL-3R) and EPOR, respectively (Fig. 2B and C).. We also
confirmed . the  specificity of NR-101 activity by using
a ' STAT:reporter gene assay in HEK293 cells expressing ¢~
MPL; IL-3R, or EPOR (Fig. 2D). Luciferase production
was induced by NR-101 at a comparable level to that by
thTPO in HEK293 cells expressing human ¢-MPL, but not
in cells expressing human IL-3R or EPOR.

We next tested whether NR-101 affects human miegakar-
yocytopoiesis using colony-forming assays followed by im-
munostaining of glycoprotein CD41a, a specific marker of
the: megakaryocyte lineage [50]. NR-101 stimulated the
formation of megakaryocyte colonies from hCB CD34™ cells
in a dose-dependent manner, and its activity at 1000 ng/mL
was comparable to that of thTPO at 10 ng/mL (Fig. 2E).
Similarly, the serum-free culture of hCB CD34™ cells with
300 to 1,000 ng/mL of NR-101 for 10 days induced an
increase in the number of CD41* cells, and the maximum
effect was comparable to that of rhTPO (Fig. 2F). Together,
these results indicate that NR-101 is a specific agonist of
¢-MPL. and stimulates: human megakaryocytopoiesis. with
full efficacy comparable to thTPO:.
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Figure 2. NR-101 specifically activates human ¢-MPL. Dose-dependent proliferation of UT-7/TPO cells (A), UT-7 cells (B), and UT-7/EPO cells (C) by
recombinant hurnan (th) TPO, th interleukin (IL)-3; rhEPO, NR-101, and SB-497115. (D) signal transducer and activator of transcription (STAT) 5-reporter
gene assay with Hek293 cells expressing c-MPL, EPO receptor (EPOR), or IL-3 receptor (IL-3R). Bars represent the fold increase in luciferase activity rela-
tive to mock conditions. (E) Human cord blood (hCB) CD347 celis cultured in collagen-gel medium with rhTPO or NR-101 were assessed for megakar-
yacyte colony-forming units (CFU-MK). Burs represent the number of CFU-MK per 1,500 hCB CD34* cells. (F) hCB CD34" cells were cultured in
sérum-free medium supplemented with thTPO, NR-101; or the saime volume of dimethyl sulfoxide (DMSO) (control) for 11 days. Shown is the number
of CD41% megakaryocyte-lineage cells relative to that in the control culture. Data represent the mean * standard error of mean for three to five independent

experiments.

NR-101 expands CD34CD38" cells ex vivo

Although several nonpeptidic c-MPL-agonists: have been
examined: with respect to platelet formation [34-39]; the
effect of ¢-MPL "agonists on-the ex. vivo expansion’ of
human: HSCs/HPCs: remains. to. be  tested. We . cultured
hCB CD347 cells in serum-free medium: supplemented
with thSCE and rhTPO or NR-101 for 7 days and analyzed
the phenotypes of the cells. It has been reported that HSCs/
HPCs are highly enriched in the CD34"CD38 fraction
[46-48], thus we. first “analyzed : the  population- of
CD3417CD38" cells “in the cultured progenies. Although
the total number of cells cultured with NR-101 was compa-
rable to that cultured with rthTPO (Fig. 3A), the cultures
with 1 pg/mL of NR-101 contained 1.7 and 2.3-fold more

CD34" and CD347CD38" cells, respectively, than those
with. 10 ng/mL thTPO (Fig. 3B and C). In contrast, the
activity ~of - SB-497115 (Eltrombopag), another c-MPL
agonist, was equivalent to that of thTPO- in expanding
CD34+1CD38 cell numbers at the optimum’ concentration
(6 pg/mLY (Fig. 3D). NR-101 still had a-1.7-fold greater
effect on CD347CD38  cells than thTPO even in the pres-
ence of thFL; a cytokine that supports the maintenance of
HSCs/HPCs ex vivo (Fig: 3E) [30,51}. Furthermore, we as-
sessed directly. the expansion of hCB: CD347CD38 cells
by using hCB CD34%7CD38 cells as starting cells for
culture. - During “the 7-day- culture, "'CD34CD38" cells
expanded 2.4- + 0.4-fold and 4.9- = 0.6-fold with rhSCF
plus- thTPO and thSCF plus NR-101, respectively
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Figure 4, CD347CD38" cells wreated with.NR-101 show a decelerated cell cycle. Human cord blood (hCB) CD34* celis were cultured with 10 ng/mL re-
combinant human thrombopoietin (thTPO) or 1 pg/mL of NR-101 in the presence of recombinant human stem cell factor (rhSCF) for 7-days. The bromo-
deoxyuridine (BrdU) incorporated. into- cultured - progenies” was determined by a fluorescein-activated cell. sorting, analysis for CD347CD38" cells,
CD347CD38" cells, and CD34™ cells, respectively. Data represent the mean * standard error of mean (n = 5).

(Fig. 3F), confirming again greater activity of NR-101 in
the expansion of HSCs/HPCs than that of rhTPO.

To evaluate the number of functional HSCs/HPCs in
cultures with NR-101, we next performed colony assays.
The CD34% cell ¢ulture with NR-101 contained all types
of myeloid progenitors such as CFU-granulocyte/macro-
phage/erythrocyte/megakaryocytes, CFU-=granulocyte/
macrophages, * and burst-forming - unit-erythrocytes. - Of
note, high-proliferative - potential- colony-forming- cells,
defined by their ability to. form large colonies in vitro
(diameters. > 1 mm) [52]. and CFU-granulocyte/macro-
phage/erythrocyte/megakaryocytes. that represent the most
primitive progenitors detected: in vitro, were contained:- at
a higher frequency in cultures with: NR-101. than those
with thTPO (Fig. 3G). These results indicate that NR-101
increases the frequency of primitive CD347CD38- cells
in vitro more efficiently ‘than rhTPO' does and maintains
the primitive HSC/HPC state during the culture.

NR:101<treated CD34CD38  cells cycle slowly
Cell ¢ycle status is critical to the maintenance of HSCs, i.e.;

self-renewal vs differentiation fate decision of HSCs at cell -

division. The advantage of NR-101 in CD34CD38- cell
expansion prompted us to examine the cell cycle status of
NR-101-treated cells. We cultured hCB CD34" cells with
rthTPO or NR-101 for 7 days and measured the cell cycle
status by detecting BrdU incorporation. The population of
CD347CD38" cells in the Gy/G; phases was significantly
greater in cultures with NR-101 than in those with thTPO
(Fig. 4). Thig effect of NR-101 was specific to the
CD347CD38" cell fraction, with: no effect observed on
the: 'CD347CD38!  downstream - progenitors = or total
CD34% cell population. We also examined the effect of
thTPO ‘and - NR-101 on the Gy/G; ratio using Ki-67 ‘to
distinguish cells in the Gy phase (Ki-677). from those in
the G, phase (Ki-677). The Go/Gj ratios of CD34CD38~
cells: cultured with thTPO and NR-101 for: 7 days were
3.73 % 076 and 1.79 *:0.21, respectively, indicating that

more NR-10I-treated than TPO-treated CD34CD38™ cells
were arrested in G, (2.1-fold, p = 0.017). Collectively,
these results show that NR-101—-treated CD34*CD38" cells
cycle more slowly than: TPO-treated cells, and NR-101
maintains the CD34"CD38 'population by suppressing
excessive proliferation of the cells.

NR-101 expands SRCs in CD34" cell cultures

To determine whether NR-10I enhances the self-renewal of
HSCs in culture, we performed a NOD/SCID-repopulation
assay to estimate the reconstitution capacity of the progeny
of hCB CD34* cells cultured with thTPO or NR-101 in
addition to thSCF and rhFL. We used limiting numbers
of cells for the repopulation assay: to estimate the SRC
frequencies. Increasing numbers (2.5 X 1055 x 10* 1 x
104, 2 x 10% 3 x 10% 4 x 10%) of fresh CD34" cells or
the progenies after 7 days of culture corresponding to the
same number of input CD34 " cells were transplanted into
NOD/SCID recipients (Fig, SA-C). Figure 5D shows the
frequency of engraftment for each cell dose used .in each
condition.  The frequency for SRCs was. 1-in 17,387 (95%
confidence interval of 1 of 21,731 to 1 of 13,912) in fresh
CD34" cells and 1 in 14,046 (95% confidence interval of
I of 17,858 to I of 11,047) in the culture with thTPO. In
contrast; the frequency for SRCs. in: the culture with NR-
101 :was .1 in 6,035 (95% confidence ‘interval: of 1 of
8.223 to I of 4,430), which was 2.9-fold higher than for
fresh CD34* cells (p = 0.006) and 2.3-fold higher than
for thTPO-treated cultures (o = 0.03): Correspondingly,
the average repopulation levels by human: hematopoietic
cells were higher in recipient mice infused with. NR-101-
treated cells than in those infused with fresh CD34" cells
o thTPO-treated cells (Fig. SA~C). NR-101=treated cells
repopulated both CD33" myeloid-lineage and CD19" B-
cell lineage cells in immunodeficient mice (Supplementary
Figure El, online only, available at www.exphem.org).
These results demonstrate that NR-101 can promote expan-
sion of SRCs in culture while thTPO only maintains SRCs.
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Figure 5. NR-101-treated human cord biood (hCB) CD347 cells show an incréase in the frequency of severe combined immunodeficiency-repopulating cells
(SRCs), hCB €CD34™ cells were cultured with: 10 ng/mL of recombinant human thrombopoietin (rhTPO) or 1 pg/mL NR-101 in the presence of recombinant
huran stem cell factor (thSCE) and tecombinant human fms-like tyrosine kinase 3 ligand (rhFL) for 7 days. Nonobese diabetic/severe combined immuno-
deficient (NOD/SCID) mice (n = 114) were injected with increasingly higher doses of freshly isolated CD324% cells (A), cells cultured with thTPO (B), or
Sells cultured with NR:101 (C), and the proportion of human CD457 cells among recipient bone marrow (BM) cells was analyzed 8 weeks after transplan-
tation. (D) Mice with at least 1% human CD457 celis in BM were considered successfully engrafied, and the frequency of: SRCs' was: determined. with

a limiting-dilution analysis.

Uniguie profiles of ¢-MPL signaling activated by NR-101

To elucidate the molecular: mechanisms by which NR-101
promotes  the. expansionof HSCs, we: first  examined
whether. NR-101 ‘activates the c¢-MPL signaling:pathway
in the same manner as TPO in UT-7/TPO cells. NR-101
phosphorylated the ‘major components of - TPO-mediated
signaling pathways, ¢-MPL; JAK2, STAT3, STATS, p42/
44 MAPK, and AKT; indicating that NR-101 activates the
major ‘pathways of TPO/c-MPL signaling (JAK/STAT,
Ras/MAPK . and PI3K/AKT) (Fig. 6).-Maximum signal
intensity was observed ‘immediately " after ‘the  treatment
with thTPO (5-60 minutes), ‘whereas, in cells stimulated
with NR-101, these signaling molecules became maximally
active at later time points (60-240 minutes). Of note, NR-
101 treatment sustained high levels of signaling for signif-
jcantly’ longer ‘periods.  Moreover, of interest, NR-101

scarcely ‘induced STAT3 activation, but. selectively and
persistently activated STATS.

Next, we examined the gene expression profiles of UT-7/
TPO cells treated with NR-101 by using real-time quantita-
tive PCR. The expression of most garly response genes that
are responsive  to- thTPO. including STAT3-target genes
(OSM, SOCS3; and PIMI), MAPK-target genes (HBEGF),
TNFRSEI2A, and: EGR; was gradually upregulated: and
reached a  maximum  several hours after the treatment
with NR-101 (Supplementary Figures E2A; E3A [online
only, available at www.exphem.org], and data not shown).
In contrast, levels were markedly. increased immediately
after treatment with thTPO and gradually decreased: there-
after. thTPO and NR-101 similarly upregulated expression
of a cyclin-dependent kinase inhibitor, p2/, and a transcrip-
tion factor; c-MYC, which is involved in the regulation of
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Figure 6. NR-101 shows characteristic signal transduction as compared 1o thrombopoietin {TPOY: UT-7/TPO cells were stimulated with 10 ng/mL recombi-
want human (thTPOj (left panelsy or 25 pg/mb NR: 101 (right panelsy for the periods indicated. c-MPL, Janus kinase (JAK) 2 signal transducer and activator
of transeription (STAT) 5} and STAT3 were immunoplecipitated and detected with anti-phosphotyrosine and anti—c-MPL; anti-JAK2, anti-STATS and anti-
STATZ2. Whole cell Iysate wis probed with-anti-phospho-Erk /2, anti-Erk 1/2. anti=phospho-AKT. and anti-AKT: Data are representative of atleast two inde-
pendent. experiments.
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Figure 7. NR-101 stabilizes hypoxia-inducible factor-{ o (HIF- o) protein more efficiently than does thrombopotetin {TPO). UT-T/TPO cells (A) and human
cord blood (hCB) CD347 cells (B) were stimulated.with: 10 ng/mL recombinant human TPO (thTPO) or | pg/ml. NR-101 for 24 hours. Cells were stained with
anti-HIF-1o primary antibody and Alexuf88-conjugated secondary antibody (greent, and counterstained with 6-diamidino:2-phenylindole (DAPT) 10 visualize
DNA (blue). - indicates the negative control (0 %z dimethyl sulfoxide IDMSODC) UTYHTPO cells were stimulated with 10 Hgf/mbrhTPO (leftyor | pg/mL NR-
101 (right) for 24 Hours. Nuclear extracts were prepared: and then HIF-To, protein levels were analyzed by Western blotting. Histone H3 protein was used as un
internal control: (D Afrer 24 hoars of stimiulation with W TPOor NR- 101, the amount of VEGF released from UT-7/TPO cells into the medium was measured by
enzyme-linked immunosorbent assay, = indicates the negativé control (0,152 DMSO): TPO. 10 ngfml thTPO; NR-101, | pg/mb NR-101:

cellular proliferation: and. downregulated p37 expression.
thTPO and NR:=10}; however, did: not significantly alter
the expression of HSC regulator genes. GATA2. HOXBA.
and BMII (data not shown). These gene expression profiles
may represent the delayed but sustained activation of ¢~
MPL - aid its. downstream: pathways. JAK/STAT.: Ras/
MAPK, and PI3K/AKT, induced by NR-101. The unique
gene expression profile activated by NR-101 was also
observed in - hCB . CD34" - cells' * (Supplementary
Figure E2B, online only, available at www.exphem.org).

NR-101 efficiently activaies

and maintains HIF: T signaling patfiways

It has been reported that SRCs expand under hypoxic condi-
tions [53] and TPO activates hypoxia-responsive pathways
by increasing the intranuclear level of HIF-I=z [54-56],
which detects changes in oxygen in the cellular environment
and plays an essential role in'cellular responses to hypoxia
[57.58]. Therefore, we compared HIF-1% protein levels in

UT-7/TPO cells stimulated with thTPO and-NR=101 for 24
fours. Immunofluorescence: microscopy demonstrated that
the Tevels of intracellular HIF- 1z protein’ in UT-7/TPO cells
as well'as hCB €D347 cells were higher in the cells treated
with NR=101 than with thTPO (Fig. 7A. B). A Western blot
analysis  supported  this - finding . in- UT-7/TPO-- cells
(Fig. 7C). However. neither thTPO nor NR-101 stimulated
HIFIA gene expression (Supplementary Figure E3A, online
only, available at www.exphent.org). Consistent with these
findings: we found that a series of HIF-1o~regulated genes,
including those related to angiogenesis (VEGF), vasomotor
control, - glycogenesis;: glucose  transport: (SLC2A3). and
others (P4HAL, PIM1). were. upregulated by NR-10@ in
UT-7/TPO and hCB CD34" cells (Supplementary Figures
E3A. B, and Supplementary Table E1, online only, available
at www.exphem.org). As was the case with other TPO-
responsive ‘genes’ presented in’ Supplementary Figure ‘E2,
HIF-lo—regulated genes were slowly upregulated - and
reached their’ maximum levels at later timie points after



