Growth factor and hypoxic signaling

Convergence of signaling pathways driven by growth
factors and hypoxia has been well described (Pouyssegur
et al., 2006). Activation of growth factor receptors leads
to the augmentation of HIF expression, which subse-
quently amplifies expression of VEGF. Even more rigid
coupling is seen in hematopoietic stem cells; these cells are
unable to express HIF-lo mRNA in the absence of growth
factor receptor activation, and growth factor-dependent
HIF-lg is involved in the determination of intracellular
glucose fate (Lum e al., 2007). Such observations suggest
that HIFs cooperate with growth factor signaling in the
governance of cellular metabolism.

We observed a self-renewing mitogenic effect of
reduced oxygen on glioma CSCs. To investigate the
presence and significance of the cross talk between
hypoxic signaling and growth factor signaling in glioma
CSCs, we interrogated the PI3K and MAPK signaling
mechanisms. As reported earlier by other groups, we
found that hypoxia was capable of enhancing the
activation of growth factor signaling pathways (Alvarez-
Tejado et al., 2001; Xu er al., 2004). Furthermore,
blocking these pathways resulted in the attenuation of
hypoxic induction of HIF-la by glioma CSCs. It was
shown earlier that PI3K pathway activation was neither
required nor sufficient by itself for HIF-lo-dependent
gene transcription (Arsham et al., 2002). Our experience
with glioma-derived CSCs suggests that, indeed, the
PI3K pathway activation is not required for HIF-la
induction, but growth factor signaling may amplify such
induction under hypoxic conditions. Such observations
suggest that specific cellular response to hypoxia is tissue
or cell-type specific. Strict dependence of glioma cells on
growth factor signaling pathways may link the hypoxia
and these pathways more intimately in gliomas.

Our findings indicate that hypoxia contributes to
glioma tumor growth by enhanced self-renewal activity
and maintenance of the undifferentiated state of a subset
of the CSC populations. It further suggests a. context-
dependent . regulation of. the . tumor-initiating. CSC
phenotype. Interestingly, growth factor signaling path-
ways only partially overlap with hypoxia-mediated
signaling response. This suggests the importance of fully
characterizing the hypoxia-signaling mechanisms  in
glioma-derived CSCs, because targeting both the hy-
poxia-growth factor pathway and the hypoxia-specific
signaling cascade may provide improved therapeutic
opportunities for the treatment of malignant gliomas.

Materials and methods

Tissue specimen

Three CSC lines were established from acutely resected human
tumor tissues. The X01:line was derived from a woman with a
glioblastoma multiforme. X02 line originated from a man with
glioblastoma multiforme. X03 was derived from a woman with
anaplastic oligoastrocytoma.

Cell culture
Tumor-sphere cultures were performed as described earlier,
with some modifications, in medium containing Dulbecco’s
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modified Eagle’s medium-F12 (Gibco-Invitrogen, La Jolla,
CA, USA), penicillin G, streptomycin sulfate, B-27 (Gibco-
Invitrogen), and recombinant human EGF (20 ng/ml; R&D
Systems, Minneapolis, MN, USA) (Singh er al, 2004; Oka
et al., 2007; Soeda et al., 2008). Cells were cultured in
HERAcell incubators (Thermo Electronic Corporation, Asheville,
NC, USA) at 37°C, 95% relative humidity, and 5% CO; with
20% oxygen or 1% oxygen conditions.

Fluorescence-activated cell sorting analysis

To characterize the effects of hypoxia on the CD133-positive
CSC sub-population propagated as spheres, 1x10° cells were
placed in a proliferation medium containing EGF. After
12-72h, cells were evaluated on a Coulter EPICS cytometer
(Beckman Coulter, Fullerton, CA, USA). To further char-
acterize the effect of hypoxia on CSCs, each sample was
labeled with phycoerythrin-conjugated anti-human CXCRA4,
CD44, CD24 (BD Biosciences, San Jose, CA, USA), phycoer-
ythrin-conjugated CD133/1 (AC133) (Miltenyi Biotec, Au-
burn, CA, USA), or A2BS (Miltenyi Biotec) with
phycoerythrin-secondary antibody (BD Biosciences) according
to the manufacturer’s recommendation. Appropriate compen-
sation and isotype controls were used. All experiments were
performed in triplicates.

Western blotting

Western blot analyses were performed as described earlier
(Soeda et al., 2008). The following antibodies were used:
CD133 (Cell Signaling Technology, Beverly, MA, USA), HIF-
lo. (BD Biosciences), HIF2-a (Novus Biologicals, Littleton,
CO, USA), actin (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), phospho-EGFR (P-Tyrl068, Cell Signaling
Technology), Akt (Cell Signaling Technology), ERK1/2 (Cell
Signaling Technology), phospho-ERK1/2 (P-Thr202/Tyr204,
Cell Signaling Technology), phospho-p70S6 kinase (Thr-389,
Cell Signaling Technology), PHD2 (Cell Signaling Technol-
ogy), and Notchl (Cell Signaling Technology). Briefly, tumor
spheres were lysed in a buffer consisting of 20mm Tris-HClI
(pH 7.4, 150 mm NaCl, | mm EGTA, 1% Triton X-100, 2.5mm
sodium pyrophosphate, 1 mm pB-glycerol phosphate, I'mm
NasVOy, ['ug/ml leupeptin and 1 mm phenylmethylsulfonyl
fluoride). After brief. sonication, lysates were clarified by
centrifugation at 12000 x g for 10min at 4°C, and protein
content in the supernatant was measured according. to the
Bradford method. Aliquots (30-50ug of protein per lane)
of total protein were separated by 7.5-15% SDS-polyacryla-
mide gel electrophoresis and blotted . onto nitrocellulose
transfer membranes (0.2 pm;. Amersham: Biosciences; Buck-
inghamshire, UK). Each membrane was blocked with 5%
non-fat dry milk in TBS-T (20 mm Tris-HCI, pH 7.6, 137mm
NaCl and 0.01% Tween-20) for 1h-at room temperature,
followed by incubation with the appropriate primary anti-
bodies overnight at 4° C. After extensive washing with TBS-T,
each membrane was further “incubated with horseradish
peroxidase-conjugated “anti-rabbit, “anti-mouse or anti-goat
secondary antibodies (1:1000) for Ih at room temperature
in TBS-T containing 5% non-fat dry milk. Detection was
performed “using an énhanced chemiluminescence reagent
(Amiersham Biosciences), according to the manufacturer’s
protocol.

Enzyme-linked immunosorbent assay

Vascular endothelial growth factor protein levels were
determined by enzyme-linked immunosorbent assay performed
with Quantikine immunoassay for human VEGF (R&D
systems) according to the manufacturer’s instructions. CSCs
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(10% were dissociated into single cells and transferred to
T75 Falcon culture flasks with suspension medium containing
EGF at different oxygen tensions. After 72h incubations,
supernatants were used immediately or frozen at —20° C until
they were processed. All experiments were performed in
triplicates.

Indirect immunofluorescence microscopy
Immunocytochemistry of CSCs was performed as described
(Oka et al., 2007; Park et al., 2007). Primary antibodies used
were as follows: anti-B-III-tubulin (Tujl; mouse mAb, 1:200;
Chemicon, Temecula, CA, USA) and anti-glial fibrillary acidic
protein (GFAP; rabbit pAb, 1:500; DAKO, Glostrup, Den-
mark). Alexa Fluor 488 and 555 secondary antibodies were
used (1:1000; Molecular Probes, Eugene, OR, USA). Cells
were counterstained with 4',6-diamidino-2-phenylindole. The
following hardware was used: Zeiss Axiovert 200 microscope
(Carl Zeiss, Gottingen, Germany), Plan-Neofluar x 20 and
x 40 objectives, AxioCam MrM CCD camera. Axiovision
software was used for image acquisition (Carl Zeiss).

RNA interference

Hypoxia-inducible factor-lo, HIF-20, PHD2 and Notchl
siRNA oligonucleotides were obtained commercially (Santa
Cruz Biotechnology). A previously designed siRNA directed
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Hepatocyte growth factor (HGF) reportedly exerts beneficial effects
on the heart following. myocardial infarction and during nonischemic
cardiomyopathy, but the precise mechanisms underlying the latter
have not been well elucidated. We generated nonischemic cardiomy-
opathy in mice by injecting them with doxorubicin (15 mg/kg ip).
Two weeks later, when cardiac dysfunction was apparent, an adeno-
viral vector encoding human HGF gene (Ad.CAG-HGF, 1X10"
particles/mouse) was injected into the hindlimb muscles; LacZ gene
served as the control. Left venuricular dilatation and dysfunction
normally seen 4 wk after doxorubicin administration were signifi-
cantly mitigated in HGF-treated mice, as were the associated cardio-
myocyte atrophy/degeneration and myocardial fibrosis. Myocardial
expression of GATA-4 and a sarcomeric protein, myosin heavy chain,
was downregulated by doxorubicin, but the expression of both was
vestored by HGF treatment. The protective effect of HGF against
doxorubicin-induced cardiomyocyte atrophy was confirmed in an
in vitro experiment, which also showed that neither cardiomyocyte
apoptosis nor proliferation plays significant roles in the present model.
Upregulation of ¢-Met/HGF receptor was noted in HGF-treated
hearts. Among the mediators downstream of c-Met, the activation of
extracellular signal-regulated kinase (ERK) was reduced by doxoru-
bicin, but the activity was restored by HGF. Levels of transforming
growth factor-B1 and cyclooxygenase-2 did not differ between the
groups. Our findings suggest the HGF gene delivery exerts thera-
peutic antiatrophic/degenerative and antifibrotic effects on myo-
cardium in cases of established cardiac dysfunction caused by
doxorubicin. These beneficial effects appear to be related to HGF-
induced ERK activation and upregulation of ¢-Met; GATA-4, and
sarconieric proteins.

heart failure

THE ANTINEOPLASTIC DRUG doxorubicin is highly effective against a
broad spectrum of hematogenous and solid human malig-
nancies, but its clinical use is limited by its adverse side
effects: irreversible degenerative cardiomyopathy and con-
gestive heart failure (29, 32). Much effort has gone into the

search for treatments able to reduce or eliminate the risk of
doxorubicin-induced cardiomyopathy and congestive heart
failure (11, 31, 33), but so far the ability of these treatments
to protect the heart from damage has been varied and
limited.

Hepatocyte growth factor (HGF), which was originally iden-
tified and cloned as a potent mitogen for hepatocytes (25, 26),
has been shown to exert mitogenic, angiogenic, antiapoptotic,
and antifibrotic cffects in various ccll types, especially in
epithelial and endothelial cells (5, 14). Moreover, HGF also
reportedly exhibits cardioprotective effects. For instance, HGF
protected cardiomyocytes from acute ischemic death during
myocardial infarction (27, 36), and it enhanced survival among
cardiomyocytes subjected to oxidative stress (13, 36). In addi-
tion to its beneficial effects on cardiomyocytes under acute
stress, recent research has demonstrated that HGF also exerts
beneficial effects on cardiac function in animal models of
chronic heart diseases, including ischemic cardiomyopathy
following old myocardial infarction and hereditary cardio-
myopathy (18; 28, 34). In those cases, the main mechanisms
appeared to be a hypertrophic effect on cardiomyocytes as
well as angiogenic and antifibrotic actions. More recenily,
Iwasaki et al. (12) reported that HGF prevents cardiac
dysfunction in an animal model of doxorubicin-induced
cardiomyopathy. In that study, however, HGF was admin-
istered as the protein form, and the delivering method of
HGE was ' very - specific - (intravenous injection  of HGF
delivered by -ultrasound-mediated destruction- of micro-
bubbles). The effect of the ' HGF gene therapy has not been
reported so far on established cardiac dysfunction due to
doxorubicin cardiomyopathy.

Our hypothesis in the present study was that late treatment
with HGF gene transfer can mitigate established heart failure
brought on by doxorubicin-induced cardiomyopathy. To test
that idea, we used an-adenoviral vector to transfer the human
(h)HGF gene into mouse hindlimbs (systemic transfection) 2
wk after doxorubicin injection, a time at which cardiac dys-
function was already apparent. We then examined the effects
of the gene on the progression of heart failure during a more
chronic "stage and investigated the specific mechanisms in-
volved.
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HGF GENE THERAPY TO CARDIOMYOPATHY

MATERIALS AND METHODS

Recombinant adenoviral vectors. The adenoviral vector plasmid
pAd-HGF, which is comprised of the cytomegalovirus immediate
early enhancer, a modified chicken 3-actin promoter, rabbit 3-globin
polyA (CAQG) and hHGF ¢cDNA (Ad.CAG-HGF). was constructed
using the in vitro ligation method described previously (18, 21).
Control Ad-LacZ (Ad.CAG-LacZ) was prepared as described previ-
ously (7).

Measurement of hHGF levels. hHGF levels in plasma and tissues
(n = 3 to 4/group) were measured using an ELISA kit (Institute of
Immunology) as previously reported (18).

Experimental protocols. This study was approved by our Institu-
tional Animal Research Committee and conformed to the animal care
guidelines of the American Physiological Society. Cardiomyopathy
was induced in 10-wk-old male C57BL/6J mice (Chubu Kagaku,
Nagoya, Japan) by a single intraperitoneal injection of doxorubicin
{doxorubicin hydrochloride, Kyowa Hakko, Tokyo, Japan) at a dose
of 15 mg/kg. We previously confirmed both functionally and histo-
logically that, at that dosage, doxorubicin induces cardiomyopathy in
all mice not receiving a therapeutic intervention (16). In sham-
operated mice, the same volume of saline was injected in a similar
manner.

In the Hrst set of experiments (protocol 1), treatment with adeno-
viral vectors was started 2 wk after saline or doxorubicin injection;
Ad.CAG-HGF or Ad.CMV-LacZ at 1 X 10" particles/mouse was
injected into the hindlimb muscles of 10-wk-old male CS7BL/6J mice.
At that time, mice were assigned to receive saline alone (n = 11),
doxorubicin plus LacZ gene (n = 10), or doxorubicin plus hRHGF gene
{n = 9). Before this assignment, échocardiography was done to reduce
any bias among the groups. After an additional 2 wk (4 wk after
doxorubicin administration), all mice received a physiological
examination and were then euthanized with an overdose of pento-
barbital sodium. Cardiac specimens were then collected and sub-
jected to histological, immunohistochemical, and molecular bio-
logical analyses.

In a second set of experiments (protocol 2), we evaluated the role
played by the extracellular signal-regulated protein kinase (ERK)
signaling pathway in mediating the effects of the hHGF gene therapy.
PD-98059 (Cell Signaling), a MEK1-p42/p44 mitogen-activated pro-
tein kinase (MAPK)-specific inhibitor (8), was administered intraperi-
toneally at a dose of 0.5 mg-kg~'-day™! for 2 wk to mice given saline
or doxorubicin plus hRHGF (# = 7 each), after which the mice were
examined as described in protocol 1.

In vitro study. Cardiomyocytes were isolated from 1-day-old neo-
natal C57BL/6J mice as previously reported (3) and plated on lami-
nin-coated dishes or in slide glass chambers and incubated in Dul-
becco’s modified Eagle’s medium (Sigma) supplemented with 10%
FBS (Sigma) for 48 h at 37°C. Doxorubicin was then added to the
medium_to a final concentration of 0.1 wmol/l. Simultancously,
recombinant hHGF (Wako) was added to a concentration of ), .02,
0.2, 2, or 10 ng/ml. For the controls, doxorubicin and/or HGF was
replaced with the same volume of saline. Twenty-four hours later, the
cells were collected for motphoinetric and biochemical analyses.

The cardiomyocytes in slide glass chambers were fixed in 4%
paraformaldehyde, permeabilized: with 0.05% Triton X, and stained
with rhodamine phalloidin and Hoechst 33342 (both from Molecular
Probes). Digital images captured using a laser-confocal microscope
system (LSM510, Zeiss) were employed for morphometric analysis
using Photoshop 7.0 (Adobe Systems). Proteins extracted from car-
diomyocytes on dishes were used for Western blot analysis.

Physivlogical siudies. Echocardiography and cardiac catheteriza-
tion were carried out as described previously with modifications (16).
Animals were anesthetized with halothane (induction, 2%; mainte-
nance, 0.5%) in a mixture of N>O and O, (0.5 I/min each) via a nasal
mask. Echocardiograms were recorded using an echocardiographic
system (Vevo770, Visualsonics) equipped with a 45-MHz imaging

H1049

transducer before treatment and at death. Following echocardiogra-
phy, the right carotid artery was cannulated with a micromanometer-
tipped catheter (SPR 671, Millar Instrument) that was advanced into
the aorta and then into the left ventricle for recording pressure and
maximal and minimal first derivative of pressure (ZdP/dr).
Histological analysis. Following echocardiography, each heart was
removed and cut into three transverse slices. Of those, the middle slice
was fixed with 10% buffered formalin and embedded in paraffin, after
which 4-pm-thick sections were stained with hematoxylin-eosin or
Sirius red F3BA (0.1% solution in saturated aqueous picric acid)
(Aldrich). Quantitative assessments, including cell size and cell num-
ber, were carried out in randomly chosen high-power fields (HPFs) in
each section using a multipurpose color image processor (LUZEX F,
Nireco). The fibrotic area was measured by searching the entire
ventricle. Cardiomyocyte size (expressed as the transverse diameter of
myocytes cut at the level of the nucleus) and cell populations were
assessed in 20 randomly chosen HPFs in each section.
Immunohistochemistry. After deparaffinization, the 4-pm-thick
sections were incubated with a primary antibody against c-Met/HGF
receptor (Santa Cruz), endothelial cells (Flk-1, Santa Cruz), leuko-
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Fig. 1. A: human hepatocyte growth factor (hHGF) levels in the hindlimb
nuscles of mice injected with adenoviral vector 3 days earlier were detected by
ELISA. B: time course of hHGF levels in the plasma of mice after adenovirus
injection. C: time course of hHGF levels in the heart. Numbers in parentheses
indicate those of animals used per group. *P < 0.05 vs. doxorubicin (Dox) +
LacZ group.
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cytes (CD45, Pharmingen), or Ki-67 (Santa Cruz). A Vectastain Elite
ABC gystem (Vector) was then used to immunostain the sections;
diaminobenzidine served as the chromogen, and the nuclei were
counterstained with hematoxylin. Quantitative assessments, including
the number or area of the immunopositive cells, were made in 20
randomly chosen HPFs using the multipurpose color image processor.

In situ terminal dUTP nick-end labeling (TUNEL) assays were
carried out with sections using an ApopTag kit (Chemicon) according
to the supplier’s instructions. Mouse mammary tissue served as a
positive control.

HGF GENE THERAPY TO CARDIOMYOPATHY

Electron microscopy. Cardiac specimens were immersion fixed
overnight in phosphate-buffered 2.5% glutaraldehyde (pH 7.4), post-
fixed for 1 h with 1% osmium tetroxide, dehydrated through a graded
ethanol series, and embedded in Epon medium. Ultrathin sections
were stained with uranyl acetate and lead citrate and observed in an
electron microscope (H700, Hitachi, Tokyo, Japan).

Western blot analysis. Heart tissue lysates were used for Western
blot analysis. Proteins were separated and transferred to membranes
using standard protocols, after which they were probed using antibod-
ies against GATA-4 and myosin heavy chain (MHC) (both from Santa
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37 20 —
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+LacZ +LacZ +HGF
Fig. 2. Effects of hRHGF gene delivery on cardiac
remodeling and function assessed 4 wk after Dox
injection (protocol 7). The indicated paramcters
were measured using echocardiography (4) -and B LVSP (mmHg) Heart Rate (bpm)
cardiac catheterization (B). LVDJ, left ventricular 120 — ]
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Cruz), transforming growth factor-f1 (TGF-B1, Promega), cycloox-
ygenase-2 (Santa Cruz), and Akt or ERK (both from Cell Signaling).
Activation of Akt and ERK was assessed using antibodies against the
phosphorylated form of Akt (p-Akt) and p-ERK (both from Cell Signal-
ing). respectively. Procaspase-3 and the activated form of caspase-3 were
evaluated using anti-caspase-3 antibody (Santa Cruz). Western blot anal-
ysis of hHGF was performed using anti-human IgG antibody (DAKO).
Three to five hearts from each group were subjected to the blotting.
The blots were visualized by means of enhanced chemiluminescence
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Sirius
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DOX+HGF
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(Amersham), and the signals were quantified by densitometry. o-Tu-
bulin (analyzed using an antibody from Santa Cruz) served as the
loading control.

Immunoprecipitation and Western blot analysis for ¢-Met. Heart
tissue lysates were subjected to immunoprecipitation assays carried
out with Ultra-Link Biosupport medium (Pierce) using anti-c-Met
antibody (Santa Cruz). Thereafter, the immunoprecipitate was analyzed
by Western blot analysis using the same antibody. Tlwee to five hearts
from each group and three normal livers were subjected to the assay.

Fig. 3. Effects of hHGF gence delivery on car-
diac histology in mice 4 wk after Dox adminis-
tration (protocol 1). A: photomicrographs of his-
tological [hematoxylin-cosin (HE) and Sirius red
stained] and immunohistochemical (Flk-1 and
CD45) preparations of heart specimens from
the indicated groups. Arrows point to immu-
nopositive cells; scale bars, 20 ym. B: mor-
phometric data. *P <C 0.05 vs. sham group:

4
CD‘(';nge" #P < 0.05 vs. Dox -+ LacZ group. C: electron
0.12 photomicrographs of doxorubicin-induced car-
diomyopathy treated with LacZ or hHGF gene
T p=n.s (bar, | pm).
0.08 4
0.04 -

o
DOX Sham DOX DOX
+LacZ +HGF

+LacZ +HGF
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Fig. 4. c-Met expression in the heart. Western blot (A) and immunchistochem-
ical (B) analyses. *P < .05 vs. sham group: #P < 0.05 vs. Dox + LacZ
group. Arrows indicate intramyocardial vessels. Bars, 20 pm.

Statistical analysis. Values arc shown as mcans * SE. Survival
was assessed by constructing Kaplan-Meier curves, which were ana-
lyzed using the log-rank  Cox-Mantel method. The significance of
differences between groups was evaluated using one-way ANOVA
with a post hoc Newman-Keuls multiple comparisons test. Values of TGF-B1
P < 0.05 were considered significant.

COoXz.

Fig. 5. Western blot analysis of sarcomere-related (A) and fibrosis-related (B)

proteins. A: myocardial expression of GATA-4 and myosin heavy chain Tubulin
(MHC). B: myocardial expression of transforming growth factor-B1 (TGF-81)

and cyclooxygenase-2 (COX-2). Graphs are not shown for TGF-81 and

COX-2 since there were no significant differences among the groups. *P <

0.05 vs. sham group; #P < 0.05 vs. DOX + LacZ group.
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RESULTS

hHGF in plasma and tissues. In the hindlimb receiving the
adenoviral vector (Ad.CAG-HGF), hHGF levels peaked at
4.35 £ 0.03 ng/mg 3 days after injection; no hHGF was
detected in the hindlimbs of LacZ-treated mice (Fig. 1A).
Plasma hHGF also peaked 3 days after injection of Ad.CAG-
HGF (3.25 %= 0.85 ng/ml), and significant levels were sustained
for an additional 9 days thereafter (Fig. 1B). Myocardial hHHGF
levels showed a similar pattern (Fig. 1C).

Effects of hHGF gene delivery on cardiac function and
pathology. All mice in each group remained alive 4 wk after
doxorubicin administration. Echocardiography and cardiac
catheterization showed that, compared with the saline-treated
controls, mice receiving doxorubicin had significant deteriora-
tion of left ventricular (LV) functionality characterized by an
enlargement of the LV cavity and decreased LV fractional
shortening and =dP/d¢ (Fig. 2). The delivery of the hHGF gene
significantly attenuated the doxorubicin-induced impairment of
cardiac function.

No significant difference was observed in the heart weight-
to-body weight ratios among the groups (saline, 3.78 * 0.01;
doxorubicin with LacZ, 3.87 = 0.01; and doxorubicin with
hHGF, 3.71 £ 0.01 mg/g). On the other hand, an examination
of transverse sections of hearts stained with hematoxylin-cosin
revealed that the sizes of cardiomyocytes (expressed as the
transverse diameters) from the group receiving doxorubicin
plus LacZ- were significantly smaller than those in the saline
group (11.5 * 0.22 vs. 13.8 = 0.37 pm. P < 0.05) and that
hHGF delivery exerted a significant protective effect against
such doxorubicin-induced cardiomyocyte atrophy (transverse
diameter, 13.4 £ 0.18 pwm) (Fig. 3). Similarly, when we
assessed myocardial fibrosis using Sirius red-stained sections,
we found significantly greater fibrosis in the group receiving
doxorubicin plus LacZ than in groups receiving saline (0.99 *
0.05% vs. 0.55 £ 0.04%, P < 0.05) or doxorubicin plus hRHGF
(0.58 = 0.04%) (Fig. 3). Myocardial capillary density, which
we assessed based on Flk-1 immunostaining, was unaffected
by either doxorubicin or hRHGF treatment (Fig. 3). Immunohis-
tochemical analysis also revealed that CD45-positive leukocyte
infiltration did not differ among the groups (Fig. 3).

Degenerative changes within cardiomyocytes caused by
doxorubicin were clearly evident under an electron micro-
scope, which confirmed previously described findings in doxo-
rubicin-induced cardiomyopathy (16, 30). These changes were
characterized by myofibrillar derangement and disruption and
by increases in the volume of subcellular organelles such as
mitochondria (Fig. 3). These degenerative changes were sig-
nificantly mitigated by hHGF gene transfer. No apoptotic cells
were ever detected by electron microscopic observation of
cardiac tissue from any of the groups.

TUNEL-positive cardiomyocytes were detected, though
very rarely, and the incidence was not affected by cither
doxorubicin administration or hHGF gene transfer (saline,
0.04 = 0.03%; doxorubicin plus LacZ, 0.06 = 0.03%; and
doxorubicin plus hHGF, 0.05 = 0.04%). Consistent with that
finding, the active (cleaved) form of caspase-3 was not detect-
ablc in hearts from any of the groups by Western blot analysis
(data not shown). The absence of apoptotic cells in the present
model confirms earlier studies (16, 17). In addition, prolifer-
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ating cardiomyocytes, as indicated by the presence of Ki-67
were never detected (data not shown).
Expression of c-Met/HGF receptor. The HGF receptor has

>

- been identified as c-Met, the product of the c-Met proto-

oncogene (5. 6). Western blot analysis revealed that the ex-
pression of the c-Met/HGF receptor was significantly down-
regulated in doxorubicin-treated hearts but was greatly en-
hanced by hHGF gene transfer (Fig. 4A). Consistent with this
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Fig. 6. In vitro experiments. A: confocal micrographs and a graph showing the
atrophic degeneration of cardiomyocytes exposed to Dox and its prevention by
recombinant hHGF. Bars, 10 pm. *P < 0.05 vs. sham group: #P < 0.05 vs.
Dox + LacZ group. B: Western blot analysis of the effect of hHGF on the
Dox-mediated reduction of MHC in cultured cardiomyocytes. *P < 0.05 vs.
control group; #P < 0.05 vs. group treated with Dox alone.
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finding, immunohistochemical analysis showed c-Met (o be
expressed on cardiomyocytes and to be more strongly ex-
pressed in hHGF-treated hearts (Fig. 4B).

Expression of GATA-4 and MHC. GATA-4 is a key tran-
scriptional factor-regulating expression of sarcomeric proteing
in the heart (22, 23). Myocardial levels of GATA-4 were
significantly reduced by doxorubicin, confirming earlier re-
ports (4). This reduction was significantly reversed by hHGF
gene transfer (Fig. 5A). Likewise, the level of MHC was
significantly reduced by doxorubicin, and this inhibitory
effect was also significantly reversed by hHGF gene therapy
(Fig. 5A).

Expression of TGF-B1 and cyclooxygenase-2. Doxorubicin
had no significant effect on the expression of TGF-B1 or
cyclooxygenase-2 in hearts 4 wk after administration, and
neither was affected by hHGF gene transfer (Fig. 5B, data not
shown).

HGF GENE THERAPY TO CARDIOMYOPATHY

In vitro effect of hHGF on cardiomyocytes. Doxorabicin
exerted a significant atrophic/degenerative effect on cultured
neonatal mouse cardiomyocytes, but this effect was largely
reversed by an application of recombinant hHGF (Fig. 6A).
hHGF affected the cardiomyocytes in a dose-dependent man-
ner. Western blot analysis revealed that doxorubicin signifi-
cantly reduced expression of MHC in cultured cardiomyocytes,
but the expression was restored by the addition of hHGF to the
cultures (Fig. 6B).

ERK activity. BERK/MAPK and phosphatidylinosito}l 3-ki-
nase (PI3K)/Akt are known to be components of major signal-
ing pathways downstream of ¢-Met/HGF receptor (9, 24).
Neither doxorubicin-induced cardiomyopathy nor the effects of
hHGF gene transfer was found to be related to the activation
{phosphorylation} of Akt in the heart 4 wk after doxorubicin
treatment (Fig. 7A). In contrast, ERK phosphorylation, and
thus its activation, was markedly diminished by doxorubicin,
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Fig. 7. A: Western blot analysis of the effects of hHGE £ 100 - w 50—
<
gene transfer on myocardial expression of phosphorylated 2 - 2 E
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Dox + LacZ group. B: effect of the pd2/pdd MAPK
inhibitor PD-98039 (PD) on Dox-induced cardiomyopathy
(protocol 2). Western blot and densitometric analyses of the
effect of PD on myocardial expression of GATA-4. #P <
0.05 vs. control group; #P < 0.05 vs. Dox + HGF group.
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and that effect was significantly attennated by hHGF treatment
(Fig. 74).

To further examine the role played by ERK activation in
mediating the cardioprotective effects of hHGF, we next tested
the effect of inhibiting ERK activation using the MEK {-p42/
p44 MAPK-specific inhibitor PD-98059 (protocol 2). When
administered to mice along the hHGF gene, PD-98059 sup-
pressed the hHGF-mediated reversal of doxorubicin’s inhibi-
tion of GATA-4 expression (Fig. 7B). Moreover, PD-98059
significantly suppressed the HGF-mediated improvement in
cardiac function and histology, i.e., the increase in cardiomyo-
cyte size and the reduction in myocardial fibrosis (Table I).
This suggests that the ERK pathway is critically involved in the
protective effect exerted by hHGF against doxorubicin-induced
cardiomyopathy.

DISCUSSION

The present study provides clear evidence of the beneficial
effects of HGF gene delivery on the cardiac dysfunction
associated with doxorubicin-induced cardiomyopathy, a non-
ischemic cardiomyopathy. The principal pathological findings
were that HGF prevented doxorubicin-induced atrophic degen-
eration of cardiomyocytes and myocardial fibrosis. The mech-
anism of action of HGF in this model differs from that seen in
cases of myocardial infarction, where HGF reportedly en-
hances the survival of ischemic cardiomyocytes (27, 36)
Notably, HGF exerted its therapeutic effects despite the fact
that the cardiomyopathy was well established:

Mechanisms underlying the cardioprotective effects of HGF.
Our findings suggest that several factors contribute to the
cardioprotective effects of HGF against doxorubicin-induced
cardiomyopathy. The first is that HGF mitigates the evoked
atrophic degeneration of cardiomyocytes. The sarcomeric pro-
tein MHC is important for the structural integrity and function
of cardiomyocytes, and its myocardial expression is reportedly
downregulated by doxorubicin (11). an effect we confirmed in
the present study. Our new finding is that HGF significantly
restored the ‘expression of both MHC and GATA-4 in the
presence of doxorubicin. We suggest that GATA-4 is crucially
involved in the antiatrophic effect of HGF, since GATA-4 is
known to be a key regulator of heart development, to regulate
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myocardial expression of MHC and troponin 1 (22, 23) and to
be depleted in doxorubicin-induced cardiotoxicity (4). Our
results not only confirm those earlier findings but also demon-
strate that HGF restores GATA-4 expression, even in the
presence of doxorubicin.

c-Met/HGF receptor signaling is known to activate ERK/
MAPK and PI3K/Akt signaling pathways (9, 24), both of
which arc implicated in myocardial hypertrophy (2, 5). Our
findings suggest that altered signaling via ERK, but not Akt,
is involved in doxorubicin-induced cardiomyopathy, which is
consistent with a recent study showing that ERK activation is
significantly diminished during the chronic stage of doxorubi-
cin-induced cardiomyopathy (3 wk after doxorubicin adminis-
tration) (20). Given that another study, in which isolated rat
heart was subjected to excessive LV wall stress (induced by
balloon inflation), showed MAPK (p38 and ERKs) to be
involved in the activation of GATA-4 binding to DNA (35), we
suggest that HGF exerts its cardioprotective effects by restor-
ing activity in ERK/MAPK signaling pathway.

The HGF gene therapy significantly restored the doxorubi-
cin-induced decrease in c-Met/HGF receptor expression in the
heart, which is compatible with previous findings (18, 27): the
increasc in c-Met may be related to the autoinduction of gene
expression triggered by HGF (27). However, immunohisto-
chemistry showed cytoplasmic staining although ¢-Met is a
membrane protein. One possible explanation for this discrep-
ancy is the thickness of the sections (4 pm) relative to myocyte
size (12 wm). A second possible explanation is the diffusion of
diaminobenzidine products during the staining procedure. It is
also possible that cytoplasmic staining is not an artifact but
rather represents an abnormal distribution of excessive protein,
Thus further studies are desirable in the future on the subcel-
lular localization of ¢-Met in cardiomyocytes at the electron
microscopic level.

Recent findings suggest that apoptosis among cardiomyo-
cytes is a leading cause of cardiac dysfunction in doxorubicin-
induced cardiomyopathy (13, 36). This hypothesis remains
controversial, however, because the cardiomyocytes in ques-
tion do not show the typical apoptotic morphology (16, 17, 30,
38). Seeking evidence of doxorubicin-induced apoptosis/cell
death, we previously conducted a series of TUNEL assays,

Table 1. Effects of inhibiting ERK activity with PD-98059 on LV function and histology 4 wk after administering saline or
doxorubicin followed by LacZ or human HGF gene therapy: protocol 2

Sham (protocol. 1}

Sham -+ PD-98059

Dox + HGF (prorocol 1) Dox + HGF + PD-98059

n 1 7 9 7
Function
LVDd, mm 3.78+0:12 3.79+0.03 3.77+0.10 3.93+0.09
LVFS, % 29.2+1.61 30.7x0.42 25.2%1.08 20.9x0.96%
+dP/dr. mmHg/s 7,708 =845 6,596=1,075 8,27+936 5.012+607*
—dP/dr, mmHg/s —6,568+364 —~6,355+976 —8,524+718 —5434 +779%
LVSP, mmHg 80.5+2.21 73.5+5.40 93,9436 T70.4+5.85*
Heart rate. beats/min 512x37 52360 520=36 492424
Histology
Myocyle size, wm 13.8£0.37 13.5£0.20 13.4=0.18 12.4+0.32%
Fibrosis, % 0.55+0.04 0.48+0.04 0.58+0.04 0.69=0.01*
Flk-1* vessels/HPF 279+37.9 272+23.2 3062604 272318
CD45% cells/HPF 0x0 00 0.02:20.04 00

Values are means = SE; n, number of animals/group. Dox, doxorubicin; HGF, hepatocyte growth factor: LVDd, left vemricular {LV) end-diastolic diameter;
LVFES, LV fractional shortening; *dP/ds, maximum and minimum first derivative of pressure; LVSP, LV peak systolic pressure; HPF, high-power field. #P <

0.05 vs. corresponding group without PD-98039 treatment.
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electron microscopic examinations, and analyses of myocardial
caspase-3 activation in the same animal model, but we detected
no effect of doxorubicin on the incidence of apoptosis/cell
death (17). We have now confirmed those findings. In the
present study, mice received a single dose of doxorubicin, and
the survival rate was 100% in all groups. This suggests the
doxorubicin insult may have been too weak to induce cardiac
cell death and weaker than the insults induced in earlier
models. This may also hold true for our in vitro model.

HGF has been reported to be angiogenic (18, 28, 34), but we
detected no doxorubicin-induced reduction in capillary den-
sity, nor did HGF promote capillary outgrowth, indicating
that angiogenesis likely plays no mechanistic role in doxo-
rubicin-induced cardiomyopathy or the cardioprotective ef-
fects of HGF.

Limitations of the study. We observed that doxorubicin stim-
ulates the development of myocardial fibrosis and that HGF
suppresses this pathological process. Although TGF-1 is a potent
stimulator of fibrosis in the failing heart, its involvement in
doxorubicin-induced cardiomyopathy was challenged in a recent
report (19). Consistent with that report, we found no significant
doxorubicin-induced changes in the expression of TGF-p1.
Therefore, although several studies suggest the mechanism
underlying the antifibrotic effect of HGF is related, at least in
part, to the inhibition of TGE-B1 secretion (28, 34), in the case
of doxorubicin-induced cardiomyopathy, HGF appears to di-
minish fibrosis via a different mechanism. It is also known that
doxorubicin induces cardiac expression of cyclooxygenase-2
(1), which occupies a central position in the biosynthesis of
proinflammatory prostaglandin E,, prostacyclin and thrombox-
ane A,, and. that inhibition of cyclooxygenase-2 improves
cardiac function in a model of doxorubicin-induced cardiomy-
opathy (10). Actually, we previously observed expression of
cyclooxygenase-2 to be upregulated 2 wk after doxorubicin
injection, but that is a more acute stage than the one studied
here (16, 17). We did not see greater expression of cyclooxy-
genase-2 in the present 4-wk model, where significant infiltra-
tion of inflammatory cells also was not seen. Still, we cannot
exclude the possibility that cyclooxygenase-2 contributes to the
etiology of myocardial fibrosis in doxorubicin-induced cardio-
myopathy. Our results also indicate that ERK inhibition blocks
the antifibrotic effect of HGF in the present model: thus,
further investigation will be needed to precisely define the
mechanisms operating.

HGF reportedly exerts myocardial regeneration by mobiliz-
ing bone marrow-derived cells to the myocardium (15), and
cardiac stem cells reportedly express c-Met/HGF receptors (12,
37). Although we did not directly evaluate the contribution
made by cardiomyocyte regeneration (either from bone mar-
row cells or cardiac stem cells) to the beneficial effects of
HGF, our immunohistochemical analysis of Ki-67, which
showed an absence of cardiomyocyte proliferation, suggests
that it is unlikely that cardiomyocyte regeneration plays a role
in the present model. This result of ours seems to be in contrast
with the previous study by Iwasaki et al. (12), which reported
enhanced cardiomyocyte proliferation and increased Scal-
positive cardiac progenitor cells in doxorubicin-induced car-
diomyopathy by a specific delivering method of HGF (intra-
venous injection of HGF delivered by ultrasound-mediated
destruction of microbubbles). In addition, the peak plasma
HGF concentration should have been widely different between

HGF GENE THERAPY TO CARDIOMYOPATHY

the studies. Iwasaki et al. (12) intravenously gave 10 pg of
HGF per animal (~20 g body wt), whereas in our study the
plasma HGF concentration attained 3 days after gene delivery
was 3.25 = 0.85 ng/ml. These methodological differences
might have a strong bearing on the different observations
between the studies. Further studies are needed to focus spe-
cifically on the biological effect of HGF on stem cells.

Conclusion. The present study provides the first evidence of
the beneficial effects of HGF gene transfer in doxorubicin-
induced cardiomyopathy. These effects include the attenuation
of atrophic degeneration of cardiomyocytes and the reduction
ol myocardial fibrosis, accompanied by the restoration of
myocardial expression of GATA-4 and sarcomeric proteins.
Our findings also suggest that HGF-mediated ERK activation
is associated with these beneficial effects and may thus under-
lie the cardioprotection provided by HGF gene transfer.
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