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Telomerase activation is a critical step for human carcinogenesis
through the maintenance of telomeres, but the activation
mechanism during carcinogenesis remains unclear. Transcriptional
regulation of the human telomerase reverse transcriptase (hTERT)
gene is the major mechanism for cancer-specific activation of
telomerase, and a number of factors have been identified to directly
or indirectly regulate the hTERT promoter, including cellular transcr-
iptional activators (¢-Myc, Sp1, HIF-1, AP2, ER, Ets, etc.) as well as
the repressors, most of which comprise tumor suppressor gene
products, such as p53, WT1, and Menin. Nevertheless, none of them
can clearly account for the cancer specificity of hTERT expression.
The chromatin structure via the DNA methylation or modulation of
nucleosome histones has recently been suggested to be important
for regulation of the hTERT promoter. DNA unmethylation or histone
methylation around the transcription: start site of the hTERT
promoter triggers the recruitment of histone acetyltransferase
(HAT) activity, allowing hTERT transcription. These facts prompted
us to apply these regulatory mechanisms to cancer diagnostics and
therapeutics. Telomerase-specific replicative adenovirus (Telomelysin,
OBP-301), in- which E1A and E1B genes are driven by the hTERT
promoter, has been developed as an oncolytic virus that replicates
specifically in cancer cells: and. causes. cell death via: viral toxicity.
Direct administration of Telomelysin was proved to: effectively
eradicate solid tumors in vivo, without apparent adverse: effects.
Clinical trials using Telomelysin for cancer patients with progressive
stages are currently ongoing. Furthermore, we incorporated green
fluorescent protein gene (GFP) into Telomelysin (TelomeScan, OBP-401).
Administration of TelomeScan into the primary tumor enabled the
visualization: of cancer cells. under. the cooled. charged-coupled
device (CCD) camera, not only in primary. tumors:but also the
metastatic foci. This technology: can be applied to intraoperative
imaging: of metastatic lymphnodes. Thus, we found novel tools for
cancer diagnostics and therapeutics by utilizing the hTERT promoter.

(Cancer Sci 2008; 99: 1528-1538)
In the past decade, research in the field of telomerases has
progressed tremendously, “especially in relation to cellular
immortality and carcinogenesis. Telomerase activation is
observed in approximately 90% of human cancers, irrespective
of tumor type, while most normal tissues contain inactivated
telomerase.’”’ The role and timing of telomerase activation in
carcinogenesis has been revealed by telomerase-knockout mouse
studies.®¥ Significant telomere erosions and age- and generation-
dependent increases in cytogenic abnormalities are exhibited in
telomerase-knockout mice, providing evidence that telomere
dysfunction with critically short telomeres causes genomic
instability.® This concept is further supported by studies using
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telomerase—/— p53—/— double-knockout mice. These mouse
cells demonstrate high levels of genomic instability, exemplified
by increases in both formation of dicentric chromosomes and
susceptibility to oncogenic transformation. These mice exhibit
significantly decreased tumor latency and overall survival,
Thus, in the absence of genome checkpoint functions, telomere
dysfunction accelerates genomic instability, facilitating cancer
initiation.” According to this concept, the genomic instability
caused by telomere dysfunction occurs in the early stages of
carcinogenesis, before telomerase activation. Subsequently,
telomeres in these initiated cells undergo further progressive
shortening, generating rampant chromosomal instability and
threatening cell survival. Telomerase activation necessarily occurs
at this stage to stabilize the genome and confer unlimited
proliferative capacity upon the emerging and evolving cancer
cell. In other words, cells that have acquired telomerase activity
can obtain the capacity for cancer progression. Eventually, most
cancer cells exhibit telomerase activity.

This cancer-specific telomerase activity provides an opportunity
for us to utilize it for cancer diagnosis and treatment. Continuous
effort has been made to uncover the molecular mechanisms of
telomerase activation- during. carcinogenesis.- The discovery of
the -telomerase subunit human telomerase reverse transcriptase
(hTERT),%% a catalytic subunit bearing the enzymatic activity of
telomerase,”® was the starting point for uncovering the cancer-
specific: activation. of telomerase. Numerous. studies have
demonstrated that hTERT expression is highly specific to cancer
cells and tightly associated with telomerase activity, while the
other subunits are constitutively. expressed both in normal and
cancer cells.®"'? Therefore, there-is no doubt that hTERT
expression plays a key role in cancer-specific telomerase activation.
In this review article, we discuss the cancer-specific regulation
of ATERT and its application for cancer diagnosis and treatment.

Cloning of the hTERT promoter and identification of the
core promoter region containing cis- and trans-elements
for cancer-specific transcription

In 1999 we and other groups successfully cloned the 5'-promoter
region of the ATERT gene.'*'™ Transient expression assays
using the 3.0 kb of the flanking sequences of the hTERT gene
revealed that the transcriptional activity was up-regulated
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Fig. 1.

transcription factors

Complex molecular mechanisms of transcriptional regulation of human telomerase reverse transcriptase (hTERT). Representative

transcription factors and their upstream factors essential for hTERT regulation are shown in the upper panel. The sites on the promoter are not
precisely in scale. +1 indicates the start site of transcription. The proposed model of chromatin remodeling for the regulation of hTERT promoter
is shown in the lower panel. Me, methylation of histone; Ac, acetylation of histone.

specifically in cancer cells, while it was silent in most normal
cells."™ Deletion analysis of the promoter identified the proximal
260 bp region functioning as the core promoter essential for
cancer-specific transcriptional activation. Within the core promoter,
several distinct transcription-binding sites are present; E-boxes
(CACGTG) located at —165 and +44 (numbering based on the
transcription start site determined by CapSite Hunting method'")
are potential binding sites of basic helix-loop-helix zipper (l HLHZ)
transcription factors encoded by the Myc family oncogenes. The
existence of E-boxes on the h”TERT promoter stirred telomerase
researchers since c-Myc has been known to activate telomerase.'®
In fact, several groups confirmed that c-Myc binds to E-boxes
on the hTERT promoter and activates the transcription>'? which
established the scenario that c-Myc is a key regulator of h"TERT
transcription during carcinogenesis. However, several studies
found that Myc and hTERT expression levels are not necessarily
tightly correlated in some cancer cells.?*?" Furthermore, it
should be noted that most of these studies used overexpressed
c-Myc for the luciferase reporter assay as well as recombinant
c-Myc for the electrophoretic mobility shift assay (EMSA) to
demonstrate binding to the E-boxes. Therefore, it remains unclear
whether endogenous binding of c-Myc on the h'TERT promoter
plays a critical role in hETRT transcription in vivo, especially
during carcinogenesis. Xu ef al. reported the important finding
that endogenous c-Myc binding to the E-boxes on the hTERT
promoter was well correlated with the induction of AhTERT in
proliferating leukemic cells.?® Nevertheless, it remains unclear
whether up-regulation of in vivo binding of c-Myc to the hTERT
promoter occurs during carcinogenesis and how critical it is for
continuous hTERT expression in cancer.
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Other characteristic sequences that exist on the h”TERT pro-
moter are the GC-boxes (GGGCGG), which are binding sites
for zinc finger transcription factor Spl. There are at least five
GC-boxes within the core promoter of h”TERT, proven by EMSA
to bind Sp1.?? Introduction of mutations in these GC-boxes sig-
nificantly decreased the transcriptional activity of the promoter,
while overexpression of Spl in cells that contain relatively low
levels of endogenous Spl enhanced the promoter activity.!”’ In
particular, the h”TERT core promoter activity was almost com-
pletely diminished by introducing mutations in all five GC-boxes,
while mutation in one site moderately decreased it. Therefore,
the GC-boxes function synergistically to maintain the promoter
activity of h'TERT. However, Spl is ubiquitously expressed in a
wide range of normal cells, and is not therefore a strong candidate
to cause cancer-specific hTERT expression.

Overall, while the h'TERT core promoter is highly specific to
cancer cells, the key transcription factors identified are far from
accounting for cancer-specific A”TERT expression.

Critical factors that regulate hTERT transcription

A number of factors that regulate #”TERT transcription have been
identified to regulate the hTERT promoter. The representative
regulators of h”TERT promoter with regard to the clinical aspects
are shown in Fig. 1.

Cellular transcription factors. Several transcription factors, as well
as c-Myc and Spl, have been identified to regulate the h"”TERT
promoter. Activating Enhancer-binding Protein-2 (AP-2) was
recently identified as a transcriptional activator of the h”TERT
promoter® and, of particular interest, it exhibited tumor-specific

Cancer Sci | August2008 | vol.99 | no.8 | 1529
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binding to the core promoter region. Although this study examined
only one tumor type (lung cancer), this may partly explain tumor-
specific iTERT transcription.

Hypoxia-inducible factor-1 (HIF-1), a key regulator of O,
homeostasis, regulates the expression of several genes linked to
angiogenesis and energy metabolism. The presence of putative
HIF-1 binding sites on the hTERT promoter prompted us to
examine the involvement of HIF-1 in regulation of hTERT in
tumor hypoxia: we found that hypoxia activated hTERT mRNA
in cancer cells in vitro.%**¥ Luciferase reporter assays revealed
that hTERT transcription was significantly activated in hypoxia
and by HIF-1o overexpression, and that the two putative HIF-1
binding sites within the core promoter are responsible for this
activation. The chromatin immunoprecipitation assay identified
specific binding of HIF-1o. to these sites, which was enhanced
in hypoxia. siRNA inhibition of HIFl-o. abrogated hypoxia-
induced hTERT mRNA expression. Thus, hypoxia activates
telomerase mainly via transcriptional activation of ATERT, and
HIF-1 plays a critical role as a transcription factor. In contrast to
these findings, Koshiji ef al. observed that HIF-1 inhibited h"TERT
expression in colon cancer cells.®® In this study, they demon-
strated that HIF-1 induces cell-cycle arrest even in the absence
of hypoxia by functionally counteracting Myc. Eventually, HIF-1
down-regulates Myc-activated genes including ATERT. The
reasons for this discrepancy remain unclear, but experimental
conditions, such as the concentration of oxygen and constitutive
levels of HIF-1 in cell types used, may significantly affect the
results. A recent study underscored the importance of HIF-2 in
regulating "TERT promoter.?” While HIF2-o. enhances hTERT
expression in renal-cell carcinoma, it represses /TERT transcription
in glioma cells, adding a further layer of complexity to the
relationship between hypoxia and telomerase activity.

We also found the transcription activator protein' AP-1 to
function as a transcriptional repressor.®® There are two AP-1
sites (at —1655 and ~718) within the 2.0 kb promoter of hTERT.
EMSA revealed that JunD is the major factor binding to them,
which was further supported by chromatin immunoprecipitation
(ChIP) assay in vivo. Overexpression of Jun family members with
c-fos significantly reduced the promoter activity while mutation
of AP-1 sites increased it. Of particular interest is the observation
that AP-1 had no effect on the mouse TERT (mTERT) promoter
although it has similar binding sites for AP-1. Since mTERT is
constitutively  expressed ‘both in tumor-and normal cells, this
species-specific function of AP-1 in TERT expréssion may-in
pait help explain the difference in telomerase activity between
normal - human and mouse cells.

Hormoneés. Hormonal regulation of ATERT and the molecular
mechanisms' involved have been analyzed most extensively in
relation to ‘estrogen. We and- other groups found' that estrogen
activates hTERT ‘transcription” via- binding -of ligand-activated
estrogen: receptor-o¢ (ERor) to the estrogen-responsible element
(ERE) in the hTERT promoter.®** ER-Spl half-sites located
downstream of the ERE similarly function as ¢is-acting elements
in response to estrogen stimulation. Estrogen also activates hiTERT
expression via post-transcriptional mechanisms with the stimulation
of nuclear accumulation of hTERT via its phosphorylation, which
is mediated by Akt signaling.®! Tamoxifen; a selective estrogen
receptor modulator, also regulates hTERT expression in a cell-
type-specific manner;*» tamoxifen inhibits the growth of breast
cancer cells,-as well as hTERT mRNA expression in:the
presence of estrogen (E2), antagonizing the E2 effects, in which
the~ERE onthe promoter is-involved. In-contrast; tamoxifen
stimulated the growth of endometrial cancer cells and activated
hTERT mRNA expression in the absence or presence of E2,
exhibiting estrogen-agonistic action, in which-MAP kinase
signaling pathways are involved. Androgen was also shown to
activate hTERT mRNA in androgen-sensitive prostate cancer cells
but this regulation was not due to h'TERT promoter activation.®"
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Progesterone exerts diverse effects on hTERT mRNA expression
in a time-dependent manner in progesterone-receptor-positive
breast cancer cells;* in the short term, it activates hTERT
transcription, but prolonged exposure to progesterone antagonizes
estrogen and inihibits ATERT transcription. Interestingly, both
short- and long-term regulation is mediated via the MAP kinase
signaling pathway.

Cytokines. Telomerase activation is known to be tightly associ-
ated with cell proliferation, which suggests that growth signaling
might directly regulate hTERT expression.*? We established
an in virro model in which telomerase activity can easily be
induced upon stimulation of EGF in EGF-receptor-positive cancer
cells.™® Luciferase reporter assays revealed that EGF activates
the ATERT promoter: an Ets motif located in the core promoter
of hTERT is responsible. Notably, MAP kinase signaling pathways
mediate this regulation. A number of growth signals have been
known to be mediated through MAP kinase pathway, with Ets
factors playing critical roles as final mediators regulating the
target-gene expression. Therefore, EGF-mediated Ets-based "”TERT
transcription may be one representative pathway through which
various growth signals are transduced to the hTERT promoter.
This scenario can partly account for telomerase activation
associated with cell proliferation.

TGF-$ is a representative cytokine that represses hTERT
transcription.® The mechanisms through which TGF-B down-
regulates KTERT transcription are controversial: while some
studies demonstrated that TGF-P repressed hTERT transcription
via indirect down-regulation of ¢-Myc expression, 4! others
reported direct interaction of Smad3 and c-Myc disturbing ¢-Myc
activity.“? Another study identified several negative regulatory
factors for hTERT by means of gene screening using enhanced
retroviral mutagenesis (ERM) and found that Smad interacting
protein-1 (SIP1) is a repressor for hTERT, possibly mediating
TGF-B signals.“? A more recent study using siRNA inhibition
of the Smad family confirmed that TGF-B-mediated repression
of hTERT transcription is largely mediated through Smad3, not
Smad! or Smad2.“¥ However, this study found no role for E-boxes
in this repression, but found four E2F-binding sites within the
proximal promoter of #TERT to be responsible, based on the
data that mutation of these four sites reversed TGF-f-mediated
repression of ATERT transcription. The transcriptional activity
of E2F family members is regulated by interactions with pocket
proteins (Rb, p107, p130) that recruit histone deacetylase (HDAC)
proteins to repress target genes. Interestingly, overexpression of
the dominant negative E2F gene lacking the ability to bind pocket
protein- (Rb, p107, p130) and to recruit HDAC significantly
abrogated TGF-B-mediated repression of hTERT transcription.
Furthermore, trichostatine A (TSA), a HDAC inhibitor, completely
reversed the inhibitory effect of TGF-B. These findings highlight
E2F and HDAC as central mediators of TGF-B-mediated repression
of ATERT transcription.-The involvement of HDAC in hTERT
transcription is also discussed below.

Oncogenes. High-risk human- papillomaviruses (HPV) are
representative oncoviruses whose E7 protein can bind to Rb and
alleviate repression of E2F-dependent target genes, thereby
allowing rapid progression into S phase“¥ while E6" protein
facilitates the degradation of p53 through the actions of E6-
associated protein (E6-AP), which results in the abrogation of
the G,/S and G,/M checkpoints.“5*® The initial study found that
telomerase is activated in keratinocytes stably expressing HPV 16
E6.“ Since E6 had'been known to activate ¢-Myc expression®”
it seemed likely that E6-activates #iTERT transcription via up-
regulating ¢-Myc. However, subsequent studies confirmed that
high-risk HPV E6 activates ATERT transcription but is not
associated ‘with up-regulation of ¢-Myc.®'¥ Several studies
found that ATERT transactivation by HPV 16 E6 correlates with its
ability to bind E6-AP.®* A correlation between E6-AP binding
and ETERT induction prompted the search for possible targets of
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the E6/E6-AP complex by a yeast two-hybrid screen, which
identified a transcriptional repressor known as NFX1 that binds
to 48-bp sequences surrounding the proximal E-box on the hTERT
promoter.®? It is supposed that the E6/E6-AP complex induces
hTERT expression by destabilizing NFX-1. In support of this,
decreased expression of NFX1 using siRNAs was sufficient to
induce ATERT expression and telomerase activity in primary
human epithelial cells.

Some human oncoproteins specifically activate "”TERT promoter.
In hTERT-negative normal cells, HER2/Neu signals (by overex-
pressing oncogenic HER2/Neu mutant) alone failed to activate
the endogeneous hTERT expression.” However, coexpression
of HER2/Neu with one ETS family member (ER81) successfully
activated hTERT expression in these cells. There are five putative
binding core GGAA/T sites for ETS family in exon! to intronl
of the hTERT gene, and ER81 specifically binds to two of them
and activates #/TERT promoter in cooperation with HER2/Neu
signals. Notably, this activation was mediated via the ERK-MAP
kinase pathway, in which upstream Ras and Raf-1 play critical
roles. Thus, three prominent oncoproteins, HER2/Neu, Ras, and
Raf, facilitate hTERT expression via an Ets family member in
hTERT-negative normal cells.

Epigenetic regulation of hTERT transcription

The hTERT promoter contains a cluster of CpG sites, and many
researchers therefore supposed its regulation to involve DNA
methylation. Several groups examined the methylation status of
these CpG sites on this promoter. It was initially expected that
methylation of the hTERT promoter was associated with gene
silencing; indeed, some groups showed such association.®6®
However, other reports indicated no significant correlation
between hTERT expression and methylation status either overall
or at a specific site.®*%" Furthermore, contradictory results have
been reported: increased DNA methylation in the h”TERT promoter
was observed in hTERT-positive cancer cells while lack of methyl-
ation was found in normal hTERT-negative cells.®"” These unusual
correlations between DNA methylation and hTERT expression
in normal and cancer cells generated confusion among telo-
merase researchers. Recently, Zinn et al. aimed to_clarify the
discrepancies:®? using bisulfite sequencing, they first identified
that all telomerase-positive cancer cell lines examined retained
alleles with little or no methylation around the transcription start
site despite being densely methylated in more upstream regions.
ChIP assay revealed that both active  (acethyl-H3K9. and
dimethyl-H3K4) and inactive (trimethyl-H3K9 and trimethyl-
H3K27) chromatin marks are present across the h/TERT promoter.
Subsequent Chip-MSP (methylation-specific polymerase. chain
reaction. [PCR]}). assay identified- that active chromatin. mark
DNA around the transcription start site was_tightly associated
with unmethlated DNA. These data suggest. that the absence of
methylation and the association. with active chromatin. marks
around the transcription start site allow for the: expression: of
ATERT (Fig. 1), indicating that the DNA methylation pattern of the
hTERT promoter is consistent with the usual dynamics of gene
expression.

Madification of nucleosome histones, including acetylation/
deacetylation as well as methylation, is known to regulate chro-
matin structure and thereby affect gene transcription.®¥ Roles
for histone-modification-mediated chromatin remodeling in the
regulation of ATERT transcription have been revealed (Fig. 1).
We and other groups found that treatment with TSA induced
significant elevation of h"TERT mRNA expression and telomerase
activity in normal cells, but not in cancer cells.®*¢%) Transient
expression assays revealed that TSA activates the h”TERT pro-
moter, for. which the proximal core promoter was responsible.
Overexpression of Spl enhanced responsiveness to TSA, and
mutation of Spl sites but not c-Myc sites of the core promoter
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of hTERT abrogated this activation. Introduction of the dominant-
negative form of the Sp family inhibited TSA activation. These
results indicate that HDAC inhibitor activates the h”TERT promoter
in normal cells in an Spl-dependent manner (Fig. 1). It is possible
that endogeneous Spl interacts with HDAC and recruits it to the
hTERT promoter™ resulting in the deacetylation of nucleosome
histones, leading to the repression of transcription. While Spl
contributes to the transactivation of h'TERT as a potent transcrip-
tional activator® it might be involved in gene silencing of
KhTERT in normal cells, possibly by recruiting HDACs. Compelling
evidence suggests that Spl interacts with a p300 coactivator
possessing intrinsic histone acetyltransferase (HAT) activity.©”
Therefore, it is possible that Spl interacts with various factors
that have HAT or HDAC activity, and that this switching explains
the different actions of Spl on the A”TERT promoter in normal
and cancerous cells. The E-box binding activator ¢c-Myc and
repressor Mad 1222 which compete with each other for the
common binding partner Max are also involved in histone-mod-
ification-mediated chromatin remodeling of the hTERT promoter.
The endogenous c-Myc/Max complex to the h”TERT promoter in
proliferating leukemia cells was found to be associated with the
acetylated histones, resulting in enhanced hTERT expression,®?
In contrast, the complex was replaced by the endogeneous
Madl/Max complex that was associated with deacetylated
histones and decreased h'TERT expression in differentiated status.

Recently, a role for histone methylation in A/TERT regulation
has also been demonstrated. Atkinson et al. observed that highly
trimethylated H3-K4 was associated with the actively transcribed
hTERT gene in telomerase-proficient tumor cells.®® More
recently, we reported the interesting finding that SET- and MYND-
domain-containing protein-3 (SMYD?3), a histone H3-K4-specific
dimethyltransferase and trimethyltransferase, respectively, play
critical roles in H3-K4 methylation of the hTERT promoter.”"
Of the various SET-domain-containing proteins, SMYD3 is
unique because not only does it have methyltransferase activity
but it also binds to a specific DNA sequence (CCCTCCC)-in
its target promoters, as do transcription factors. In fact, SMYD3
was confirmed to bind some of the CCCTCCC motifs within the
core promoter of AhTERT and activate hTERT transcription.
Overexpression of SYND3 induced hTERT mRNA expression in
hTERT-negative normal and cancer cells. Disruption of SMYD3
binding motifs in the A”TERT promoter led to significant reduc-
tion of transcription. Expectedly, siRNA-knockdown of SMYD3
resulted in abolishment of H3-K4 trimethylation of the hTERT
promoter. in. cancer cells; interestingly, this knockdown also led
to defects in binding c-Myc and Spl. Furthermore, histone H3
acetylation within the core promoter of hTERT was diminished
by the SMYD3-knockdown. These data suggest a model in which
SMYD3 binding to the h”TERT promoter leads to increased H3
trimethylation, a critical event that recruits HAT and promotes
Spl_.and c-Myc access to:the hTERT promoter. (Fig. 1). Thus,
SMYD3-mediated trimethylation of H3-K4 may: function as a
licensing element for subsequent transcription-factor binding to
the hTERT promoter, which may trigger. further recruitment of
HAT activity.

Identification of hTERT repressors

Recently, Lin er al.¥ identified several negative regulatory factors
for h'TERT by.means of gene screening that used enhanced
retroviral mutagenesis: (ERM). They identified menin, SIPI1,
Madl, hSIR2, and BRIT1 as candidates for the A”TERT repressor,
generating the idea that multiple tumor suppressors might involve
telomerase repression, especially in normal cells. p53 was also
shown to repress hTERT transcription in a. Spl-dependent
manner.”"™ Tt was. proved that p53 can form a complex with
Sp1, which disturbs the transcriptional activity of Sp1 and leads
to transcriptional repression. Several transcriptional repressors,
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including Wilms’ tumor | tumor suppressor (WT1) and myeloid-
specific zinc finger protein-2 (MZF-2) are also known to repress
hTERT transcription via binding to their specific sites on the
promoter, although the mechanisms of repression remain
unclear.”>™ We also found that on combinatorial treatment with
Vitamin D3 and 9-cis-retinoic acid, the heterodimer complex,
vitamin D™ receptor/retinoid X receptor (RXR), binds to the
distal sites on the A”TERT promoter and represses transcription.””

There has been an extensive search for telomerase repressors,
one of which was based on microcell-mediated chromosome
transfer.”® Several normal human chromosomes, including
chromosomes 3, 4, 6, 7, 10, and 17, have been shown to repress
telomerase activity in some but not all cancer cells.””*" Horikawa
et al. established a nice system to investigate an endogenous
mechanism for telomerase repression using a telomerase-positive
renal carcinoma cell line (RCC23) and telomerase-negative
counterpart (RCC23 + 3) generated by transferring a normal
chromosome 3 into RCC23 cells.®® By comparing the molecular
characteristics of these cells, they identified the E-box down-
stream of the transcription initiation site that was responsible for
telomerase repressive mechanisms restored by normal chromo-
some 3 targets. They also found that the factors binding to the
E-box, other than c-Myc/Mad or USF families, were involved in
the transcriptional repression of hTERT although they remained
to be cloned. This E-box-mediated repression functions in various
types of normal human cells, while it is inactive in some, but
not all, hTERT-positive cancer cells, providing evidence for an
endogenous mechanism for hTERT transcriptional repression
that becomes inactivated during carcinogenesis.

hTERT promoter for cancer therapeutics

hTERT promoter for cancer-specific transgene expression. In the
field of cancer gene therapy, the researchers have a great interest
in efficiently expressing target genes in the tumor tissue while
decreasing adverse effects in normal tissue. Control of gene
expression via tissue- or cell-specific promoters. has. been tested
extensively as a means of targeting transgene expression. Several
promoters have been identified that are more active in particular
tumor types than in the tissues from which they arise, and these
promoters have beén exploited to target transgene expression in
tumors. These promoters include the tyrosinase gene promoter
in melanomas,®? the carcinoembryonic antigen promoter . in
colorectal and lung cancer,® the MUC1 promoter in breast
cancer,®” and the E2F promoter in cancers that carry a defective
retinoblastoma gene.”"” However, while reports on these promoters
suggest that achieving relatively tumor-specific transgene ex-
pression is possible, several limitations have also been revealed.
First, most of these promoters are limited to specific tumor
histologies and cannot be uséd-universally in tumors of various
origins. Second, most of these promoters are much weaker than
commonly used viral promoters such as the CMV: early promoter,
the Rous sarcoma virus long-terminal repeat (RSV-LTR), and
the SV40 early promoter. Consequently, their use is hampered
by the problem of low expression.

The hTERT promoter is ideal to overcome the shortcoming of
these promoters. Gu ef al. first established the binary adenoviral
system, which uses two adenoviral vectors to induce Bax gene
expression.®P One of these vectors contains a human Bax cDNA
under the control of a minimal synthetic promoter comprising
five Gal-4-binding sites and a TATA box, which is silent in 293
packaging cells, thus avoiding the toxic effects of the Bax gene
on.the 293 cells and allowing vector (Ad/GT-Bax) production.
Expression of the Bax gene can be induced by coinfecting the
Ad/GT-Bax virus with the second adenoviral vector in the binary
system (Ad/PGK-GV16), which consists of a_ fusion protein
comprising a Gal-4 DNA-binding domain and a VP 16 activation
domain under the control of a constitutively active PGK promoter.
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Ad/PGK-GV16 is expected to produce VP16 with Gal-4 DNA
binding domain preferentially in tumor cells and thereby induce
Bax gene expression via interaction with Gal-4-binding sites.
This binary infection system was reported to suppress tumor
growth in vitro and in vivo. More simple vector systems to
achieve cancer-specific transgene expression have been tried, in
which several apoptosis-inducible genes such as FADD,®%%
caspace®®® or suicide gene (human herpes simplex virus
thymidine kinase (HSVik) gene),®® tumor-necrosis-factor-related
apoptosis-inducing ligand gene (TRAIL),“” or chemoattractant
protein gene (MCP-1)® have been driven by the hTERT pro-
moter in various tumor types. Most of these studies successfully
demonstrated tumor-specific transgene expression in vivo,
achieving long-term survival benefit and minimizing its expres-
sion in normal tissues following direct injection of the vectors
and even with systemic injection. Systemic toxicity is one
concern in this treatment modality because telomerase activity
has been reported to exist in some normal cells, such as hemat-
opoietic crypt and endometrial cells, most of which have high
regenerative potentials. Gu ef al. tested h'TERT-promoter-driven
transgene expression in human CD34(+) bone marrow progenitor
cells and found very low #TERT promoter activity in these cells
as well as no detectable change in blood-cell profiles under long-
term observation.®” Basically, the h”TERT promoter activity
in these normal cells with telomerase activity is much lower than
that in cancer cells, and toxicity is expected to be minimized.

hTERT promoter for cancerspecific replication-competent adenovirus.
Despite these efforts, levels of transgene expression were
insufficient to eradicate tumors, especially when vectors were
systemically ‘administrated. This is mainly due to the char-
acteristics of adenoviral vectors used, in which the E1 gene was
deleted to inhibit replicative capacity. These nonreplicative vectors
had limited distribution within the tumor mass even after direct
intratumoral administration. To confer specificity of infection
and increase viral spread to neighboring tumor cells, the use of
replication-competent adenoviruses has become a reality. The
use of modified adenoviruses that replicate and complete their
Iytic cycle preferentially in cancer cells is a promising strategy
for the treatment of cancer. Many efforts have been made to
realize cancer:specific adenoviral replication using a variety of
gene: promoters, including the prostate-specific antigen,!'™
MUC1,% osteocalcin, 92 L-plastin, "% midkine,"* and E2F-]
genes.'%9 Unfortunately, these” promoters have tissue-type
specificity and exhibit transcriptional activity only in cells that
express such tumor markers. Furthermore, the transcriptional
activity is relatively low. We were prompted by these. studies to
use the ATERT promoter; hypothesizing that an- adenovirus
containing the hTERT promoter-driven E] genes could target a
variety.of tumors and kill them with high replicative capacity.

We.developed a novel telomerase-dependent replicative aden-
ovirus type 5 vector. (Telomelysin, OBP-301) in which E/A and
EIB genes, required for adenoviral replication, were transcribed
under the hTERT promoter.’% In most vectors that replicate
under the transcriptional control of the EIA gene, E1B is driven
by the endogeneous adenovirus EIB promoter. However, the
insertion of internal ribosome entry site (IRES) between EJA
and EIB improved the promoter specificity of E1B transcription.
We selected the 455 bp-proximal promoter region of the h”TERT
gene to drive EJA and E1B genes because our previous experiments
showed that this region exhibits the highest transcriptional activity,
comparable to the proximal core promoter.!!” The construction
of Telomelysin is shown in Fig. 2. Similar replicative adenovi-
ruses controlled by the A”TERT promoter have also been developed
by other groups./7-109

In vitro replication assays revealed that Telomelysin induced
selective expression of EIA and EIB in cancer cells, resulting in
viral replication _at 5-6 orders. of magnitude by 3 days after
infection, while it was attenuated by up to 2 orders of magnitude
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