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Table 2 Percent overlap between top 50 most discriminating masses (based on student’s t-test) of each discovery
project and masses showing P < 0.05 in the remaining cohorts

Genomics Collaborative (P < 0.05)

Seracare (P < 0.05) Osaka (P < 0.05)

GCl (Top 50) -
Seracare 1 (Top 50) 35 (70%)
Osaka (Top 50) 44 (88%%)

45 (92%) 31 (629)
- 27 (54%)
47 (949%) -

eicosatetraenoic acid (2) and 8R-Hydroxy-
(5Z,9E,117,147)-eicosatetraenoic acid (3), a-tocopherol
(4) y-tocopherol (5), 13-(6-hydroxy-2,7,8-trimethylchro-
man-2-y1)-2,6,10-trimethyltridecanoic acid (6), 16-(4,5-
dimethyl-3,6-dioxo cyclohexa-1,4-dienyt)-2,6,10,14-tetra-
methylhexadecanoic acid (7), 6-hydroxy-2,7-dimethyl-2-
(4,8,12-trimethyltridecyl)chroman-8-carbaldehyde (8), 6-
hydroxy-2,7-dimethyl-2-(4,8,12-trimethyltridecyl)chro-
man-8-carboxylic acid (9), calciferol (10), cholecalciferol
(11), ergosterol (12), phylloquinone (13), retinol (14)
and 3p,7a-dihydroxy-5-cholestenoic acid (15) (Table 5).
The resulting MS/MS data for vitamins A, D, E, K as
well as the steroidal molecules (4 - 15) showed no simi-
larity to any of the metabolomic biomarkers; for vitamin
E type molecules, all had diagnostic fragments charac-
teristic of their chroman rings (m/z 163, 149, 149, 149,

163 and 179 for 4, 5, 6, 7, 8 and 9 respectively), for
vitamin D and analogues, diagnostic fragments formed
as a result of the loss of the side chain (m/z 271, 273
and 253, for 10, 11 and 13, respectively), for phylloqui-
none (13}, the diagnostic fragment m/z 187 for the qui-
none ring system was prominent, for vitamin A (14),
the fragment m/z 269 (M + H - H,0) loses the cyclo-
hexyl ring moiety to form a diagnostic m/z 145 for reti-
nol and for 3B,7a-dihydroxy-5-cholestenoic acid (15)
the diagnostic retro diels alder fragment at m/z 277 was
observed. In addition to this, other carboxylic acid stan-
dards with a pregnane ring system, as in 15 (for exam-
ple, chenodeoxycholic acid and cholic acid), do not
show losses of CO, upon MS/MS fragmentation (not
shown). However, MS/MS fragmentation data of
hydroxy fatty acid standards 1, 2 and 3 (Table 5)
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Figure 3 Relative intensities of metabolites 446 and 448 by disease stage and the area under the curves for each discovery dataset.
{A) Bar charts of relative intensity versus disease stage in each sarnple set; (8) summary of P-value comparisons between disease stages and
controls for metabolites 446 and 448; (C) receiver operating curve analysis based on markers 446 and 448 and afl CRCs versus all controls in each
discovery set.

—411—



Ritchie et al. BMC Medicine 2010, 8:13 Page 9 of 20
http://www.biomedcentral.com/1741-7015/8/13
Table 3 List of 13 masses detected among the top 50 masses inclusive to all three discovery projects
GCl
Rank order Detected mass Molecular formula Part per million Analysis mode P vaiue Ratio {CRC/normal)
6 446.3406 (C28H4604 222 NAPC 6.4E-13 031
13 4483563 C28H4804 232 NAPCH 2.5E-12 041
8 466.3661 C28H5005 059 NAPCH 94E-13 0.25
7 4683840 C28H5205 5.39 NAPC 9.0E-13 027
21 4923829 C30H5205 2.89 NAPCH 85E-11 033
24 494.3977 C30H5405 1.16 NAPC! 1.9E-10 035
29 5183976 C32H5405 092 NAPCI 1.6E-09 037
12 5384259 (C32H5806 476 NAPCI 25E-12 030
44 5744607 C36H6205 17 NAPC 1.6E-08 040
26 5764771 C36H6405 299 NAPCI 3.0E-10 037
32 5784931 C36H6605 359 NAPCH 3.2E-09 0.34
11 5924711 C36H6406 337 NAPCI 2.2E-12 027
15 594.4851 C36H6606 141 NAPCI 6.3E-12 0.26
Seracare
45 446.3413 C28H4604 379 NAPCI 1.8E-06 036
4483570 C28H4804 3.88 NAPCH 1.6E-08 0.36
3 4663664 C28H5005 1.23 NAPCI 8.5E-10 0.34
4683847 C28H5205 6.89 NAPCH 4.9E-09 0.36
17 492.3835 C30H5205 411 NAPCH 4.6E-08 042
34 494.3971 C30H5405 005 NAPCH 6.6E-07 041
11 5183968 C32H5405 0.63 NAPCH 2.2E-08 0.33
18 5384263 C32H5806 55 NAPCI 7.8E-08 038
32 5744595 C36H6205 039 NAPCH 6,1E-07 032
42 576.4768 C36H6405 247 NAPCH 1.0E-06 037
49 5784933 C36H6605 383 NAPCH 3.2E-06 042
30 5924721 (C36H6406 3.06 NAPCI 56E-07 027
50 5944851 C36H6606 141 NAPCI 3.7E-06 032
Osaka
446.3400 C28H4604 087 NESH 1.8E-10 044
13 4483556 C28H4804 0.76 NESI 2.2E-09 054
1 466.3663 C28H5005 102 INESt 29E-12 050
5 4683815 C28H5205 0.05 NESI 1.8E-10 049
4923814 C30H5205 0.15 NES! 7.0E-11 057
23 494.3969 C30H5405 045 NES! 2.0E-07 062
39 5183975 C32H5405 0.72 NAPC 58E-06 052
19 5384237 C32H5806 067 NES! 4.7E-08 058
i6 574.4600 C36H6205 048 NESI 3.8E-09 042
7 5764756 C36H6405 0.39 NES! 30E-10 042
14 5784910 C36H6605 0.04 NESH 26E-09 0.50
15 5924703 C36H6406 0.02 NESI 33E-09 041
3 594.4859 C36H6606 0.07 NESI 6.8E-11 040

Indicated are the rank order based on P-value, detected accurate mass, the computationally predicted molecular formula, the mass difference between the
detected mass and mass of the predicted molecular formula in part per million, the mode of analysis (electrospray ionization, ESI; atmospheric pressure chemical
ionization, APCH), the P-value (based on an unpaired student’s t-test) between the average peak intensity of control subjects versus colorectal cancer {CRC)
patients, and the average peak intensity ratio between CRC patients and controls,

showed peripheral cut ions similar to those produced by
MS/MS of the CRC biomarkers, and consistent with
what has been described by others for various hydroxy-
lated long-chain fatty acids [29-33]. For example, marker
m/z 446 showed peripheral cut ions 427 [M - H - H,OF

;401 [M - H-CO,J, 409 (M - H - 2H,0], 383 [M - H
- CO;y - HyOJ and 365 [M - H - CO, - 2H,0] and
chain cut jons, 223, 205, 277 as well as others (see
Table 5 and Additional File 3). Similar ions were
obtained for the other C28, C32 and C36 metabolites
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Figure 4 Extracted mass spectrum of serum from normal subjects and colorectal cancer (CRC} patients. Extracts from five representative
CRC and five control samples from the Genomics Colfaborative discovery set were subject to high performance liquid chromatography followed
by full-scan detection on an Applied Biosystems QSTAR XL™ mass spectrometer in atmospheric pressure chemical ionization negative mode. The
average intensities of all ions within the mass range 100 to 700 Da efuting between 16 and 18 min are shown for each cohort. The boxed
region indicates spectral features present in normal patients but absent from CRC-positive serum.

782 652

(Table 4 and Additional File 9). Collectively, these
deductions indicated that the metabolomic markers
were not analogues of vitamins A, D, E, K and steroids,
but rather long-chain hydroxy fatty acids containing
varying degrees of unsaturation. We collectively refer to
these metabolites as hydroxylated polyunsaturated ultra
long-chain fatty acids (hPULCFAs; where the term
‘ultra’ has been used to refer to C30 and longer chain
fatty acids [34]).

Next, an enrichment strategy using bulk serum extracts
and a two-stage flash column chromatography

approach followed by nuclear magnetic resonance
(NMR) analysis was carried out to provide further
structural verification of the hPULCFAs. First, reverse
phase FCC using a water-acetonitrile solvent gradient
was performed and the resulting fractions analysed by
LC/MS. Fractions containing the hPULCFAs (fraction
9, Additional Files 10 and 11) were pooled and sub-
jected to normal phase FCC using chloroform-metha-
nol mixtures to obtain an approximately 65% rich
semi-purified fraction labelled sample A {(Additional
File 12). LC and MS/MS analyses (MS2 and MS3) data
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on sample A were used to track and confirm enrich-
ment of the markers. NMR (*H, **C and 2D) analyses
on sample A and its methyl esters revealed resonances
and correlations (Table 6) consistent with very long
chain polyunsaturated hydroxy fatty acids with obser-
vance of some suppression of resonances for hydrogen
atoms attached to sp”® carbons.

Independent validation using MRM methodology
Reduced levels of hPULCFAs in the blood of CRC patients
was further confirmed using a MS/MS approach (see
methods) in two more independent populations. The
approach is based upon the measurement of parent-
daughter fragment ion combinations (referred to as
MRM) for quantifying analytes [28,35]. We developed an
assay to specifically measure semi-quantitatively three of
the 28 carbon hPULCFAs with four oxygens (parent
masses 446, 448 and 450; C28H4604, C28H4804 and
C28H5004, respectively) as described in the methods. The
first study comprised 70 treatment-naive CRC subjects
and 70 matched controls, all of which were Caucasians
from the USA. The [**C,]cholic acid equivalent concentra-
tions of the three 28-carbon hPULCFAs (named according
to nominal mass 446, 448 and 450) for each subject are
shown in Figure 5A. Significantly lower levels (P < 0.001,
actual values shown in Figure 5A) of each of the metabo-
lites was observed in treatment-naive CRC-positive sub-
jects compared to controls. ROC analysis resulted in
AUCs of 0.87 + 0.005 for each of the 28-carbon containing
hPULCFAs (Figure 5B). Plotting patients by disease stage
showed a slight (but not significant) reduction between
stage I and III, with stage IV subjects showing the least
reduction (Figures 5C and 5D), albeit it only seven sub-
jects. The corresponding average AUCs of the 28-carbon
pool by stage were 0.87 for stage 1, 0.88 for stage II, 0.94
for stage III and 0.66 for stage IV.

We next used the MRM method to characterize another
independent population of CRC and control subjects from
Chiba, Japan. Serum from 40 pre-treatment CRC subjects
and 40 controls were analysed and a significant reduction
was again observed in the CRC-positive group (Figure
6A). The corresponding average AUC for the three meta-
bolites was 0.97 + 0.014 (Figure 6B). In this study, a signifi-
cant correlation with stage was observed (P < 0.05) for all
comparisons between stages I, II and II/IV (Figures 6C
and 6D). The AUCs by stage were 0.93 for stage I, 0.97 for
stage II and 1.0 for stage III/IV (two stage IVs were
grouped with stage III; Figure 6D).

Discussion

We report here on the discovery of novel hydroxylated
polyunsaturated ultra long-chain fatty acids containing
between 28 and 36 carbons reduced in the serum of CRC
patients compared to healthy asymptomatic controls. The
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utility of non-targeted metabolomics using high resolution
FTICR-MS coupled with flow injection technology for bio-
marker discovery was demonstrated by applying the tech-
nology to three independent test populations. In contrast
to the ‘training/test-set’ approach often used by splitting a
single sample set in half to validate the performance of
biomarkers [36-38], which often relies on complex algo-
rithms (see review [39]) and can result in bias [40], we car-
ried out fully independent discovery analyses on three
separate sample sets of matched cases and controls of dif-
ferent ethnic backgrounds collected from multiple sites
around the world to ensure a high degree of robustness
and minimal chance of sampling bias. Of the top 50 meta-
bolic discriminators discovered in the Osaka set, 44 and
47 of these were also significantly changed in the GCI and
Seracare sets, respectively. This remarkable inter-study
agreement indicates that not only is non-targeted FTICR-
MS technology a reproducible biomarker discovery engine,
but that disease-related metabolomic changes can be
highly conserved across geographic locations and races.
The reduction of hPULCFAs in the serum of CRC patients
was further validated by translation of the non-targeted
FTICR-MS discovery into a simple targeted TQ-MRM
method for three hPULCFAs, which was used on two
further independent and ethnically diverse case-control
test populations. ROC AUCs generated from the TQ-
MRM method on the two validation studies were consis-
tent with those based upon the same fatty acids detected
in the three FTICR-MS discovery studies (Figures 3, 5 and
6). In total, five independent study populations collectively
comprising 222 treatment-naive CRC patient samples and
220 disease-free asymptomatic controls were evaluated
using two different analytical methods. Indeed, the likeli-
hood of the reported association between the reduction of
hPULCFAs and CRC being a false positive result across
the five independent sets of samples is astronomically low.
Meta-analysis was performed on the false positive rates
using  Fisher’s  Inverse  Chi-square  Method
(Reject Hy if P=-23"" logp;>C; p = P-values of five inde-
pendent samples, k = five different samples, C = upper tail
of the chi-square distribution with 2 k degrees of freedom
(X (2,‘05,] o = 18.31))[41,42]. Based upon the meta-analysis,
the resulting P-values for markers 446 and 448 were more
significant than the individual P-values, at 2.96 x 10" and
8.11 x 10™*, respectively. Although there were differences
in the median ages between the CRC and control cohorts
in two of the studies, there was no statistically significant
trend between age and hPULCFA levels within the indivi-
dual cohorts and we observed no significant difference
between hPULCFA concentrations among the controls
from the different populations (not shown). We also
observed no differences between genders, and although
there were slightly higher BMI levels in the control
cohorts for the GCI and Seracare 1 cohorts, the BMIs
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Table 4 Tandem-mass spectrometry (MS) analysis of selected 28-carbon containing masses

Marker nominal neutral mass 446 448 450 464 466 468
[M-H}-{%) 445 (100%) 447 (52%) 449 (92%) 463 (70%) 465 (100%) 467 (1009}
Chain cut ions {%) 223 (18%) 277 (119%) 171 (7%) 277 (10%) 241 (7%) 187 (12%)
222 (11%) 239 (5%) 127 (9%} 241 (68%) 223 (3%) 169 (3%)
207 (3%) 207 (39%) 125 (12%) 223 (15%) 215 (296) 141 (2%)
205 (11%) 169 {696) 113 (38%) 185 {8%) 185 {4%) 113 {4%)
113 {5%) 113 (25%) 167 {4%) 167 {49%)
113 (28%) 113 (7%)
Peripheral cut ions (%) Loss of H,0 427 (50%) 429 (35%) 431 (80%%) 445 (469%) 447 (459%) 449 (849%)
Loss of 2H,0 409 (8%;) 411 (6%) 413 {13%) 427 (69%) 429 (8%) 431 (10%)
Loss of CO, 401 (95%) 403 (100%) 405 (100%) 419 (100%) 421 (45%) 423 (25%)
Loss of COsand H-0 383 (28%) 385 {15%) 387 (32%) 401 (24%) 403 (20%) 405 (13%)
*Loss of COzand 2H.0 365 367 369 383 (2%) 385 {4%) 387 (3%)
*Loss of 3H,0 409 411 413
Secondary daughter ions (%) 357 (596} 331 (3%) 307 (555) 347 (5%) 349 (49%) 349 (1%)
329 (11%) 305 (3%} 291 (7%) 319 (5%) 321 (2%) 323 2%)
261 (3%) 359 (2%) 295 (5%) 295 {6%) 297 (3%) 309 (2%)
241 (3%) 289 (3%) 281 (5%) 281 (5%) 281 (3%) 297 (6%)
233 (5%) 245 (3%) 279 (9%) 279 {5%) 279 (159%) 281 (3%)
207 (119%) 125 (6%) 263 (7%) 267 (5%) 261 (3%) 279 (5%)
177 (11%) 123 (39%) 261 (5%) 249 (6%) 251 (3%) 269 (5%)
123 {5%) 121 (3%) 169 (5%) 195 (10%) 195 (2%) 263 (8%)
109 {11%) 111 {5%) 111 (5%) 141 {1%) 141 (2%) 251 {4%)
97 (16%) 97 (5%) 97 (8%) 127 (%%) 123 (4%) 243 (2%)
83 (119%) 59 (39%) 83 (5%) 121 (6%) 113 (5%) 215 (49%)
59 (11%) 59 (1%) 101 (6%) 101 (3%) 213 (3%)
97 (4%) 97 (32%) 197 (3%)
83 (2%) 83 (2%) 125 (49
59 (29%) 59 (2%) 111 (3%}
98 (2%)
57 (1%)

*fons m ay have been obtained from MS? experiments

were matched in the second Seracare validation popula-
tion suggesting the markers are not related to BMI. A pro-
spective analysis of disease-free subjects equally
distributed across various age groups is underway specifi-
cally to address any potential age or BMI effects in more
detail. Overall our results indicate with a high degree of
confidence that a reduction in these metabolites is corre-
lated with the presence of CRC.

The FTICR-MS provided resolution sufficient for con-
fident molecular formula predictions based upon accu-
rate mass in conjunction with extraction, ionization, and
statistical correlative information. Although multiple ele-
mental compositions were theoretically assignable to
given biomarker masses, only formulas having 28 to 32
carbons, and four to six oxygen were consistently
assignable to common masses detected in two or three
of the discovery sets. Given a high degree of statistical
interaction between the sample-to-sample expression
profiles of the hPULCFAs (that is, a high degree of

correlation between the relative intensities of the mar-
kers across subjects) we suspected they were all part of
the same metabolic system and should therefore show
related compositions. Detection in negative ionization
mode also reduced the likelihood that nitrogen was pre-
sent in any of the compositions. This information in
conjunction with tandem mass spectrometry showing
prominent losses of water and carbon dioxide enabled
the determination of molecular formulas as shown in
Table 3 and Additional File 2. A number of candidate
classes of molecules theoretically fitting the molecular
formula class were easily excluded using tandem MS.
For example, we observed no fragments indicative of
condensed ring systems such as those in steroids or
vitamin D, and no fragments indicative of chroman ring
systems such as those observed in the vitamin E toco-
pherols. Several other classes of molecules including
vitamin I and retinol, and bile acids such as cholic acid
and 3B,7a-dihydroxy-5-cholestenoic acid also did not
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Table 6 'H nuclear magnetic resonance {(NMR) data of
colorectal cancer (CRC) biomarker pool (sample A} and
their methyl esters

@
T ¥
5 =
IS) fox g Types of CRC biomarker Methyl esters of CRC
38 g & B protons pool biomarker pool
- Zsa CHs 0.83-090 083090
2 Tig CH, 121-124, m 121-124, m
3 55
= £% 2 CHLCH,COOH 157165, m 153-169, m
I SEZ
g5 8 -CH,CH=CH- 1.98-2.08, 1.94-203, m
=] =A%
2 0B B of| 398 CH,C00 223228, m 223231, m
o T3 Ve Y8a CH=CH-CHy 275279, m 274282, m
@29
=3z CH=
- 5 £33 o
58 8 Ao OCHy - 364, s
< ~ P~
-2 Z =Rt % -CHIOH)CH= 345-371, 403-426 4.02-412, 416-4.26, 4.58-4.60
T w S 29
o s = -CH= 510-547, m 508-540, m
e 23 CHOHICH= 576591, m 5.75-530, m
[ =
b7 § %’ *NMR solvent is CDCl, signals assigned using 2D NMR experiments (HMQC
53 and HMBC)
is3
NE©Y
Ieg
NgS
=83 show comparable fragmentation patterns. However, the
@ . . - - . . »
oS similarity in fragmentation pattern, particularly in the
Hos Y P p Y
29 = relative abundances of daughter ions resulting from
)

losses of CO, and H,0, and chain cut ions from the
hPULCFAs to known hydroxy fatty acid standards as
well as other fatty acids reported in the literature such
as the resolvins and protectins (discussed below),
allowed for the identification of the metabolites as
hydroxylated polyunsaturated ultra long-chain fatty
acids. Examination of the MS/MS data for the C28 ser-
ies (masses 446, 448, 450, 464, 466 and 448) revealed a
consistent 113 Da daughter ion, which we conjecture to
represent the carboxy-terminus chain fragment -CH,-
CH=CH-CH,-CH,-COOH. In addition, a consistent loss
of 54 (-CH=CH-CH,-CH,-) from the [M-(CO,+H,0)]
daughter ion was observed for the 446, 448, 464 and
466, but not the 450 and 468 molecules, suggesting that
(1) the 450 and 468 may have a saturated carboxy term-
inal region and (2), that there are likely no hydroxyl
moieties within this region of the molecule. MS/MS
data of all the C28 and other markers also did not show
the diagnostic fragment obtained with a 1,2-diol motif
as observed for 1 (base peak is chain cut ion at m/z
115) and NMR on fractions enriched via flash-column
chromatography showed lower than expected integration
values obtained for the "H NMR signals at § 2.78
(methylene interruptions between double bond carbons)
and at 3 5.12 - 5.90 (hydrogen atoms on double bond
carbons). Cumulatively these results suggested that the
hydroxyl groups in the molecules are likely bonded to
the carbon atoms between the sp® carbons at least seven
carbons from the carboxy end. Confirmation of the
exact positions of the hydroxyl groups and precise loca-
tions of unsaturations in individual hPULCFAs using

,13E)-eicosatetraenoic acid (2) and 8R-Hydrox

-2-y1)-2,6,10-trimethyltridecancic acid (6), 16-(4,5-dimethyl-3,6-dioxo cyclohexa-1,4-dienyl)
(8), 6-hydroxy-2,7-dimethyl-2-(4,8,12-trimethyltridecyl)chroman-8-carboxylic acid

Tandem mass spectrometric results of various standards (Continued)
-carbaldehyde

55,65-(7E,9E,1'1Z,14Z)-dihydroxyeicosatetraenoic acid (1), 155-Hydroxy~(5Z,8Z,11Z

(6-hydroxy-~2,7,8-trimethylchroman:

*This terminology is specific to fatty acid fragmentation.
trimethyltridecyl)chroman-8

38,7u~dihydroxy-5-cholestenoic acid (15).

Table 5
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Figure 5 Results of triple-quadrupole multiple reaction monitoring analysis of the Seracare 2 validation sample set. {A) Scatter plots of
the concentrations of hydroxylated polyunsaturated ultra long chain fatty acids (hPULCFAs) 446, 448 and 450 expressed as [°Cy)-cholic acid
equivalents in asymptomatic normal controls and pre-treatrent colorectal cancer patienits, (B) receiver operating curve (ROC) analysis based
upon the corresponding scatter plots in (A). Grey dotted lines indicate the 95% confidence interval. (C) Bar charts of the average concentration
equivalents of hPULCFAs by disease stage. Error bars represent standard errors of the mean. (D) ROC analysis by disease stage.

preparatory HPLC and chemical synthesis is in progress

and will be reported in subsequent publications.

Interestingly, the metabolite markers reported in this
study represent a human-specific metabolic system. We
analysed serum samples from multiple species, including
rat, mouse and bovine, as well as multiple different sam-
ple sources including numerous cell lines, conditioned
media, tumour and normal colonic tissue from patients

in the GCI discovery set, and brain, liver, adipose and

other tissues from various species, all of which failed to
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show any detectable levels of these hPULCFAs (results
not shown). We also could not detect these molecules
in various plant tissues or grains, including policosanol
extracts which are rich in saturated C28 and longer-
chain fatty acids [43,44]. This suggests that the mole-
cules may originate from human-specific metabolic
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Figure 6 Results of triple-quadrupole multiple reaction monitoring analysis of the Chiba validation sample set. (A) Scatter plots of the
concentrations of hydroxylated polyunsaturated ultra long-chain fatty acids (hPULCFAs) 446, 448 and 450 expressed as [1>C,}-cholic acid
equivalents in asymptomatic normal controls, and pre-treatment colorectal cancer patients, (B) receiver operating curve {ROC) analysis based
upon the corresponding scatter plots in (A). Grey dotted lines indicate the 95% confidence interval, (C) Bar charts of the average concentration
equivalents of hPULCFAs by disease stage. Error bars represent standard errors of the mean. (D) ROC analysis by disease stage.

processes, such as specific p450-mediated and/or micro-
biotic processes. The lack of detection in tumour or
normal colonic tissue suggests that the metabolites are
not ‘tumour-derived markers’ and, combined with the
high rate of association in stage I cancer, it is not likely
that the reduction is the result of tumour burden. Ana-
lysis of post-surgery samples is currently in progress to
address this question. However, the further reduction of
levels observed in some late stage Japanese cases (Figure
6) could be explained if lower levels of the hPULCFAs
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were indeed indicative of progression rate in this group.
It is also important to note that in all control groups
reported in this paper, subjects were not colonoscopy-
confirmed to be free of tumours or advanced neoplasia.
Based upon colonoscopy results by Collins et 4l in aver-
age-risk subjects, up to 10% of an asymptomatic popula-
tion can be positive for advanced neoplasia [45].
Therefore, the ability of these metabolites to discrimi-
nate between subjects at risk and not at risk for CRC is
likely under-estimated in our results. Studies are
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currently in progress to evaluate endoscopy-confirmed
controls, to assess the effect of treatment on the mar-
kers, and to investigate any possible association with
various grades of colon pathologies and non-malignant
Gl disorders as well as other cancers.

Although fatty acids of this length containing hydroxyl
groups have never been reported as far as we are aware,
they appear to resemble a class of hydroxylated very
long-chain fatty acids knows as the resolvins and protec-
tins that originate from the n3 essential fatty acids EPA
and DHA, respectively, which are critical in promoting
the resolution of acute inflammation. The inability to
sufficiently ‘resolve’ acute inflammation is the leading
theory behind the establishment of chronic inflamma-
tory states which underlie multiple conditions including
cancer [46] and Alzheimer’s Disease [47]. Of particular
relevance is the effect of pro-resolution long-chain
hydroxy fatty acid mediators on intestinal inflammatory
conditions such as irritable bowl disease (IBD), Crohn’s
Disease, Colitis and colon cancer. Both Resolvin E1
(RVEL) and Lipoxin A4 (LXA4) have been implicated
with protective effects against colonic inflammation.
RvE1 was shown to protect against the development of
2,4,6-trinitrobenze sulphonic acid-induced colitis in
mice, accompanied by a block in leukocyte infiltration,
decreased proinflammatory gene expression, induced
nitric oxide synthase, with improvements in survival
rates and sustained body weight [48]. Similarly, LXA4
analogues have been shown to attenuate chemokine
secretion in human colon ex vivo [49], and attenuated
50% of genes, particularly those regulated by NFxB
induced in response to pathogenically induced gastroen-
teritis [50]. In vivo, LXA4 analogues reduced intestinal
inflammation in DSS-induced inflammatory colitis,
resulting in significantly reduced weight loss, haemato-
chezia and mortality [50]. Structurally, resolvins and
protectins (as well the n6 lipoxins) comprise mono-, di-
and tri-hydroxylated products of the parent VLCFAs,
catalyzed by various lipoxygenases, cyclooxygenases and
p450 enzymes [51-55]. The possibility that the hPULC-
FAs reported here represent elongation products of
these molecules cannot be excluded. Future studies will
be required to address the origin, as well as the biologi-
cal role, if any, that these molecules may play in defend-
ing the body against CRC development.

Although we report results from multiple case-control
cohorts each having a limited sample size, the average
AUC across all the samples reported here was 0.91 +
0.04, which translates into approximately 75% sensitivity
at 90% specificity with little to no disease-stage bias.
The real-world screening performance is currently being
evaluated through two large ethically approved prospec-
tive clinical trials, one in collaboration with the Sas-
katchewan Cancer Agency and the Saskatchewan
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Provincial Government (PDI-CT-1; # = 5000), and the
other with the University of Calgary (PDI-CT-3 # =
1500). Clinically relevant questions are being addressed,
including correlation between hPULCFAs and CRC in a
prospective hospital screening environment, correlation
with other non-malignant gastrointestinal disorders
(such as IBD, Crohn’s and colitis), whether there is any
correlation with various stages of neoplasia or polyps
and family history and whether subjects with low
hPULCFA levels show higher incidence rates of CRC
than subjects with ‘normal’ levels over time,

In summary, we have identified a consistent reduction of
novel circulating hPULCFAs in CRC patients which could
have considerable implications for CRC diagnosis and
screening and possibly prevention and treatment. Adher-
ence to currently recommended screening modalities,
namely faecal occult blood testing and colonoscopy, is
poor due to a number of factors including public accep-
tance, risk, cost and available resources. The use of a
serum-based test to screen the population for subjects who
are high risk would focus endoscopy rescurces on subjects
who need it the most, resulting in a higher detection rate,
particularly in early stages of the disease. Given the positive
prognosis of early-stage therapeutic intervention, it is
tempting to speculate that hPULCFA-based screening
could one day result in decreased CRC mortality.

Conclusions

‘We have shown that comprehensive non-targeted metabo-
lomics technology based upon high-resolution FTICR mass
spectrometry represents a powerful and robust approach
for small-molecule biomarker-driven discovery. Accurate
mass measurements combined with conventional MS/MS
resulted in the rapid identification of key structural charac-
teristics of the novel metabolites discovered and the assign-
ment of putative chemical structures. The subsequent
translation of these metabolite biomarker discoveries into
an efficient and clinically viable high-throughput semi-
quantitative triple-quadrupole platform represents a signifi-
cant advancement in the clinical implementation of bio-
marker discoveries. The reduction of systemic
hydroxylated ultra-long chain fatty acids in CRC patients
raises intriguing biological and aetiological questions given
the large numbers of sporadic CRC cases and the heavy
influence of lifestyle and diet on risk. Further research is
ongoing regarding the potential role(s) these novel mole-
cules play in CRC progression and whether they have any
association with previously established risk factors,

Additional file 1: Fourier transform ion cyclotron resonance mass

spectrometry feature data.

Click here for file

[ hitp//www.biomedcentral com/content/supplementary/1741-7015-8-13-
| S1XLSX]
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Additional file 2: Top 50 discriminating masses (based on student’s
t-test) of each discovery project. Masses shaded grey were detected in
the top 50 in two of the three studies. Indicated are the detected
accurate mass, the cornputationally predicted molecular formula (for
masses shaded in grey), the mass difference between the detected mass
and mass of the predicted molecular formula in part per million (pprm),
the mode of analysis {electrospray ionization; atmospheric pressure
chemical ionization), the Pvalue (based on an unpaired student’s t-test)
between the average peak intensity of controf subjects versus colorectal
cancer {CRC) patients and the average peak intensity ratio between CRC
patients and controls,

Click here for file

{http/Awww.biomedcentral com/content/supplementary/1741-7015-8-13-
S2PNG]

Additional file 3: Tandem mass spectrometry spectra for biomarker
m/z 446.

Click here for file
[http/Awwnnbiomedcentral.corn/content/supplementary/1741-7015-8-13-
S3PNGI

Additional file 4: Tandem mass spectrometry spectra for biomarker
m/z 448,

Click here for file

[ http/Awww biomedcentral com/content/supplementary/1741-7015-8-13-
S4PNG]

Additional file 5: Tandem mass spectrometry spectra for biomarker
m/z 450.

Click here for file

[ http/Awww.biomedcentral com/content/supplementary/1741-7015-8-13-
S5PNG]

Additional file 6: Tandem mass spectrometry spectra for biomarker
m/z 464.

Click here for file

{ http/Awww blomedcentral corn/content/supplementary/1741-7015-8-13-
S6.PNG]

Additional file 7: Tandem mass spectrometry spectra for biomarker
m/z 466. -

Click here for file
[http/Awww.biomedcentral.com/content/supplermentary/1 741-7015-8-13-
S7PNG]

Additional file 8: Tandem mass spectrometry spectra for biomarker
m/z 468.

Click here for file

[ http/Awww.biomedcentral com/content/supplementary/1741-7015-8-13-
SBPNG]

Additional file 9: Tandem mass spectrometry of hydroxylated
polyunsaturated ultra long-chain fatty acids.

Click here for file
[http//www.biomedcentral.com/content/supplementary/1741-7015-8-13-
SOPNG]

Additional file 10: Purification process to obtain hydroxylated
polyunsaturated ultra long-chain fatty acids (hPULCFA) enriched
fractions from human serum. Dried organic extracts of serum were
initially purified in a reversed phase flash column chromatography using
water/acetonitrile step solvent gradient to obtain serni purified hPULCFA
enriched fraction (F9). Several of F9s were combined for a secondary
purification step in a normal phase flash column chromatography using
hexane/chloroform/methanc step solvent gradient to obtain highly
hPULCFA enriched fraction 7 (F7.2).

Click here for file

[ http//Awww.biomedcentral.com/content/supplementary/1741-7015-8-13-
ST0PNG]

Additional file 11: Liquid chromatography/mass spectrometry
spectra of Stage 1 fraction 9 (F9) containing a mixture of fatty acids
and colorectal cancer biomarkers obtained after fractionating
serum extract on reverse phase column.

Click here for file

[ http/Awww.biomedcentral com/content/supplementary/1741-7015-8-13-
S11.PNG]

Additional file 12: Liquid chromatography/mass spectrometry
spectra of Stage Il fraction 7 (F7) containing approximately 65%
enrichment of hPULCFAs,

Click here for file

[http/iveww biomedcentral.com/content/supplementary/1741-7015-8-13-
S12PNG]

Abbreviations

APC: adenomatous polyposis coli; APCE atmospheric pressure chemical
ionization; AUC: area under the curve; BUuOH: butanol; CRC: colorectal cancer;
CUR: curtain gas; ESE electrospray ionization; EtOAC: ethylacetate; FCC: flash
column chromatography; FTICR-MS: Fourier transform ion cyclotron
resonance rass spectrometry; G5: gas source; HPLC: high performance liquid
chromatography; hPULCFA: hydroxylated polyunsaturated ultra long-chain
fatty acid; LC: fiquid chromatography; LXA4: lipoxin A4; MRM: multiple
reaction ronitoring: MS/MS: tandern mass spectrometry; mz: mass 1o charge
ratio; NC: nebulizer current; NMR: nuclear magnetic resonance; ppm: part per
milion; Q-TOF: quadrupole time-of-flight; ROC: receiver-operator
characteristic; RvET: resolving E1; SELDI: surface-enhanced laser desorption
ionization; TLC: thin layer chromatography; TO-MRM: triple-quadrupole MRM;
VLCFA: very long-chain fatty acid.
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