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MTT assay
Cells were incubated with substrate for MTT (3-(4,5-
dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide)
for 4 h, and washed with PBS and lysed to release forma-
zan from cells. Then cells were analyzed in a Safire
microplate reader (BIO-RAD, Hercules, CA, USA) at 562
nm. Cyclopamine and tomatidine was purchased from
Funakoshi (Tokyo, Japan). 143B cell were serum starved
for 12 h, and then cultured with recombinant human
sonic hedgehog (R&D Systems, Minneapolis, Japan).
SMO shRNA was purchased from SABiosciences
(Maryland, USA). SMO and control shRNAs were
cloned into pGeneClip™ Neomycin Vector, which
express sShRNA under the control of the Ul promoter.
Lipofection of shRNA was performed every other day as
recommended in the supplier’s protocol using FuGENE
6 (Roche, Basel, Switzerland).
Colony formation assay
Colony formation assay was performed as previously
described [68]. Briefly, cells were suspended in DMEM
containing 0.33% agar and 10% fetal bovine serum and
plated onto the bottom layer containing 0.5% agar. The
cells were plated at a density of 5 x 10° per well in a
24-well plate, and colonies were counted 14 days later.
Each condition was analyzed in triplicate, and all experi-
ments were repeated three times.
Real-time PCR
All primer sets amplified 100- to 200-bp fragments. Total
RNA was extracted using the miR-Vana RNA isolation
system or TRIzol (Invitrogen, Carlsbad, CA, USA). Reac-
tions were run using SYBR Green (BIO-RAD, Hercules,
CA, USA) on a MiniOpticon™ machine (BIO-RAD; Her-
cules, CA, USA). The comparative Ct (AACt) method was
used to determine fold change in expression using BII-
microglobulin, or GAPDH, or ACTB. Each sample was run
at three conicentrations in triplicate. The following primers
were used. Desert hedgehog: 5-TGATGACCGAGCGTTG-
TAAG-3, 5-GCCAGCAACCCATACTTGTT-3; Indian
Hedgehog: 5-ACTTCTGCCTGGTCCTGTTG-3, 5-AGC-
GATCTTGCCTTCATAGC-3; Sonic hedgehog: 5-ACCG
AGGGCTGGGACGAAGA-3, 5-ATTTGGCCGCCACC-
GAGTT-3; PATCHED: 5-TAACGCTGCAACAACT-
CAGG-3, 5-GAAGGCTGTGACATTGCTGA-3; SMOOT
HENED: 5-GGGAGGCTACTTCCTCATCC-3, 5-GGCA
GCTGAAGGTAATGAGC-3; GLII: 5-GTGCAAG
TCAAGCCAGAACA-3, 5-ATAGGGGCCTGACTGGA-
GAT-3, GLI2: 5-CGACACCAGGAAGGAAGGTA-3, 5-
AGAACGGAGGTAGTGCTCCA-3; cyclin DI1: 5-ACAAA
CAGATCATCCGCAAACAC-3, 5-TGTTGGGGCTCCT
CAGGTTC-3; cyclin EI: 5-CCACACCTGACAAAGAA-
GATGATGAC-3, 5-GAGCCTCTGGATGGTGCAA-
TAAT-3; SKP2: 5-TGGGAATCTTTTCCTGTCTG-3, 5-
GAACACTGAGACAGTATGCC-3; NMYC: 5-CTTCGG
TCCAGCTTTCTCAC-3, 5-GTCCGAGCGTGTTCA
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ATTTT-3; Bll-microgloblin: 5-TCAATGTCGGATGGAT-
GAAA-3, 5-GTGCTCGCGCTACTC TCTCT-3; GAPDH:
5-GAAGGTGAAGGTCGGAGTC-3, 5-GAAGATGGT-
GATGGGATTTC-3; ACTB: 5-AGAAAATCTGGCAC-
CACACC-3, 5-AGAGGCGTACAGGGATAGCA-3.
Immunohistochemistry

The following primary antibodies were used; anti-SMO
(diluted 1:200, Santa Cruz, CA. U.S.A), anti-GLI2 (diluted
1:200, Abcam, Cambridge, UK), and anti-ki67 (Zymed
laboratories, San Francisco, USA). The following secondary
antibodies were used;; fluorescein-conjugated goat anti-
mouse IgG antibody (diluted 1:200; Jackson ImmunoRe-
search, PA, USA) and rhodamine-conjugated donkey anti-
rabbit IgG antibody (diluted 1:200; Chemicon, Temecula,
CA). The cells were counterstained with Hoechst 33258
(Molecular Probes, Carlsbad, CA, USA) to identify nuclei.
Immunohistochemistry with each second antibody alone
without primary antibody was performed as a control.
Western blot

Cells were lysed using NP40 lysis buffer (0.5% NP40, 10
mM Tris-HCl (pH 7.4), 150 mM NaCl, 3 mM pAPMSF
(Wako Chemicals, Kanagawa, Japan), 5 mg/ml aprotinin
(Sigma, StLouis, USA), 2 mM sodium orthovanadate
(Wako Chemicals, Kanagawa, Japan), and 5 mM EDTA).
Lysates were subjected to SDS-PAGE and subsequent
immunoblotting with antibodies to cyclin D1, E1, p21,
SKP2, and pRb (Santa Cruz, CA. U.S.A). Detection was
performed using the ECL detection system (Amersham,
Giles, UK).

Animal experiments

143B cells (1 x 10% were mixed with a collagen gel in a
1:1 volume, and were inoculated subcutaneously in 5-
week-old nude mice. The mice were randomly assigned
to receive either cyclopamine (25 mg/kg-10 mg/kg) or
an equal volume of DMSO-as control. Cyclopamine and
saline solution were administered by intraperitoneal
injection. The treatment with cyclopamine was initiated
1 week after tumor inoculation when the tumors had
grown to visible size. The injections were repeated every
other day. Tumor size was measured with calipers
weekly, and tumor volume was calculated using a for-
mula of LW?/2 (L and W representing the length and
width of tumors). SMO shRNA (SABiosciences, Mary-
land, USA) transfected 143B cells (1 x 10°) or control
ShRNA (1 x 10° cells were mixed with a collagen gel in
a 1:1 volume, and were inoculated subcutaneously in 5-
week-old nude mice. Tumor size was measured with
calipers weekly, and tumor volume was calculated using
a formula of LW?/2 (L and W representing the length
and width of tumors). All experimental procedures were
performed in compliance with the guiding principles for
the Care and Use of Animals described in the American
Journal of Physiology and with the Guidelines estab-
lished by the Institute of Laboratory Animal Sciences,
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Faculty of Medicine, Kagoshima University. All efforts
were made to minimize animal suffering, to reduce the
number of animals used, and to utilize possible alterna-
tives to in vivo techniques.

Cell cycle analysis

Cell cycle analysis was performed by Reprocell (Tokyo,
Japan). At 48 h after cyclopamine treatment, cells were
collected by trypsinization and washed with DPBS. Cells
were fixed in 70% (v/v) ethanol at 4°C, washed with PBS,
and resuspended with 500 pl of staining solution [PBS
pH 7.4, 100 pg/ml DNase-free RNase, 1 mg/ml propi-
dium iodide]. Cells were then analyzed by flow cytometry
using a FACS Vantage SE (Becton Dickinson, Franklin
Lakes, NJ). Data were gated using pulse width and pulse
area to exclude doublets, and the percentage of cells pre-
sent in each phase of the cell cycle was calculated using
Flow]o software (Tree Star, Ashland, OR, USA).

Statistics and supplemental data

Each sample was analyzed in triplicate, and experiments
were repeated three times. In all figures, error bars are
standard divisions. All statistical analyses were per-
formed using Microsoft Office Excel (Microsoft, Albu-
querque, New Mexico, USA) and STASTISCA (StatSoft,
Tulsa, OK, USA). Differences between mean values were
evaluated by the unpaired t-test, and differences in fre-
quencies by Fisher’s exact test. Differences were consid-
ered significant at P < 0.05.

List of abbreviations

(Hh): Hedgehog; (SMO): SMOOTHENED; (PTCHI1):
PATCHED; (SHH): Sonic hedgehog; (DHH): Desert
hedgehog.

Additional file 1: A, Immunchistochemical examination revealed
that SMO was expressed on cytoplasm of 143B and GLI2 was
localized in the nucleus of 143B. B, MTT assay showed that Sonic
hedgehog promote proliferation of osteosarcoma cells. The éxperiment
was triplicate with' similar results,
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Additional file 2: Real-time PCR was performed to quantify mRNAs
of cell cycle related genes.SMO shRNA reduced-levels of cyclin DT,
cyclin E1, SKP2, and E2F1 transcription (error bar means S.D). The
comparative Ct (AACY) method was used to determine fold change in
expression using ACTB. The experiment was triplicate with similar results.
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Additional file 3: We performed real-time PCR using formed
tumors. Real-time PCR revealed that transcription of GLIT, GLIZ, and
PTCH1 was decreased in tumors formed by SMO shRNA-transfected 143B.
In addition, SMO shRNA reduced levels of Cyclin E1, SKP2, and E2F1
transcription. The comparative Ct (AACt) method was used to determine
fold change in expression using ACTB. The experiment was triplicate with
sirnilar results.
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Additional file 4: Cyclopamine prevents proliferation of
osteosarcoma in vivo. Immunohistochemical examination of ki67 was
performed in xenograft tumors. Ki67 staining revealed that proliferation
of osteosarcoma cells was decreased by cyclopamine treatment. The
numbers of Ki67-positive cells was decreased to 50% of control revel by
cyclopamine administration at day 14 (error bar means S.D).
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Tumour formation by single fibroblast growth factor receptor
3-positive rhabdomyosarcoma-initiating cells
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BACKGROUND: The hypothesis that malignant tumours are generated by rare populations of cancer stem cells that are more
tumourigenic than other cancer cells has gained increasing credence. The objective of this study was to identify and characterise a
subpopulation of human sarcoma-initiating cells.

METHODS: We examined established rhabdomyosarcoma cell fines by flow cytometry. Tumourigenesis was examined by xenograft
models. Real-time. PCR and immunohistochemistry were performed to examine the gene expression using cell lines and biopsy
specimens.

REsULTS: Rhabdomyosarcoma cell lines included small populations of fibroblast growth factor receptor 3 (FGFR3)-positive cells.
FGFR3-positive KYM-1 and RD cells were more strongly tumourigenic than FGFR3-negative cells. In addition, xenoengraftment of
33% of single FGFR3-positive KKYM-1 cells yielded tumour formation. Stem cell properties of FGFR3-positive cells were further
established by real-time PCR, which demonstrated upregulation of undifferentiated cell markers and downregulation of differentiation
markers. We showed that in the absence of serum, addition of basic fibroblast growth factor maintained and enriched FGFR3-positive
cells. On the other hand, ciliary neurotrophic factor reduced the proportion of FGFR3-positive cells. Real-time PCR and
immunohistochemical examination revealed that embryonal rhabdomyosarcoma patient biopsy specimens were found to over-
express FGFR3.

ConcLusions: Our findings suggest that rhabdomyosarcoma cell lines include a minor subpopulation of FGFR3-positive sarcoma-
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The hypothesis that malignant tumours are generated by rare
populations of tumour-initiating cells (TICs), also. called cancer
stem cells, that are more tumourigenic than other cancer cells has
gained increasing credence (Clarke and Fuller, 2006). TICs were
initially identified in acute myeloid leukaemia (AML), and were
found capable of inducing AML in immunodeficient mice (Lapidot
et al, 1994; Bonnet and Dick, 1997). TICs have since been identified
in numerous other tumours, including melanoma, lung, head,
neck, ‘pancreatic, prostate, colon, squamous cell cancers, and
benign tumours (Collins et al, 2005; Fang et al, 2005; Kim et al,
2005; Dalerba ef al, 2007; Prince et al, 2007; Loebinger et al, 2008;
Xu et al, 2009). Although the AML TICs resemble and probably
originate from the transformation of a stem cell, it is possible that
other TICs originate from transformation of early or late
progenitor cells. Thus, the definition of a TIC is not related to
the cell of origin for a tumour but rather to its ability to self-renew,
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initiating cells, which can be maintained indefinitely in culture and which is crudial for their malignancy.
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initiate cancer, and give rise to more differentiated cells that have
lost the capacity for self-renewal and tumourigenic potential.
The notion that cancer is driven by TICs has obvious therapeutic
implications - (Al-Hajj et al, -2004; Raguz and Yague, 2008).
The: efficacy of tumour response to. systemic therapy has
traditionally been assessed based on the bulk of tumour cells by
monitoring of changes in tumour size (Therasse et:al, 2000).
However, if only a small fraction of TICs are capable of initiating
cancer, then' curative therapy should be designed to target these
rare TICs rather than the bulk of nontumourigenic cells. Analysis
of TICs might thus yield novel therapeutic targets.

In this study, we attempted to identify rhabdomyosarcoma-
initiating cells (RICs) using cell surface markers. We examined
many markers of undifferentiated cells. We found that human
rhabdomyosarcoma cell lines include a small proportion of
fibroblast growth factor receptor 3 (FGFR3)-positive cells. Single
FGFR3-positive cells have the potential for tumour formation in
vivo. In addition, tumours formed by FGFR3-positive cells could
be used for serjal propagation of tumours in animals. Moreover,
basic fibroblast growth factor (bFGF) could maintain and enrich
FGFR3-positive RICs in the KYM:1 cell line in the absence of
serum. The easy method of preparation we describe will be useful
for the development of anti-RICs target therapy.



MATERIALS AND METHODS

Cell culture

KYM-1 and RD rhabdomyosarcoma cell lines were purchased from
Health Sciences Research Resources Bank (Tokyo, Japan). The
A204 cell line was purchased from ATCC (Manassas, VA, USA).
These cells were cultured in DMEM, supplemented with 10% FCS,
100 units per ml penicillin G, and 100pgml™ streptomycin
(Invitrogen, Carlsbad, CA, USA). In some experiments, KYM-1
cells were cultured in serum-free S-Clone (Sanko Junyaku, Japan)
containing 10ng ml™" bFGF, 10 ngml™" epidermal growth factor
(EGF), 2.5ngml™' transforming growth factor beta (TGF-f),
10ngml™! ciliary neurotrophic factor (CNTF), 10ng ml™ plate-
let-derived growth factor (PDGF)-AA, 10 ngml'1 PDGF-BB, and
5ug ml~! heparin. Normal human skeletal muscle cells (HSkMC)
were purchased from TOYOBO (Osaka, Japan). HSKkMC were
cultured in skeletal muscle cell growth medium (Cell Applications
Inc., San Diego, CA, USA) or DMEM, supplemented with 10% FCS,
100 units per ml penicillin G, and 100ug mi™ streptomycin
(Invitrogen). In all experiments, cells were maintained in
100 mm culture dishes (Nunc, New York, NY, USA) at 37°C in a
humidified 5% CO, per 95% air atmosphere.

Flow cytometry analysis and sorting

Fluorescence-activated cell sorting analysis was performed using
an Epics Alirta (Beckman Coulter, Fullerton, CA, USA). Cells were
conjugated with anti-FGFR3 antibody (R&D, Minneapolis, MN,
USA) for 30 min on ice. Cells were washed three times in PBS, re-
suspended in the same buffer at 5 X 10° per ml, and kept on ice
until analysis. Live single cells (fixed FSC-A/FSC-W ratio; PI
negative) were gated for analysis.

Rhabdomyosarcoma patients’ biopsy specimens

We obtained two biopsy specimens of human rhabdomyosarcoma
from primary lesions. Pathological examination revealed that
patient 1 had embryonal rhabdomyosarcoma and patient 2 had
alveolar rhabdomyosarcoma. Biopsy was performed before chemo-
therapy or radiotherapy to make the diagnosis. Control muscle was
obtained from surgery for scoliosis. The study protocol was
approved by the institutional review board of the Kagoshima
University. All patients and controls gave written informed consent.

Real-time PCR

Each. sample was run minimally at three. concentrations. in
triplicate. All primer sets amplified 100-200bp fragments. Primers
were designed by Primer3. Total RNA was extracted using the
miR-Vana RNA isolation system (Ambion, Austin, TX, USA) or
TRIzol (Invitrogen). Reactions were run using SYBR Green (Bio-
Rad, Hercules, CA USA) on a MiniOpticon machine (Bio-Rad).
The comparative: Ct (AACt). method was used to determine fold
change in expression using fll-macroglobulin; ACTB, or GAPDH.
The following primers. were used: CD34: 5- CACCCTGTGTCICA
ACATGG-3, 5-GGCTTCAAGGTTGTCTCTGG-3; PAX3: 5- GCCT
GACGTGGAGAAGAAAA-3, 5-GCCTCCTCCTCTTCACCTTT-3; PAX7:
5-GAACCTGACCTCCCACTGAA-3, 5-CCTCTGTCAGCTTGGTCCTC-3;
MYF5: 5-AATTTGGGGACGAGTTTGTIG-3, 5- CATGGTGGTGGACTT
CCTCT-3; NANOG:; 5-AATACCTCAGCCTCCAGCAGATG-3, 5-TGCGT
CACACCATTGCTATTCTITC-3; OCT-4: 5-GAGAACCGAGTGAGAGG
CAACC-3, 5-CATAGTCGCTGCTTGATCGCTTG-3, SOX2: 5-AGAAC
CCCAAGATGCACAAC-3, 5-CGGGGCCGGTATTTATAATC-3; MYHL:
5-GCTCATCGAGAAGCCTATGG-3, 5-CAAAGAGAAGTGGGCCTCAG
-3; desmin: 5-CATCGCGGCTAAGAACATTT-3, 5-GCCTCATCAGGG
AATCGTTA-3; myogenin: 5-TGGGCGTGTAAGGTGTGTAA-3, 5-CGA
TGTACTGGATGGCACTG-3; dystrophin: 5-ACCACCTCTGACCCTAC
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ACG-3, 5-GCAATGTGTCCTCAGCAGAA-3; f2-microglobulin: 5-TCAA
TGTCGGATGGATGAAA-3, 5-GTGCTCGCGCTACTCTCTCT-3; ACTB:
5-AGAAAATCTGGCACCACACC-3, 5-AGAGGCGTACAGGGATAGCA-3;
GAPDH: 5-GAAGGTGAAGGTCGGAGTC-3, 5-GAAGATGGTGAT
GGGATTTC-3.

Immunohistochemical examination

We obtained two biopsy specimens of human rhabdomyosarcoma
from primary lesions. Pathological examination revealed that
patient 1 had embryonal rhabdomyosarcoma and patient 2 had
alveolar rhabdomyosarcoma. Anti-FGFR3 (diluted 1:200, R&D)
was used as a primary antibody. Rhodamine-conjugated donkey
anti-rabbit IgG antibody (diluted 1:200; Chemicon, Billerica, MA,
USA) was used as a secondary antibody. The cells were counter-
stained with Hoechst 33258 to identify nuclei. Inmunohistochem-
istry with second antibody alone without primary antibody was
performed as a control,

Animal experiments

KSN/SLC nude mice were purchased from SLC. FGFR3-positive
cells were collected by magnetic sorting by MACS according to the
manufacturer’s recommendations (Miltenyi Biotec, Gladbach,
Germany). The following antibodies were used: PE-conjugated
anti-FGFR3 antibody (R&D) and anti-PE Microbeads (Miltenyi
Biotec). Cell inoculation was performed as reported -earlier
(Tanaka et al, 2009). Cells were mixed with a collagen gel, and
were inoculated subcutaneously in 5-week-old nude mice. Grafts
were excised and small portions of tumour (20 mg) were serially
inoculated into other nude mice. In addition, graft was excised and
trypsinised. Each number of cells was serially inoculated into other
mice. Grafts were fixed with 10% buffered formaldehyde and
stained with hematoxylin and eosin. All experimental procedures
were performed in compliance with the guiding principles for the
Care and Use of Animals described in the American Journal of
Physiology and with the Guidelines established by the Institute of
Laboratory Animal Sciences, Faculty of Medicine, Kagoshima
University. All efforts were made to minimise animal suffering, to
reduce the number of animals used, and to use possible
alternatives to in vivoe techniques,

RESULTS

Rhabdomyosarcoma cell lines include a small portion of
FGFR3-positive cells

To determine whether any of the established osteosarcoma and
rhabdomyosarcoma cell lines included small portions of undiffer-
entiated cell marker-positive cells, we performed flow cytometry.
We examined many markers of undifferentiated cell, such as side
population (SP), CD9, CD10, CD13, CD29, CD31, CD34, CD44,
CD117, CD133, FLT3, LNGFR, and FGFR3 (Caligaris-Cappio et al,
1985; Robinson et al, 1999; Erices ef al, 2000; Singh et al, 2003;
Kondo et al, 2004; Bobis ef al, 2006; Jones et al, 2006; Small, 2008).
We found that three rhabdomyosarcoma cell lines, KYM-1, RD,
and A204, each included a small proportion of FGFR3-positive
cells (1.6-2.6%) (Figure 1).

The malignancy of KYM-1 and RD cells in vivo depends to
a large extent on FGFR3-positive RICs

To determine whether the subset defined by FGFR3 was enriched
for RICs, we compared the abilities of FGFR3 + and FGFR3—
rhabdomyosarcoma cells to initiate tumour formation in vivo.
After 8W, all mice inoculated with 100 KYM-1 cells had formed
tumours. After 5W, in 5 out of 6 of 10 FGFR+ KYM-1 cells
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Figure | Rhabdomyosarcoma cell lines include a small portion of

FGFR3-positive cells. Cells of human KYM-1 rhabdomyosarcoma (A),
hurnan RD rhabdomyosarcoma (B), and human A204 rhabdomyosarcoma
(C) cell lines were labelled with anti-FGFR3 antibody and then analysed by
flow cytometry. These three human rhabdomyosarcoma cell fines included
small subpopulations of FGFR3-positive cells. These experiments were
repeated at least three times with similar results.

inoculated mice, there was tumour formation. In contrast, in 1 out
of 6 of 10 FGFR— KYM:1 cells inoculated mice, there was tumour
formation. Surprisingly, 2 out of 6 of only single FGFR3 + KYM-1
cell inoculated mice also exhibited tumour formation. (Figure 24).
Next, we examined RD cells. After 6W, in 2 out of 3 of 100 FGFR +
RD cells inoculated mice, there was tumour formation. In contrast,
in 0 out of 3 of 100 FGFR— RD cells inoculated mice, there was
tumour formation after 12W inoculation. In addition, in I out of 3
of 10 FGFR+ RD cells inoculated mice, there was tumour
formation. In contrast, in 0 out of 3 of 10 FGFR— RD cells
inoculated mice, there was tumour formation (Figure 2C). We next
performed serial transplantation. Small portions of formed tumour
(20 mg) were excised and then inoculated into other nude mice. Six
of six tumours formed by FGFR3+ cells inoculated into mice
formed tumour. In contrast, none of six tumours were formed by
FGFR~ KYM-1 cells. In addition, 3 out of 3 of 1000 cells prepared
from FGFR3+ tumour inoculated  mice. formed tumour
(Figure 2D). In contrast, 0 out of 3 of 1000 cells prepared from
FGFR~ tumour formed tumour (Figure 2D). Immunohistochemi-
cal examination revealed that tumours formed by FGFR3+ KYM-1
cell contained both FGFR3 4+ cells and FGFR3— cells in vivo
(Figure 2E).

RICs express undifferentiated cell markers

We next examined the expression of genes specific to skeletal
muscle development or embryonic stem cells. RNA from FGFR3 +
KYM-1 or FGFR3— KYM-1 cells was analysed by real-time PCR for
CD34, PAX3, PAX7, MYF5, NANOG, OCT4, SOX2, myosin heavy
chain 1 (MYHI), desmin, myogenin, and dystrophin. Real-time
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PCR revealed that expression of CD34 and PAX3 in FGFR3 + cells
was markedly increased by 7.23- and 2.47-fold, respectively. In
addition, the expression of PAX7, MYF5, NANOG, OCT3, and SOX2
was slightly increased by 1.15-, 1.13-, 1.35-, 1.56-, and 1.5-fold,
respectively. On the other hand, the expression of the differ-
entiated muscle markers MYHI, desmin, myogenin, and dystrophin
was decreased t0:0.85-, 0.91-, 0.81-, and 0.25-fold baseline levels,
respectively (Figure 3).

RICs can be maintained and enriched by bFGF

We then examined which factor(s) can maintain KYM-1 FGFR3 +
cells in serum-free culture media. We tested bFGF, EGF, TGF-f1,
CNTF, PDGF-AA, and PDGF-BB as candidates. These mitogens are
important factors in maintaining many types of progenitor cells
(Marmur et al, 1998; Kondo et al, 2004; Vallier and Pedersen,
2005). We first cultured unfractionated KYM-1 cells in serum-free
culture medium alone or with a mixture of bFGF, EGF, TGF-8,
CNTF, PDGF-AA, and PDGF-BB. KYM-1 cells could not grow
without growth factors. On the other hand, this growth factor
cocktail promoted KYM-1 cell growth., We next examined which
mitogen is essential for KYM-1 cell growth, by withdrawing each
mitogen individually. All culture conditions promoted KYM-1
growth but bFGF withdrawal (Figure 44). These findings suggested
that bFGF is essential for KYM-1 survival and proliferation. We
cultured 1000 KYM-1 cells in each condition and counted 20 days
after culture. Addition of EGF to serum-free culture medium with
bFGF appreciably stimulated KYM-1 cell growth approximately
three-fold, the same as neural progenitor cells (Figure 4B)
(Kitchens et al, 1994). On the other hand, when cultured in
serum-free culture medium with EGF alone, KYM-1 cells could not
survive. We then stained cells with anti-FGFR3 antibody and
analysed them by flow cytometry. When cultured in serum-free
medium with bFGF, FGFR3 4 cells were maintained, and their
proportion increased to 7.6-9.2%. In addition, when cultured in
both bFGE. and EGF, FGFR3 -+ cells increased to 4.2-6.0 % and
total cell number increased three-fold (Figure 4C). We next
examined which factor prevents expansion of FGFR3+ cells,
When KYM-1 cells were cultured with bEGF plus CNTF, CNTF
reduced the proportion of FGFR3 + cells by approximately 15%
(Figure 4D), although CNTF did not affect the total number of
KYM-1 cells. These findings suggest that RICs can be maintained
and increased in bFGF alone and that a combination of bFGF and
EGF can increase cell numbers. On the other hand, CNTF
decreased the proportion of RICs.

FGFR3 was upregulated in rhabdomyosarcomapatient
biopsy specimens

We next examined the expression of FGFR3 in patient biopsy
specimens. Real-time PCR revealed that FGFR3 was upregulated
in embyonal rhabdomyosarcoma patient biopsy specimens
(Figure 5A). Immunohistochemical examination revealed that a
portion of rhabdomyosarcoma cells expressed FGFR3. The
intensity of FGFR3 expression differed among rhabdomyosarcoma
cells (Figure 5B).

DISCUSSION

Although there is an expanding literature supporting the existence
of cancer stem cells, important caveats of these studies continue
to provoke debate. The current definitive test for a cancer stem
cell is the capacity to propagate tumours as xenografts in
immunocompromised mice (Clarke ef al, 2006). We have
described here the isolation of a highly tumourigenic subpopula-
tion of cells from human rhabdomyosarcoma cell lines in accord
with terminology. To our knowledge, this is the first isolation of
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Figure 2 The malignancy of rhabdomyosarcoma cells in vivo depends to a large extent on the FGFR3-positive cells. FGFR3-dependent cell sorting was
performed using immunomagnetic selection, with culture for one night to exclude dead cells by mechanical stress followed by inoculation of cells from either
population interdermally into nude mice. (A) Primary tumour formation by KYM-1, FGFR3—, or FGFR3 + cells. After 8W, all mice inoculated with 100
KYM-1 cells had formed tumours. After 5W, in 5 out of 6 of 10 FGFR+ KYM-| cells inoculated mice, there was tumour formation. In contrast, in | out of 6
of 10 FGFR— KYM-1 cells inoculated mice, there was tumour formation after 12W inoculation. Surprisingly, 2 out of 6 of only single FGFR3 4+ KYM-1 cell
inoculated mice also exhibited tumour formation. In contrast, 0 out of 6 of single KYM-1 FGFR cell inoculated mice formed tumour after 12W inoculation.
(B). Ten FGFR3-positive cells form tumour 8 weeks after inoculation. (€). Primary tumour formation by RD, FGFR3—, or FGFR3 + cells. After 6W, in 2 out
of 3 of 100 FGFR <+ RD cells inoculated mice, there was tumour formation. In contrast, in 0 out of 3 of 100 FGFR—~ RD cells inoculated mice, there was
tumour formation after 12W inoculation. In addition, in lout of 3 of 10 FGFR+ RD cells inoculated mice, there was tumour formation. In contrast, in 0 out
of 3 of 10 FGFR— RD cells inoculated mice, there was tumour formation after 12W inoculation. (D) Secondary tumour formation by FGFR3— or FGFR3 +
KYM-| cells. We next performed serial transplantation. Small portions of formed tumour (20 mg) were excised and then inoculated into other nude mice.
Six of six tumours formed by FGFR3 + KYM-1 cells inoculated into mice formed tumour. In contrast, none of six tumours formed by FGFR— KYM-1 cells
inoculated into mice formed tumour after 12W inoculation. In addition, 3 out of 3 of 1000 cells prepared from FGFR3 + tumour inoculated mice formed
tumour, In contrast, 0 out of 3 of 1000 cells prepared from FGFR— tumour inoculated mice formed tumour after 12W inoculation. (E) HE staining of
tumour formed by FGFR3 4+ KYM- | cells. Immunohistochemical examination revealed that tumour formed by FGFR3 + KYM-Icells contains both FGFR3 +
and FGFR3— cells (red: FGFR3, blue: Hoechst). * FGFR3— vs FGFR3 4 P<0.05, * * FGFR3— vs FGFR3+ P<001.

malignant progenitors from human rhabdomyosarcoma to be differences between them in tumourigenisity (data not shown).
described. We next examined CD133, which has been reported to be a
Initially, to identify candidate RICs, we used a side popula- cancer stem cell marker (Singh et al, 2003; Hermann et al, 2007;

tion method as reported earlier (Kondo et al, 2004; Setoguchi Ricci-Vitiani et al, 2007; Chearwae and Bright, 2008; Mizrak et al,
et al, 2004). We detected approximately 1-3% SP cells among 2008). KYM-1 cells also included a small proportion of CD133-
KYM-1 cells. We sorted SP and non-SP cells and then inoculated positive cells. We sorted CD133+ and CD133— cells and then
them into nude mice subcutaneously, but could not detect inoculated them into nude mice subcutaneously, but found no
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Figure 3 FGFR3-positive cells over-expressed undifferentiated cell genes. (A) As demonstrated by real-time PCR, FGFR3 + cells (RICs) over-express
several undifferentiated cell marker genes compared with FGFR3— cells (B). Real-time PCR revealed that FGFR3 + cells (RICs) exhibited downregulation of
several differentiated cell marker genes compared with FGFR3— cells. The comparative Ct (AACt) method was used to determine fold change in expression
using GAPDH or fil-microglobufin. Each sample was run minimally at three concentrations in triplicate. The experiment was triplicate with similar results.

differences between them in tumourigenisity (data not shown).
In addition, we were unable to identify subpopulations by other
undifferentiated cell markers. In our study, RICs were enriched
in rhabdomyosarcoma subpopulations defined by FGFR3 alone.
These findings suggest that sarcomas may differ from other
epithelial malignancies, including cancers of the breast, head and
neck, lung, pancreas, colon, and prostate (Al-Hajj. et al, 2003;
Collins et al, 2005; Fang et al, 2005; Kim et al, 2005; Dalerba et al,
2007; Li et al, 2007; Prince et al, 2007). It has been reported that
FGFR3 is expressed in human muscle from 11 weeks of gesta-
tion and is decreased in adult muscle (Sogos et al, 1998). Muscle
stem cells (muscle satellite cells) express FGFR3 whereas muscle-
derived fibroblasts do not (Sheehan and Allen, 1999). These
findings suggest that FGFR3 is expressed not only in RICs but also
in muscle stem cells, In addition toexhibiting aggressive
tumourigenisity, RICs expressed stem cell markers intensely with
fewer markers of differentiation. These findings suggest that RICs
have the characteristics of undifferentiated cells. In particular,
RICs upregulated CD34 and that downregulated dystrophin. These
genes are muscle cell linage specific. These findings suggest that
RICs are already to some extent committed to the muscle cell
linage from more undifferentiated stages such as mesenchymal
stem cells,

Rhabdomyosarcoma is composed of embryonal and alveolar
subtypes. KYM-1 and RD is established from embryonal rhabdo-
myosarcoma (McAllister et al, 1969; Sekiguchi et al, 1985).
The subtype of A204 was not described in article of cell line
establishment (Giard et al, 1973). Embryonal rhabdomyosarcoma
contain primitive undifferentiated round cells (Gallego Melcon and
Sanchez de Toledo Codina, 2007). Consistent with these findings,
we showed that embryonal rhabdomyosarcoma cell lines contain
undifferentiated RICs. In addition, real-time PCR revealed that the
amount of FGFR mRNA in the embryonal rhabdomyosarcoma
biopsy sample was more than that in the normal skeletal muscle or
alveolar rhabdomyosarcoma sample.

Mammals have four FGFR tyrosine kinase genes (FGFR1-4)
(Bswarakumar ef al, 2005). FGFRs are composed of an extracellular
ligand-binding domain, a transmembrane domain, and a split
cytoplasmic tyrosine kinase domain. In this study, we examined
only FGFR3. Whether related members of the FGFR family are
markers of RICs requires further study, We found that bFGF could
maintain and expand RICs. It has been reported that bFGF
promotes proliferation and inhibits differentiation of muscle
satellite cells (Guthridge et al, 1992; Lefaucheur and Sebille,
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1995). The bFGF binds to FGFRI, FGFR2, FGFR3, and FGFR4.
The binding of bFGF to FGFR3 activate FGF signalling path-
way (Ornitz and Leder, 1992; Maric et al, 2007). These data sug-
gest that FGFR3 is not only a cell surface marker for RICs but
also mediates signals important for RICs maintenance and
proliferation. In addition, we found that CNTF reduced the
proportion of RICs. There is increasing evidence that chemother-
apy and radiation can each efficiently eradicate the majority of
malignant cells within neoplastic lesions. However, these regimens
frequently fail to eliminate a minor subpopulation of resistant
cancer stem cells (Trumpp and Wiestler, 2008). Inhibition of
FGFR3 signalling or activation of CNTF signalling might thus be a
good candidate for anti-cancer stem cell therapy for rhabdomyo-
sarcoma.

Recent studies have suggested that FGFR3 has a significant
function in the pathogenesis and progression of some malignan-
cies including thyroid carcinoma, bladder carcinoma, multiple
myeloma, and peripheral T-cell lymphoma (Cappellen et al, 1999;
Onose et al, 1999; Kastrinakis ef al, 2000; Yagasaki et al, 2001;
Wolff et al, 2005). Whether FGFR3 is a marker of TICs in these
malignancies requires further study.

In our study, 33% of single KYM-1 RICs formed tumours. This
TIC frequency is somewhat higher than previously reported for
other TICs (Singh et al, 2003; Hermann ¢t al, 2007; Ricci-Vitiani
et al, 2007; Mizrak et al, 2008). These more strong tumourigenic
RICs may be more useful than other TICs for examining the
molecular mechanisms of tumour initiation, proliferation, anti-
apoptotic capacity, and metastasis. Although RICs are enriched in
the rhabdomyosarcoma subpopulations defined by FGFR3, not
every FGFR3 + cell is an RIC, as 67% of purified single RICs did
not form tumours. Quintana et al reported that frequency of
tumourigenisity in mice depends to a large extent on the status of
immunodeficiency (Quintana et al, 2008). When melanoma cells
were transplanted into NOD/SCID mice, 1 in 111000 cells formed
tumour. When transplanted into highly immunocompromised
NOD/SCID interleukin-2 receptor y chain null mice, 27% of single
cells formed tumours. The tumourigenisity of RICs might vary
depending on the experimental conditions used, such as the tissue
site of xenotransplantation, or  differences among recipient
immunodeficient mice.

In summary, we identified FGFR3-positive RICs in human
rhabdomyosarcoma cell lines. RICs were more strongly tumouri-
genic than other previously reported TICs. Our easy method of
preparing RICs may prove useful for further exploration of
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Figure 4 Increase in proportion of KYM-1 FGFR3-positive cells with bFGF. (A) KYM-1- cells were culiured in serum-free medium with or without growth
factor cocktails, Cells were cultured for 3 weeks and then photographed. When cultured without bFGF, KYM-1. cells did not increase in proportion. (B)
1000 KYM-1 cells were cuttured for 3 weeks in serum-free medium with bFGF, EGF, or both or neither and were then photographed. When cultured with
bEGF, KYM-1 cells were maintained. Cell number was increased with bFGF plus EGF. (C) Proportion of FGFR3 + cells was analysed by flow cytometry.
KYM-1 cells were cultured in FCS, bFGF, or bFGF plus EGF for 3 weeks. The proportion of FGFR3-positive RICs was increased by bFGF. When cultured with
bFGF plus EGF, total number of cells was increased three-fold compared with bFGF alone. All experiments were repeated at least three times with similar
results. (D) Proportion of FGFR3 + cells was analysed by flow cytometry. KYM-1 cells were cultured in FCS, bFGF, of bFGF plus CNTF for 3 weeks, When
cuttured with bFGF plus CNTF, the proportion of FGFR3 4 cells was markedly decreased compared with bFGF alone or FCS. All experiments were
repeated at least three times with similar results.

© 2009 Cancer Research UK British Journal of Cancer (2009) 101(12), 2030-2037
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Figure 5 FGFR3 is over-expressed in rhabdomyosarcoma patient specimens. (A) We obtained two biopsy specimens of human rhabdomyosarcoma
from primary lesions. Pathological examination revealed that patient | had embryonal rhabdomyosarcoma and patient 2 had alveolar rhabdomyosarcoma.
Real-time PCR revealed that the amount of FGFR mRNA in the embryonal rhabdomyosarcoma biopsy sample was more than that in the normal skeletal
muscle or alveolar rhabdomyosarcoma sample. (B) Immunohistochemistry revealed that FGFR3 was expressed in a portion of rhabdomyosarcoma patient |

biopsy specimens. Arrows indicate FGFR3-negative cells. Immunohistochemical examination showed that | 1.2+ 2.8% cells were positive for FGFR3.

pathogenesis of rhabdomyosarcoma and molecular characterisa-
tion of cancer stem cells.
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The superficial zone (SZ) of articular cartilage is critical in main-
taining tissue function and homeostasis and represents the site of
the earliest changes in osteoarthritis. Mechanisms that regulate
the unique phenotype of SZ chondrocytes and maintain SZ integ-
tity are unknowin. We recently demonstrated that expression of
the chromatin protein high mobility group box (HMGB) protein 2
is restricted to the SZ in articular cartilage suggesting a transcrip-
tional regulation involving HMGB2 in SZ. Here, we show that an
interaction between HMGB2 and the Wnt/g-catenin pathway reg-
ulates the maintenance of the SZ. We found that the Wnt/g-catenin
pathway is active specifically in the SZ in normal mouse knee joints
and colocalizes with HMGB2. Both Wnt signaling and HMGB2
expression decrease with aging in mouse joints. Our molecular
studies show that HMGB2 enhances the binding of Lef-1 to its
target sequence and potentiates transcriptional activation of the
Lef-1-B-catenin complex. The HMG domain within HMGB2 is crucial
for interaction with Lef-1, suggesting that both HMGB2 and
HMGB1 may be involved in this function. Furthermore, conditional
deletion of g-catenin in cultured mouse chondrocytes induced
apoptosis. These findings define a pathway where protein inter-
actions of HMGB2 and Lef-1 enhance Wnt signaling and promote
SZ chondrocyte survival. Loss of the HMGB2-Wnt signaling inter-
action is a new mechanism in aging-related cartilage pathology.

aging | osteoarthritis | apoptosis | superficial zone

Articular cartilage is a tissue that provides biomechanical prop-
erties that allow near frictionless joint movement and disper-
sion of mechanical loads. Cartilage is composed of a single cell
lineage but differences in the organization, phenotype and function
of cells in the various layers of cartilage have been recognized (1-4).
The superficial zone (SZ) is the most unique. SZ cells produce
lubricin, also termed proteoglycan-4 (PRG4) or superficial zone
protein (SZP), an important joint lubricant (5-7), and are more
responsive to stimulation by catabolic cytokines such as IL-1 (8).
Recent studies also'suggest that the SZ contains cells that express
mesenchymal stem cell' markers (9-11).

Articular cartilage is among the tissues that undergo profound
aging-related changes and aging represents the major risk factor for
osteoarthritis (OA), the most prevalent joint disease (12)."Aging-
related changes in cartilage include reduced cellularity, increased
apoptosis and altered cellular responses to growth factors, cytokines
and mechanical stress (13-15). Cartilage changes in aging and OA
begin in the SZ and once the SZ is disrupted this is followed by
progressive erosion of the remaining cartilage layers (16). -

To address mechanisms that maintain the unique phenotype of
SZ cells we performed gene expression analyses and observed that
expression of the chromatin protein HMGB?2 is restricted to the SZ
(17). Joint aging in humans and mice leads to loss of HMGB2
expression and this is correlated with the onset of OA-like changes.
Mice deficient in Fimgb2 develop early onset and more severe OA,
and this is associated with' a reduction in cartilage cellularity
attributable to increased cell death (17).

Wnt proteins are secreted factots that regulate cell proliferation
and differentiation during early stages of chondrogenesis (18, 19).

www.pnas.org/cgi/doi/10.1073/pnas.0904414106

Overexpression of $-catenin in prechondrogenic cells inhibits overt
chondrocytic differentiation (20) and overexpression in chick limb
buds  accelerates  hypertrophic differentiation (21).. In contrast,
inhibition of B-catenin signaling by overexpression of Frzb-1, dom-
inant negative Wit receptors, results'in delayed maturation (22).
Homozygous deletion:of: B-catenin is.embryonic lethal but condi-
tional deletion in cartilage was associated with delayed chondrocyte
hypertrophy and reduced chondrocyte proliferation in growth
plates (23). Conditional mutant mice deficient in’ Wnt/B-catenin
signaling displayed a defective flat cell layer normally abutting the
synovial cavity and markedly reduced levels of PRG4/SZP (24).
This supports the importance of Wnt signaling in skeletal devel-
opment and early stages of chondrocyte differentiation.

Recent studies indicate that Wnt signaling has a role in adult
articular cartilage. Increased Wnt signaling due to loss of sSFRPS
function represents a risk factor for OA (25). Similarly, overexpres-
sion of B-catenin in chondrocytes stimulates the expression of
matrix degradation enzymes (26). However, Wnt signaling also
contributes to differentiation and maintenance of articular cartilage
chondrocytes. Inhibition of B-catenin signaling by transgenic over-
expression of its intracellular antagonist ICAT results in progressive
SZ degradation and development of OA (27). These studies suggest
that the precise temporal and spatial activation of Wnt signaling in
articular cartilage determines its homeostatic versus pathogenic
effects.

Taken together, these reports on Wnt/B-catenin and our obser-
vations on HMGB?2 suggest possible interactions in the mainte-
nance of the SZ in adult cartilage. Here, we define a molecular
mechanism by which HMGB2 and S-catenin regulate cartilage SZ.
integrity.

Results

3-Catenin Signaling Is Activated in the SZ of Articular Cartilage and
Decreases with Aging. S-catenin is an important regulator of chon-
drocyte maturation in growth plate and its expression and function
during skeletal development have been characterized (19, 21, 28).
To. analyze B-catenin in adult cartilage we used the TOPGAL
transgenic mouse model where the B-galactosidase gene is under
the control of a LEF/TCF and B-catenin inducible promoter and
allows direct detection of cells and tissues with active Wnt signaling
(29). Wnt/g-catenin signaling has been reported to be active at early
stages during joint formation and to remain active and prominent
at later stages in small and large joints (24). In 1-month-old
TOPGAL mice, we detected B-galactosidase activity in all zones of
articular cartilage. At 3 months with joint maturation it became
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Fig. 1. Active Wnt signaling and correlation with HMGB2 expression in the
articular cartilage SZ. (A) Inmunohistochemistry was performed with g-ga-
lactosidase antibody on knee joint sections from 1 and 3-month-old TOPGAL
mice. Between 1 and 3 months of age the B-galactosidase positive cells
become more restricted to the superficial cell layers in articular cartilage. (B)
B-galactosidase (B-Gal) positive cells are found in articular cartilage and
meniscus, whereas synovium is negative. Safranin O staining of the adjacent
section. AC, articular cartilage; M, meniscus; S, synovium. X100. (C) HMGB2
and p-galactosidase expression by immunofluorescence assay. Colocalization
of HMGB2 and B-galactosidase (B-Gal) positive cells is found in the SZ in
articular cartilage at 3 months of age (arrowheads). Hoechst dye 33258 was
used to stain nuclei. (Magnification: <400.)

more restricted to the cartilage surface (Fig. 14). At this stage,
B-galactosidase protein was expressed in the SZ of articular carti-
lage in meniscus but not in synovium (Fig. 1B). Because this pattern
is similar to that of HMGB2 (17), we performed double immuno-
fluorescence assay, and verified that most SZ cells express both
HMGB?2 and -galactosidase (Fig. 1C).

Articular cartilage in C57BL/6] mice undergoes aging-related
changes that are similar to osteoarthritis joint pathology (30), and
this was also observed in TOPGAL mice on CD1 background (Fig.
2). At 6 months of age articular cartilage had normal appearance,
and HMGB2 and p-galactosidase positive cells were present in the
superficial cell layers. At 12 months of age there was a reduction in
cartilage thickness and cellularity and surface irregularities were
prominent in the central weight-bearing areas of the tibial plateau.
At 12 months HMGB?2 and p-galactosidase were both absent in the
SZ in the weight bearing areas, and HMGB2 was completely absent
in all regions of articular cartilage by 18 months (Fig. 2). In contrast,
B-galactosidase was enhanced in the mid and deep zone, in calcified
cartilage, subchondral bone and in osteophytes at 18 months. These
findings demonstrate a correlated aging-related loss of HMGB2
and p-catenin signaling in the SZ of articular cartilage and this is
associated with OA-like pathology.

Functional Interactions of B-Catenin and HMGB2. The in vivo colo-
calization of HMGB2 and Wnt/B-catenin activity (Fig. 1) and the
correlation of their loss in OA-like pathology suggest interaction of
HMGB2 and Wnt/B-catenin in the SZ. To study this in detail, we
performed luciferase-reporter assays. Using cyclin D1 promoter
(—962CD1) (31), p-catenin transfection caused the expected in-
crease in luciferase activity in both SW1353 chondrosarcoma cells

16818 | www.pnas.org/cgi/doi/10.1073/pnas.0904414106

Fig. 2. HMGB2 and p-galactosidase expression during aging in TOPGAL
mice. Safranin-O stained sections of joints from TOPGAL mice show normal
cartilage at 6 months, reduced thickness and cellularity at 12 and 18 months.
HMGB?2 and g-galactosidase (3-Gal) are detected by immunohistochemistry at
6 monthsin the articular cartilage surface. At 12 months both are absent in the
weight bearing areas, and HMGB2 is completely absent in the articular carti-
lage by 18 months. In contrast, at 18 months -galactosidase becomes detect-
ableinall other zones of articular cartilage except for the SZ (arrowheads). AC,
articular cartilage; M, meniscus; OP, osteophyte. X100.

and 293T kidney epithelial cells (Fig. 3 4 and B). Transfection of
HMGB?2 (32) did not change luciferase activity but cotransfection
of HMGB?2 and B-catenin resulted in synergistic enhancement in
SW1353 chondrosarcoma cells (Fig. 34); this synergy was not
observed in 293T kidney epithelial cells (Fig. 3B). Similar differ-
ences between cell types were obtained using the TOPflash pro-
moter, which contains multiple repeats of the p-catenin-TCF/LEF
consensus sequences (33) (Fig. 3 C and D). The synergistic activity
of HMGB2 and p-catenin was also seen in chondrogenic ATDCS
cells. Transfection of the FOPflash promoter with a mutated Lef-1
binding site showed no activity (Fig. 3E) but the activity of
TOPflash promoter was enhanced by HMGB2 in a dose-dependent
manner under B-catenin transfection (Fig. 3F). These experiments
demonstrate synergistic interaction of p-catenin and HMGB2 in
enhancing Lef-1 responsive promoters, specifically in chondrogenic
cell types.

Physical Interactions of HMGB2 and Lef-1. To examine molecular
interactions between B-catenin, Lef-1 and HMGB2, GST-pull
down assays were performed using bacterially expressed GST-
HMGB?2, B-catenin and Lef-1 and in vitro-translated HMGB2,
B catenin and Lef 1 (34). We observed that in vitro tranglated
HMGB?2 bound GST-Lef-1, but not GST-B-catenin (Fig. 44). The
results from the reverse experiment showed that in vitro-translated
Lef-1 interacted with GST-HMGB2 and GST-pB-catenin (Fig. 4B).
When in vitro-translated p-catenin protein was incubated with
GST-HMGB2 and GST-Lef-1, only GST-Lef-1 but not GST-
HMGB2 was pulled down (Fig. S1). This indicates a specific
interaction between HMGB2 and Lef-1, leading to enhanced
transcriptional activation of the Lef-1-B-catenin complex.

Interaction Domains of HMGB2 and Lef-1. To define the Lef-1
interaction domain within HMGB?2, in vitro GST pull-down assays
were performed using GST-Lef-1 and HMGB2 deletion mutants
(A-box, B-box, acidic tail) as shown in Fig. S24. The results
demonstrated that none of these 3 HMGB2 mutants interacts with
Lef-1 (Fig. S2B). Then we constructed A-box and B-box domains
with linker regions and found that both bind Lef-1 (Fig. S2B). Delta
box, which contains linker and acidic tail but not A-box or B-box,

Taniguchi et al.
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Fig.3. Synergy of HMGB2 and p-catenin. HMGB2 and
B-catenin (BCA) were cotransfected with the cyclin D1
o (CD1) (A and B) and TOPflash reporter genes (C-F) in
e SW1353 cells (A and C) and 293T celis (8 and D), and
luciferase assay was performed after 24 h. In SW1353
cells, HMGB2 enhances luciferase activity when co-
transfected with g-catenin (A and (), whereas this
synergistic effectis notseen in 2937 cells (8 and D). This
synergistic effect is also found with TOPflash in a dose-
PN dependent manner (F), but not with FOPflash reporter
genes in ATDC5 cells (£) (*, P < 0.05).

did not interact with Lef-1. These results indicate that A-box or
B-box together with the linker region are required for HMGB2
binding to Lef-1.

Next we determined the domains in Lef-1 that are required for
interaction with HMGB2. GST pull-down assays were performed
with GST-HMGB?2 and Lef-1 deletion mutant plasmids (FL,
AN113, AN295, AN113-AC102) (35). The results showed:.that
GST-HMGB?2 could pull down Lef-1 FL (Fig. 4B), Lef-1 AN113
and Lef-1 AN295 but not Lef-1 AN113-AC102 (Fig. S2C), indicating
that the HMG domain in Lef-1 is responsible for the physical
interaction with HMGB2.

DNA Binding Interactions of HMGB2 and Lef-1. To understand how
the HMGB2-Lef-1 interaction contributes to Wnt/B-catenin activ-
ity, we examined whether the interaction affects Lef-1 DNA
binding. Gel shift assays were performed to determine binding
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Fig. 4. GST-pull down assay for B-catenin (BCA), Lef-1 and HMGB2. (A) In
vitro-translated HMGB2 interacts with GST-Lef-1, but not with GST-8-catenin.
(B) In vitro-translated Lef-1 interacts with both GST-B-catenin and GST-
HMGB2. (C) DNA binding interactions of HMGB2 and Lef-1 by EMSA, Using
nuclear extracts of SW1353 cells transfected with Lef-1, binding of Lef-1 with
both cyclin D1 {CD1) and TOP probes was detected. This was enhanced by the
addition of HMGB2 protein (1 kg). In contrast, nobinding was detected on the
FOP probe. N.S., nonspecific. .
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specificity and interactions of HMGB2 and Lef-1. We prepared
oligonucleotide probes with Lef-1 binding sites (cyclin D1 and
TOP) and a probe with a mutated Lef-1 binding site (FOP) as
described in ref. 36. Using nuclear extracts of Lef-1 transfected
SW1353 chondrosarcoma cells, we detected binding of Lef-1 to
both cyclin D1 and TOP probes, and this binding was enhanced by
the addition of purified HMGB?2 (Fig. 4C). In contrast, no binding
was detected on the FOP probe. HMGB2 did not interact with
cyclin D1 and TOP probes without overexpressed Lef-1.

c-Jun is a target gene for the B-catenin-Tcf/Lef transcriptional
complex (37), and Wnt signaling induces c¢-Jun expression in
chondrocytes (38). We also detected binding of Lef-1 to c¢-Jun
probes in SW1353 cells in the presence of Lef-1, and this binding
was potentiated by the addition of HMGB?2 protein (Fig. S3). These
results suggest that interaction between HMGB2 and Lef-1 en-
hances DNA binding affinity of Lef-1, to enhance Wnt/B-catenin
signaling.

HMGB2 and Wnt/B-Catenin Target Gene Expression. To examine
whether the interaction between HMGB2 and Lef-1 potentiates
Wnt/B-catenin signaling activity, we examined Wnt/B-catenin sig-
naling in WT and Hmgb2~/~ chondrocytes using SuperTOPflash,
which contains 8 TCF/LEF binding sites:and the corresponding
negative control vector SuperFOPflash (39). We did not detect a
difference in luciferase activity between two groups when the cells
were unstimulated; however, in response to stimulation with re-
combinant Wnt3a luciferase. activity was increased. Importantly,
this activation was significantly lower in Hmgh2~/~ chondrocytes
than in WT chondrocytes (Fig. 54).

To further examine this, we analyzed levels of Wnt/8-catenin
targets genes. HMGB2 was reduced by siRNA in immature murine
articular chondrocytes, which strongly express endogenous
HMGB?2 (17) (Fig. 5B). Quantitative PCR shows that HMGB2
siRNA reduced cyclin D1 mRNA expression. Additional Wnt/3-
catenin target genes, Gli3 and Frizzled 2 (Fzd2), which are ex-
pressed in articular cartilage (26, 40), were also reduced by HMGB2
siRNA, whereas PRG4/SZP that is expressed in murine Himgh2~/~
chondrocytes and WT chondrocytes was unaffected (17) (Fig. 5C).

To verify that HMGB?2 does bind to targets of Lefl/g-catenin
genes, we used chromatin immunoprecipitation assay. We observed
that HMGB2 can facilitate binding affinity of Lef-1 to the human
Gli3 enhancer (R2) (Fig. 5 D and E); which: shows strong activity
among highly conserved noncoding DNA regions that contained
Tcf/Lef binding sequence within human Gli3 locus (R1-4) (41).
These results further support our notion that HMGB2 potentiates
Wnt/B-catenin activity.
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Loss of p-Catenin Signaling Results in Chondrocyte Apoptosis. To
further test the functional significance of B-catenin signaling we
conditionally inactivated B-catenin. Chondrocytes were isolated
from knee and hip cartilage of B-catenin floxed mice (Ctnnb1flo¥
flox), infected with adenovirus-GFP-Cre and cultured for 72 h.
Immunofluorescence analysis of GFP demonstrated effective ad-
enoviral transduction (Fig. 64). B-catenin protein levels were
reduced with increasing “amounts of adenovirus-GFP-Cre in
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Ctnnbiflo¥flox chondrocytes (Fig. 6B). Next, chondrocytes from
Ctnnblfle¥flox mice with or without adenovirus-GFP-Cre infection
were analyzed by flow cytometry for viability and the apoptosis
marker Annexin V. Upon adenovirus-GFP-Cre infection there was
a significant increase in apoptotic cells (Fig. 6C) without addition
of apoptosis inducers. When the chondrocytes were stimulated with
anti-Fas antibody CD95 and proteasome inhibitor MG132 (17), a
higher percentage of apoptotic chondrocytes was found after

1 G gl el use !GAPDH

No CD95+MG132

Fig. 6. Conditional inactivation of g-catenin and
chondrocyte survival, pCAfloflox chondrocytes were in-
fected with GFP-Cre adenovirus'and cultured for 72 h.
(A) Immunofiuorescence analysis shows GFP expres-
sion in infected cells. (B) Western blot shows reduction
in B-catenin protein levels with increasing amounts of
GFP-Cre adenovirus (Ad-GFP-Cre). (Cand D) FACS anal-
ysis for annexin V and propidium iodide (Pl) staining.
GFP-Cre adenovirus infected cultures showed a higher

With CD95+MG 132

<, 231 ; . percentage of apoptotic chondrocytes compared with
T1e® 10t 202 103 104 “10® 10’ 0% 10° i noninfected (Con) cells in the absence or presence of
Annexin V Annexin V anti-Fas antibody CD95 (1 xg/mlb) and MG132 (20 uM).
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adenovirus-GFP-Cre infection compared with control (Fig. 6D).
Thus, B-catenin signaling promotes chondrocyte survival under
basal conditions and in response to apoptosis inducers.

Discussion

Understanding mechanisms that control articular cartilage forma-
tion and maintenance is of significance to cartilage tissue engineer-
ing and the prevention and treatment of diseases affecting articular
cartilage. In regards to cartilage tissue engineering a major unmet
challenge is the generation of a tissue that recapitulates the zonal
organization of normal cartilage. In regards to joint diseases, the
major current deficit is in the lack of therapies for OA, the most
prevalent form of arthritis, The initial lesions in OA are at the
articular surface and once the SZ of cartilage is disrupted, the
chronic cartilage remodeling and degradation process is initiated.

To begin elucidating molecular mechanisms that govern the SZ
phenotype we showed that the chromatin protein HMGB?2 is
uniquely expressed in the SZ (17). Aging in humans and mice is
associated with a loss of HMGB?2 expression, which correlates with
OA-like cartilage changes and mice with Hmgb2 deletion show early
onset and more severe OA (17). This observation presented a
starting point to further characterize the signaling network in which
HMGB2 operates to control SZ cell survival and function.

The Wat/B-catenin pathway presented a candidate based on a
series of recent observations. Most notably, loss of B-catenin
signaling leads to OA-like pathology (27). The first observations in
this study addressed pB-catenin activation patterns in articular
cartilage. Wnt/B-catenin signaling is active at multiple embryonic
stages of joint formation (24). Postnatally, we observed remarkable
similarities between localization of HMGB2 and B-catenin.
HMGB2 expression and B-catenin activation were found in all
zones of articular cartilage in newborn mice. With joint maturation
both became more restricted to the SZ and both showed an
aging-related loss in the SZ. Although HMGB2 eventually was
completely absent, B-catenin was activated in the other cartilage
zones.

To determine molecular mechanisms related to these similarities
in expression patterns we analyzed functional and physical inter-
actions. Our EMSA data showed that HMGB2 does not directly
bind to regulatory DNA elements but it augments DNA binding of
Lef-1. HMGB?2 does not alter the electrophoretic mobility of Lef-1
complexed with oligonucleotides, suggesting that HMGB2 dissoci-
ates from the complex after having provided its architectural
activity (42). Similar results were observed for HMGBI, which
increased the affinity of p53 complexes with oligonucleotides (43).

Transfection of HMGB2 did not activate B-catenin responsive
promoters but cotransfection of HMGB2-and B-catenin did result
in synergistic activation of Lef-1 responsive promoters, This synergy
was seen in two chondrogenic cell types, including SW1353 chon-
drosarcoma cells and ATDCS prechondrogenic cells but not in
lineages such as kidney epithelial cells, suggesting other lineage
specific factors mediate this interaction or the difference in both
HMGB?2 and HMGBI1 between chondrogenic cells and 293T cells
is responsible (Fig. S4).

Physical interaction studies showed there is no direct binding of
HMGB?2 and B-catenin, However, HMGB2 binds to Lef-1 and the
complex that contains HMGB2, B-catenin, Lef-1 and probably
other components leads to enhanced expression of genes contain-
ing Lef-1 binding sites. Mapping of interaction domains revealed
that the HMG domain in Lef-1 is required for HMGB2 binding.
The HMG domain is also responsible for interaction with Notch
intracellular domain (44). Notch1 is expressed in developing artic-
ular cartilage surface (45) in a pattern similar to HMGB2 (17),
indicating that Notch might be involved in Lef1-HMGB2 complex
formation in temporally and spatially specific patterns during
cartilage formation. HMGB2 has been reported to interact with
steroid receptors (46), p53 and p73 (47). Stros et al. reported that
B-box within human HMGB1 required the TKKKFKD motif that
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is included in the linker for interaction with p73, whereas A-box
itself can bind p73 (47). It has also been shown that A-box, which
contains the linker region within HMGBI, can interact with p53
(48). Our results demonstrate that the A-box or B-box within
HMGB2 contribute to binding with Lef-1 only when the linker is
present, because A-box, B-box and Abox deletion mutants did not
bind with Lef-1. HMGBI can also interact with Lef-1 (Fig. S5).
Considering that HMGBI is ubiquitously expressed in the nuclei
throughout normal articular cartilage (Fig. S6), we cannot exclude
the possibility that HMGB1 and HMGB2 may function coopera-
tively as coactivators for Wnt/B-catenin signaling in the SZ (17).

The findings on interactions between HMGB2 and the Wnt
signaling pathway are similar to a report demonstrating that
HMG-17 was responsive to Wnt/B-catenin signaling. HMG-17
forms a chromatin complex with PITX2 to repress PITX2 tran-
scriptional activity. This complex is inactive and switched to an
active transcriptional complex through the interaction of B-catenin
with PITX2 (49).

To determine functional consequences of the HMGB2/Lef-1
interaction in a cellular context, we analyzed cell survival and
expression of representative Lef-1 target genes. The conditional
deletion of B-catenin by Cre adenovirus infection of chondrocytes
from pB-catenin floxed mice increased basal and in vitro induced
apoptosis. This observation is consistent with our earlier findings
that Hmgb2 deficient cells are more susceptible to CD95/Fas
mediated apoptosis (17). Inhibition of Wnt proteins promotes
programmed cell death in different types of cancer cells (50, 51). In
human OA cartilage, FrzB-2 is highly expressed and is associated
with chondrocyte apoptosis (52). In Col2al-ICAT-transgenic mice
in which B-catenin signaling is selectively blocked in chondrocytes,
apoptosis is increased (27).

Our results also show that promoters with Lef-1 binding sites
were less responsive to Wnt3a treatment in Hingb2~/~ chondrocytes
compared with WT chondrocytes. Then we analyzed cyclin D1,
Gli3 and Fzd2, three representative and well characterized Lef-1
target genes in cartilage (26, 40, 53). The expression levels of these
genes were reduced by HMGB?2 siRNA in chondrocytes. Thus, it is
possible that reduction of these three genes at least in part explains
the increased apoptosis seen in both the Hrgh2 deficient mice (17)
and in chondrocytes with deficient B-catenin (27).

In conclusion, this study demonstrates similar expression and
activation patterns of HMGB2 and B-catenin in articular cartilage
and that a loss of these pathways in the SZ of articular cartilage may
lead to altered gene expression, cell death and OA-like changes.

Materials and Methods

Mice. The S-catenin floxed mice (8-catenin™¥flox) with loxP sites in introns 1 and
6 of the p-catenin gene (6.129-CtnnbTtmKem/Knwl line) and TOPGAL mice
(Tg(Fos-lacZ)34Efu/} line) (29) were purchased from the Jackson Laboratory. Mice
were used according to protocols approved by the Institutional Animal Care and
Use Committee at The Scripps Research Institute.

Plasmid Construction. The HMGB2 deletion constructs were prepared by PCR
amplification of full-length murine HMGB2 cDNA and cloned into pcDNA3-flag
vector after the mapping of A-box and B-box within human HMGB2 (54), pGEX-
HMGB2 and pGEX-HMGB 1 were constructed by subcloning of miurine HMGB2 or
human HMGB1 into pGEX (Promegay), respectively. pGEX--catenin was provided
by X. He (Harvard Medical School, Boston) and pGEX-Lef-1 by M.R. Stallcup
(University of Southern California, Los Angeles).

GST Pull-Down Assay. The wild-type and deletion mutants of HMGB2 and Lef-1
were invitro transcribedftransiated withthe TNT reticulocyte lysate kit (Promega)
in the presence of [¥*Simethionine. GST-null, GST-HMGB2, GST-Lef-1, or GST-5-
catenin proteins were produced in £ coli and purified, and then incubated
overnight at 4 °C rotating with the 3%S-met-labeled proteins in PC100-+38ME
buffer (55). After extensive washes, we added SDS loading buffer to the beads,
boiled them, and separated the supernatant on SDS/PAGE gels. As a positive
control, the amount of 3S-met-labeled protein foaded was 20% of the input. The
gels were dried and then exposed to X-ray film.
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Electrophoretic Mohility-Shift Assay (EMSA). Preparation of DNA for EMSA with
32p-|abeled duplex oligonucleotide probes for CD1, CD1TOP and CO1FOP was
described earlier (36). We also generated synthetic duplex oligonucleotides en-
compassing regions evolutionarily conserved in the c-Jun promoter (37). The
binding reaction contained 40,000 cpm of 32P-labeled DNA that was incubated
with nuclear extracts from SW1353 cells with or without transfection of HA-
tagged Lef-1 expression vector (gift from P.K. Vogt, The Scripps Research insti-
tute) in the presence of purified calf thymus HMGB2 protein (Shino-Test), fol-
lowing Gel Shift Assay Systerns Protocol (Promega). DNA-protein complexes were
electrophoresed in 6% DNA retardation gel (Invitrogen) and visualized by auto-
radiography.

Quantitative PCR. Total RNA was extracted and oligo(dT)-primed ¢cDNA was
prepared from 500 ng of total RNA by using SuperScript Ul (Invitrogen). The
resuiting cDNAs were analyzed by using the SYBR green system for quantitative
analysis of specific transcripts as described in ref. 56. All mRNA expression data
were normalized to GAPDH expression in the same sample. The primers used in
real-time PCR are listed in S/ Text. '

Apoptosis Induction and Analysis in Vitro. Chondrocytes were prepared from
5-day-old B-catenin floxed mice (B-cateninfo¥1X) as described in ref. 57. The cells
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were plated in 6-well plates at semiconfluence, infected with adenovirus express-
ing both Crerecombinase and green fluorescent protein (GFP) (Adv-Cre-GFP) and
cultured for 72 h. We used an E1/E3-deleted, replication-incompetent, serotype
S adenovirus-expressing Cre recombinase and GFP under control of the cytomeg-
alovirus (CMV) promoter. Medium was changed to DMEM/F12 with 0.5% FBS and
chondrocytes were stimulated with NA/LE hamster anti-mouse CD95 antibody
(BD PharMingen) and proteasome inhibitor MG132 (Sigma) for 12 h, which
induces apoptosis in articular chondrocytes (58). Cells were incubated with FITC-
labeled annexin V (BD PharMingen) or propidium iodide (Sigma) and analyzed on
a BD FACSCalibur as described in ref. 17.

Statistical Analysis. Results are expressed as mean = standard deviation,. Statis-
tical comparison between genotypes or treatment groups was performed with a
two-tailed Student’s t test. P values <0.05 were considered significant.
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Intraocular expression and release of high-mobility
group box 1 protein in retinal detachment

Noboru Arimura'?, Yuya Ki-i'?, Teruto Hashiguchi?, Ko-ichi Kawahara?, Kamal K Biswas?, Makoto Nakamura®,
Yasushi Sonoda’, Keita Yamakiri', Akiko Okubo', Taiji Sakamoto' and lkuro Maruyama?

High-mobility group box 1 (HMGB1) protein is a multifunctional protein, which is mainly present in the nucleus and is
released extracellularly by dying cells and/or activated immune cells. Although extracellular HMGB1 is thought to be a
typical danger signal of tissue damage and is implicated in diverse diseases, its relevance to ocular diseases is mostly
unknown. To determine whether HMGB1 contributes to the pathogenesis of retinal detachment (RD), which involves
photoreceptor degeneration, we investigated the expression and release of HMGB1 both in a retinal cell death induced
by excessive oxidative stress in vitro and in a rat model of RD-induced photoreceptor degeneration in vivo. In addition, we
assessed the vitreous concentrations of HMGB1 and monocyte chemoattractant protein 1 (MCP-1) in human eyes with
RD. We also explored the chemotactic activity of recombinant HMGB1 in a human retinal pigment epithelial (RPE) cell line.
The results show that the nuclear HMGBI1 in the retinal cell is augmented by death stress and upregulation appears to be
required for cell survival, whereas extracellular release of HMGB1 is evident not only in retinal cell death in vitro but also in
the rat model of RD in vivo. Furthermore, the vitreous level of HMGB1 is significantly increased and is correlated with that
of MCP-1 in human eyes with RD. Recombinant HMGB1 induced RPE cell migration through an extracellular signal-
regulated kinase-dependent mechanism in vitro. Our findings suggest that HMGB1 is a crucial nuclear protein and is
released as a danger signal of retinal tissue damage. Extracellular HMGB1: might be an important mediator in RD,
potentially acting as a chemotactic factor for RPE cell migration that would lead to an ocular pathological wound-healing
response.
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KEYWORDS: danger signal; high-mobility group box 1 protein; photoreceptor degeneration; retinal detachment; tissue damage;
wound healing .

Cell death is the predominant event of degenerative tissue
damage and can be a trigger that activates the immune system
and repair program. Recently, there has been much interest in
the pivotal role of endogenous danger signals released during
cell death.' High-mobility group box I (HMGBI) protein is a
prototypic innate danger signal, and appears.to be crucial in
this context because extracellular HMGB1? can modulate in-
flammation, proliferation, and remodeling, which are involved
in the wound-healing process.’

HMGBI1 was originally described as.an abundant and
ubiquitous nuclear DNA-binding protein that had multiple
functions dependent on its cellular location,* In the nucleus,
HMGBI binds to DNA and is critical for proper transcrip-

tional regulation. It is also called amphoterin and accelerates
cellular motility on the cell surface.” HMGBI is reported to
be passively released into the extracellular milieu by necrotic
cells, but not by apoptotic cells,” or is exported actively by
monocytes/macrophages’ and neural cells® upon receiving
appropriate stimuli. In damaged tissue, extracellular HMGB1
acts as a necrotic signal, which alerts the surrounding cells
and the immune system.” Although extracellular HMGBI can
contribute to normal tissue development and repair, it is also
implicated in the pathogenesis of several diseases (including
lethal endotoxemia,” disseminated intravascular coagulation,9
ischemic brain,'® tumor,!' atherosclerosis,’”> rheumatoid
arthritis,'” and periodontitis'*).
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Retinal detachment (RD), the physical separation of pho-
toreceptors from the underlying retinal pigment epithelium
(RPE), is one of the main causes of visual loss. Photoreceptor
degeneration due to RD is thought to be executed by apop-
tosis'>'® and necrosis,'” which usually occur after tissue
damage. Although retinal cell death and the following re-
active responses must occur in almost all forms of retinal
disease including RD,'® data regarding the relationship
among cell death, danger, and responses in the eye, have been
very limited, especially in terms of danger signals. We pre-
viously reported that HMGBI was significantly elevated in
inflamed eyes with endophthalmitis, and suggested a possible
link between HMGBI and ocular inflammatory diseases.'”
On the other hand, considering the properties of HMGBI, we
hypothesized that HMGB1 might have some roles in pho-
toreceptor degeneration and subsequent damage-associated
reactions in RD.

To investigate whether HMGBI is involved in the patho-
genesis of RD, we first examined the expression and release of
HMGBI1 both in a retinal cell death in vitro and in a rat
model of RD-induced photoreceptor degeneration in vivo. To
focus on human RD, we assessed the intravitreous  con-
centrations of HMGB1 in human eyes affected by RD.
Monocyte chemoattractant protein 1 (MCP-1), which was
recently documented to be a potential proapoptotic mediator
in RD,?® was also measured in the same vitreous samples. We
further analyzed the- effects of recombinant HMGBI
(rtHMGB1) on chemotactic activity in a RPE cell line in vitro..
Our findings suggest that extracellular HMGBI is evident in
eyes with RD as a danger signal, potentially acting as a che-
motactic factor for RPE cell migration that would lead to
ocular pathological wound healing.

MATERIALS AND METHODS

Reagents

Full-length, LPS-free rat rtHMGBI protein, which is 99%
identical to human HMGB1 and is fully functional on cells of
mammalian  origin,®  was purchased from HMGBiotech
(Milan, Italy). Human recombinant MCP:1 (+MCP-1) was
purchased from Peprotec (Rocky Hill, NJ). Rabbit polyclonal
antibody against HMGB1 was provided by Shino-Test Cor-
poration (Kanagawa, Japan). Antibodies against phospho-
and total extracellular signal-regulated kinase (ERK)-1/2 were
obtained” from Cell' Signaling Technology (Beverly,” MA).
U0126 was obtained from Calbiochem (La Jolla, CA).

Human Vitreous Samples

This study was approved by our institutional ethical’ com-
mittee (Kagoshima University Hospital), and was performed
in accordance with the Declaration of Helsinki. All surgeries
were performed at Kagoshima University Hospital. All pa-
tients gave informed consent before treatment. The clinical
histories of all patients were obtained from their medical
records, Undiluted vitreous fluid samples (0.5-0.7 ml) were
obtained by pars plana vitrectomy. Vitreous humor was
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collected in sterile tubes, placed immediately on ice, cen-
trifuged to remove cells and debris, and stored at —80°C until
analysis.

Animals

All animal experiments were performed in accordance with
the Association for Research in Vision and Ophthalmology
Statement for the Use of Animals in Ophthalmic and Visual
Research and the approval of our institutional animal care
committee (Kagoshima University). Adult male Brown
Norway rats (250-300g; KBT Oriental, Saga, Japan) were
housed in covered cages and kept at constant temperature
and relative humidity with a regular 12-h light—dark sche-
dule. Food and water were available ad libitum.

Surgical Induction of RD

Rat experimental RD was induced as described previously.”
Briefly, the rats were anesthetized with an intramuscular in-
jection of ketamine and xylazine, and their pupils were di-
lated with topical 1% tropicamide and 2.5% phenylephrine
hydrochloride. The retinas were detached using a subretinal
injection of 1% sodium hyaluronate (Opegan; Santen, Osaka,
Japan) with an anterior chamber puncture to reduce in-
traocular pressure. Sodium hyaluronate (0.05 ml) was slowly
injected through the sclera into the subretinal space to en-
large the RDs. These procedures were performed only in the
right eye, with the left eye serving as a control. Eyes with lens
injury, vitreous hemorrhage, infection, and spontaneous re-
attachment were excluded from the following analysis. The
rats were killed at 3, 7, and 14 days after treatment, with six
animals per each time point.

Cell Culture

The rat immortalized retinal precursor cell line R28, a kind
gift from Dr GM Siegel (The State University of New York,
Buffalo), was cultured in Dulbecco’s modified Eagle’s med-
ium (DMEM) high' glucose supplemented with 10% fetal
bovine serum’ (FBS)," 10 mM non-essential amino acids, and
10 ug/ml gentamicin as described previously.”” The human
immortalized RPE cell line"ARPE-19; obtained from Amer-
ican Type Culture Collection (Manassas, VA), was grown in
DMEM/F12 supplemented with:10%: EBS, 2% penicillin—
streptomycin, and 1% fungizone (all products were obtained
from Invitrogen-Gibco, Rockville, MD). Cells were incubated
at 37°C in a 5% CO, incubator and subcultured with 0.05%
trypsin-EDTA. Subconfluent cultures were trypsinized and
seeded for the following experiments. ARPE-19 cells were
obtained at passage 21 and used at passages 24-30. Increased
passage did not alter the following experimental results up to
this passage number.

Cell Viability Assay

Cell viability was analyzed by mitochondrial respiratory ac-
tivity measured using MTT (3-(4,5-dimethylthiazol-2y1)-2,5-
diphenol tetrazolium bromide) assay (Wako Chemicals,
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