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as they require individual data. The cleaning results are linked from ‘study
details’ on the web.

Data analysis

Standard statistical genetic analyses are performed by plink'® and Haploview.!!
Additional analyses such as the Akaike information criterion, epistasis and
more complicated ones (for example, genetic analysis considering potential case
samples existing in the control samples, which sometimes becomes a concern
for diseases that develop in old age) are calculated by internally developed
programs. The major statistics include P-values based on an allelic model,
genotypic model, trend model, dominant model, recessive model and permu-
tation test results of these models; and Bonferroni’s correction and false
discovery rate for multiple testing. These methods are also shown in ‘study
details’ When submitted data consist of only genotype frequency data, the
genome-wide permutation test is skipped.

Database contents and utility
The DB contents (as of April 2009) are summarized in Table 1.

User data other than GWAS data, such as expression data and epigenetic
data, are also accumulated and can be displayed on the graph. Although clinical
data are not currently accumulated in the DB, they can be added if submitted.
Major tables are summarized in Supplementary Table 1.

A snapshot of the GWAS DB is shown in Figure 2. Figure 2a shows the top
page of the GWAS DB. When the ‘SNP control’ tab is selected, the interface
jumnps to the SNP control DB, which is affiliated to the GWAS DB and contains
allelic frequencies, genotypic frequencies, Hardy—Weinberg equilibrium tests
and estimated haplotype frequencies of Japanese control samples. Bird’s-eye
view (Figure 2b) and Manhattan plot (Figure 2c) are provided to draw P-values
of each model. A genome region can be selected from both (Figures 2b and c),
and the results of statistical genetic analysis along with other information such
as exon—intron information and copy number variations (CNVs) can be
displayed in tables and graphs to facilitate the identification of diseasc-related
SNPs, as shown in Figure 2d. Furthermore, comparisons among various study
results obtained by different institutions and/or different platforms can be
carried out easily by plotting their graphs on the web (using the ‘add study’
function in Figure 2d). When the published disease-related gene or SNP is
registered as shown in Figure 2e, data are plotted as a known disease-related
gene/SNP in the graph (Figure 2d). Epistasis data are also accumulated and
drawn as a network graph using Graphviz (http://www.graphviz.org/), as
shown in (Figure 2f). Data can be scarched by SNP ID (dbSNP ID #rs,
affymetrix SNP ID and so on), gene name, disease name and so on. The study
design and analysis protocols can also be browsed.

Statistical results are also accumulated on a DAS server, and they can be
browsed using the Gmod Gbrowse (http://gmod.org/wiki/Main_Page)-based
browser (http://gwaslifesciencedb.jp/cgi-bin/gbrowse/snpdb/). Furthermore, as
a function of the DAS scrver, data on other DAS servers such as Ensemble can
be called up. This function is useful to superimpose data from other DBs onto
GWAS data. The GWAS DB is designed to be user friendly for researchers
unfamiliar with GWAS to promote disease-related studies.

Further development

A recent topic of interest is genome-wide association analysis coupled with
other data such as pathway data'? to compensate for the low statistical power in
disease-associated candidate SNPs. The function to browse or calculate SNP/
SNP pair P-values on the basis of the GWAS result, along with other data, will
be added to this DB to facilitate the generation and understanding of user
hypotheses. .

The relationships betwcen CNVs and diseases have begun to emerge in
recent studies.”? Although concerns remain about the quality of detected CNVs,
genomic locations and frequencies of CNV regions and their case—control
association study results will be incorporated into this DB. Furthermore, in the
near feature, new high-throughput techniques such as short-read sequencing
will be applied for GWAS, and this DB will be improved to suit the new
experimental techniques.
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ABSTRACT: Torrents of genotype-phenotype data are
being generated, all of which must be captured, processed,
integrated, and exploited. To do this optimally requires the
use of standard and interoperable “object models,”
providing a description: of how to partition the total
spectrum of information being dealt with into elemental
“objects” (such as “alleles,” “genotypes,” “phenotype
values,” “methods”) with precisely stated logical inter-
relationships (such as “A objects are made up from one or
more B objects”). We herein propose the Phenotype and
Genotype Experiment Object Model (PaGE-OM; www.pa-
geom.org), which has been tested and implemented in
conjunction with several major databases, and approved as
a standard by the Object Management Group (OMG).
PaGE-OM is open-source, ready for use by the wider
community, and can be further developed as needs arise. It
will help to improve. mformatlon management, assist data
integration, and sunphfy the task of mformatxcs resource
design and construction, for. genotype and phenotype data
-projects. ’
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Introduction

Individual genomes vary extensively, and much of this variation
can impact disease and other phenotypes. Technological progress has
made it possible to study such genotype to phenotype (G2P)
relationships in a genome-wide manner, and deep whole-genome
resequencing may soon be economically available as the ultimate
experimental strategy [Mardis, 2008]. To complement this, clinical
sample biobanks have been steadily growing in size and proficiency,
providing large-scale resources to support the G2P field [Smith et al,,
2005]. Consequently, new G2P correlations are being identified with
increasing frequency, and the pressure is on to use this elemental
information in the most optimal fashion—both for improved
biomedical understanding and in the context of drug development
and clinical practice. To enable this, databases and informatics
resources must be developed to support the data-handling challenges
posed by vast numbers of dispersed and multifarious G2P datasets.
Those systems must be able to interoperate on many levels of data
processing—such as security, validation, integration, exchange,
interrogation, presentation, and analysis.

To achieve the desired widespread interoperability, G2P data
systems must be based upon well-designed and robust standards.
The role of standards and unified effort in modern biomedicine is
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increasingly paramount, and reflected by coordination initiatives
such as the Human Genome Epidemiology-Strengthening the

Reporting of Genetic Association studies (HuGE/STREGA; -

www.cdc.gov/genomics/hugenet) and the National Cancer Insti-
tute-National Human Genome Research Institute (NCI-NHGRI)
guidelines [Chanock et al., 2007] regarding genetic association
studies, the Human Variome Project [Cotton et al., 2007], and the
Public Population Project in Genomics (P3G) biobanking
initiative [Knoppers et al., 2008]—all of which help to guide best
practice in the creation of primary G2P datasets. But once created,
these datasets need to be electronically disseminated and utilized.
To standardize such operations, the way particular data compo-
nents are named—the “semantics” of the data—must be carefully
controlled. Precise and detailed ontologies, vocabularies, and
nomenclatures are therefore being developed to support the G2P
field. Finally, to enable informatics systems to work together in
processing data content, the structure of the data—its “syntax™—
must also be controlled so that it matches (or can be made to
match) that of an agreed standard.

The structure of data is described by way of an “object model,”
which may also be called a “data model.” This provides a way to
compartmentalize the domain of interest into its principal
elements, and define how these “objects” relate to one another.
For example, a G2P object model could involve objects called
Genomic_variation and Variation_assay, and associate these to
indicate which Variation_assay can interrogate which Genomic_
variation. This would suffice for singleplex assays, but some
Variation_assays are multiplex in nature (ie., able to score
simultaneously more than one site of Genomic_variation). There-
fore, one might wish to rename Variation_assay as Multi_
variation_assay and include a third and distinct model component
called Variation_assay—i.e., the concept of a subsection (e.g.,
oligonucleotides) of a Multi_variation_assay specifically involved
in scoring one of the multiplex set of Genomic_variations. For
users of the two above models to merge their lists of variations and
assays, they must both be explicit regarding which model they are
using, and rules must be available that dictate how to convert data
from one structure to the other. Once this is done, and the
specifications are published and made freely available, then future
information technology (IT) developers can quickly and easily
adopt optimal models without having to repeatedly tackle the
same complex modeling challenges. The systems they develop will
then be syntactically interoperable with other projects that use the
same (or equivalent) object models, and tasks such as data
submission to, or between, depositories will be greatly simplified.
Furthermore, as the subject matter of the G2P field further
evolves, new data features and modeling solutions can be fed back
into the standard object model, thereby keeping G2P data
resources current in design and fully interoperable.

Many object modeling projects are now underway across
various biomedical domains, not least the MicroArray and Gene
Expression (MAGE) object model [Spellman et al, 2002], the
Proteomics Standard Initiative Model for Molecular Interaction
(PSI-MI) data [Hermjakob et al., 2004}, the Functional Genomics
Experiment (FuGE) initiative [Jones et al., 2007], and the Health
Level Seven Clinical Genomics Model (HL7-CGM; www.hi7.org).
For G2P research, however, merely a few isolated projects have
reported modeling initiatives; such as an Extensible Markup
Language (XML)-specific model created by the Pharmacogenetics
and Pharmacogenomics Knowledge Base (PharmGKB) database
[Whirl-Carrillo et al., 2008], the Genomic Sequence Variation
Markup Language (GSVML) (see entry for ISO/DIS 25720, Health
Informatics—-GSVML; www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail htm?csnumber = 43182), and the Extensible Geno-
type and Phenotype Model (XGAP; www.xgap.org). Consequently,
genetic -investigations such as mutation detection, association
analysis, linkage studies, gene knockouts, and (re-)sequencing
presently lack a standard object model. To address this deficit, we
assembled an international consortium of 20 groups engaged in
genotype-phenotype projects, and formulated the Phenotype and
Genotype Experiment Object Model (PaGE-OM), as presented here.
Subsequent efforts will be needed to move towards full data
interoperability between PaGE-OM and models from allied
domains, such as those listed above, and cross-project collaborations
would be helpful in bringing this about.

The current specification of PaGE-OM aims to strike a balance
between being too generic (as would be required to support any
and all G2P data management situations) and too specific (as
would be required if it were to support just one experimental
paradigm). Nevertheless, the goal is to enable the structured
capture of at least the minimum amount of information required
to properly report most genetic experiments involving genotype
and/or phenotype information. The model’s subcomponents
could be tailored to suit particular applications—and any such
further developments should be fed back into the PaGE-OM
specification to increase its utility.

Materials and Methods

Technical Objective

The PaGE-OM project was instigated to create a specification
for a platform-independent conceptual object model that is able to
provide a common solution and framework for the management
of DNA variation data, phenotype data, and G2P experimental
findings. It is not intended to include a platform-specific
implementation, such as a relational database or a World Wide
Web Consortium (W3C) XML Schema—though the latter has
been developed as part of the Object Management Group (OMG)
validation process (XML schema v1.0b2 at the project website).
The solution is not dependent upon, nor does it provide, any
particular G2P domain ontology, though the names employed for
its component objects are carefully chosen and precisely defined.

Technical Presentation

PaGE-OM was built around five core domains: GENOTYPE,
PHENOTYPE, EXPERIMENT, SAMPLE, and COMMON. Within
each domain, the range of information to be modeled was
segmented into a number of logical, elemental, and precisely
defined data objects. These components are joined by lines of
“association” to indicate all the permitted, rational interrelation-
ships between the various parts. These associations also specify
possible cardinalities, for example to declare that “one” Genomic-
variation can have “one or many” (but not “zero”) component
Alleles. In figures, open arrowheads signify subclass to superclass
relationships, and open diamond arrowheads signify aggregation
type relationships (wherein one class object represents the thing
created by a collection of the other class).

The figures in this work are limited to those that present a high-
level overview of the complete model, and these were generated
directly from the most current development version (PaGE-OM
v1.2), which itself is evolved from the formal OMG specification
of December 2008 (PaGE-OM v1.0b2), For purposes of clarity and
explanation, inherited attributes are not shown for subclasses, and
singular and plural forms of class names are used interchangeably,
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whereas only the singular form is valid in the formal PaGE-OM
model. Each PaGE-OM object name is shown italicized when
referred to in the text (ie., as Object_name), and in use case

examples in figures the object instances are shown capitalized (i.e.,
as OBJECT).

Development Procedure

PaGE-OM was developed by an international consortium of
domain experts by way of a series of meetings and online
collaboration, This consortium previously provided the Poly-
morphism Markup Language (PML) model, now registered by the
OMG as the “Single Nucleotide Polymorphisms Specification”
(www.omg.org/cgi-bin/apps/doc?dtc/05-06-02.pdf).  PaGE-OM
was developed from PML, and PaGE-OM v1.0 was accepted
(March 2008) as an OMG standard, after which the model became
a formal OMG specification after an implementation was
demonstrated (December 2008). PaGE-OM is a fully-open
standard, and community interaction and participation is strongly
encouraged. Complete documentation, descriptions of emerging
implementations, case examples (presented as “schemalets”), a
first-version XML specification, and modes of communication are
available online (Wwww.pagéom.org). When reviewing PaGE-OM at
this website, it should be noted that class diagrams are reused
from earlier versions of the model (modules “SNP” and “SNP2”),
and so these should be considered as integral parts of PaGE-OM.

PaGE-OM development employed Enterprise Architect software
(Sparx  Systems, Creswick, Victoria, Australia; www.sparxsys-
tems.com.au) and the Unified Modeling Language (UML). The
UML model consists of classes that represent objects, and the
associations between these objects. Most associations were made
bidirectional, deferring directionality to specific implementations.
This allows for flexible but consistent implementation of PaGE-
OM to suit multiple purposes; e.g., to describe multiple assays per
marker in a Laboratory Information Management System or
multiple markers scored by a single assay in an association
database entry.

Results

PaGE-OM is designed to support diverse activities involving
data components related to the genome, the phenome, and data
that correlate the two. The model is species-independent, and able
to support both clinical and research undertakings. At the highest
level, PaGE-OM separates genotype and phenotype information
into two distinct domains (GENOTYPE and PHENOTYPE), with
these being optionally connected via a third domain (EXPERI-
MENT). A SAMPLE domain is then provided to structure data
pertaining to study subjects that may be investigated. Finally, there
is a COMMON domain, which specifies various object concepts
relevant throughout PaGE-OM. Below, we provide a simplified
abstraction of PaGE-OM, to illustrate the main design features.
Complete details of the model, case “schemalets,” and an XML
imiplementation, should be sought at the project website
(www.pageom.org).

SAMPLE Domain

The SAMPLE domain specifies the PaGE-OM structure for
information that characterizes study subjects and their derivative
samples. It covers the various “classes” of biological resources that
might be used to generate genotype,, 1phenotype, or G2P data,
namely; Molecular_sample, meaning ‘biological samples such as
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blood DNA taken from a study subject; Individual, meaning a
complete study subject; Panel, meaning a set of similar study

~ subjects; and Abstract_population, meaning a broad collection or

populace of one or more study subjects. Pedigrees are not formally
modeled via a distinct class, but can be specified by simply listing
all first degree relatives for each Individual. A family group could
also, optionally, be listed as a Panel. Logical associations between
the SAMPLE classes were then elaborated, as shown in Figure 1.

Panels are naturally comprised of Individuals, and the
cardinality of this relationship is “zero or many to zero or many”
(i.e., Panels can have no or up to many Individuals specified for
them, and Individuals can be represented in no or up to many
Panels). This aggregation type of relationship is indicated in the
model by a line that joins these two entities, with an open
diamond drawn where the line joins the Panel class along with
“0..%” (asterisk meaning many) at each end. The Panel class
additionally has a “zero or one to zero or many” association with
itself, to allow for situations where one Panel may be split into
many derivative Panels. This association is indicated by a line
running from, and back to, this class. Molecular_samples are
derived from Individuals, with one Individual potentially provid-
ing no or up to many Molecular_samples. In contrast, a
Molecular_sample can only be stated to have originated from no
or up to one Individual. Therefore, this association is represented
by an adjoining line with “0..1” at the Individual end and “0..%” at
the Molecular_sample end. The Molecular_sample class then has its
own recursive association with itself, as Molecular_samples could
be subdivided to give further Molecular_samples.

The Abstract_population class captures population specific
information, such as ethnicity and language, that may apply to
Individuals or Panels, but within PaGE-OM this class is not
primarily intended to represent a population in the usual sense of
the word (of any scale, either within or between studies). Instead,
Abstract_population is being used as a modeling construct called a
“superclass” to represent a generalization of other “subclasses”—
in this case Panel and Individual. It can therefore be largely
ignored by the casual reader. This kind of association is
symbolized by adjoining lines that carry special open arrowheads,
and no cardinality is specified for such relationships. In the
modeling diagram, and in real-world implementations of PaGE-
OM, the Abstract_population class is able to function as either of
its subclasses while also allowing for additional data elements to be
represented (e.g., ethnicity and language). Another way to state
this is to say that Panels and Individuals are being handled in the
model as specialized forms of Abstract_population. One important
consequence of this is that any logical lines of associations drawn
to Abstract_population from any other class would be equally valid
if drawn directly to either of its subclasses.

Abstract_observation_target is the final class in the SAMPLE
domain, and this provides a way to represent any biological entity
upon which an investigation might be performed; ie, a
Molecular_sample or an Abstract_population (and therefore also
its subclasses Individual and Panel). It is thus presented as a
superclass to each of these subclasses. The Abstract_observation_
target class provides a convenient means to represent the whole of
the SAMPLE domain in high-level views of PAGE-OM.

GENOTYPE Domain

The GENOTYPE domain of PaGE-OM specifies a structure for
data components that relate to the genome and its testing in the
laboratory. It is based around modern genetic and genomic modes
of experimentation. PaGE-OM should therefore support most
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SAMPLE domain of PAGE-OM. A: The principal classes (colored blue) and class relationships from the SAMPLE domain, as

described in the text. B: Shows how the model in (A) could be used to represent a cohort of normotensive Japanese, giving further details for a
brother and sister from that cohort, and indicating two DNA samples taken from the male individual. The Abstract_population class is not used

in this example use case, as its primary role is as a modeling superclass.

activities wherein singleplex or multiplex genotyping of prede-
fined DNA sequences is performed to establish which of one or
more possible alleles is present in one or more Abstract_observa-
tion_targets. Due to ongoing technical advances, this kind of data
is growing rapidly in scale, implying an urgent need for a
supporting object model. PaGE-OM should serve this purpose, at
least for qualitative detection of “simple” sequences and sequence
variations, The model has not yet been validated for use upon
more complex challenges, such as quantitative genotyping of
alleles, assessment of methylation, detection of DNA copy-number
differences, or next-generation sequencing of extensive DNA
stretches or genomes—though these activities should be possible
to support via PaGE-OM, given small extensions to the model that
would be allowed for by the system’s flexible design. Such work is
ongoing, driven by the consortium that has produced PaGE-OM
to date, in partnership with the Genotype-to-Phenotype (GEN2-
PHEN) project (www.gen2phen.org).

As shown in Figure 2, the GENOTYPE structure is built around
the class called Genomic_variation, designed to represent what are
commonly termed “markers”; i.e., short sequences of DNA from
an organism’s genome, within which a particular string of one or
more bases may vary. The Genomic_allele class is used to list the
one or more sequence alternatives for the variable segment
(commonly termed “alleles”), and this is joined to the
Genomic_variation class by an aggregation type of relationship.
Fach Genomic_variation may be genotyped by the deployment of

zero or up to many Variation_assays, and additionally the
model includes a Multi_variation_assay class that operates as
elaborated in the Introduction (though for simplicity this is not
shown in Fig. 2). )

Upon using a Variation_assay to interrogate an Abstract_obser-
vation_target of type Molecular_sample or Individual, a single
genotyping result is generated. This data is captured by the
Assayed_genomic_genotype class, via its associations to Abstrac-
t_observation_target and Variation_assay, as well as by a direct
relationship to the Genomic_variation class for scenarios in which
no Variation_assay has been specified or recorded.

In genotyping studies, however, only certain Assayed_genomic_
genotypes will be valid for any one Genomic_variation, based upon
its constituent Genomic_alleles (e.g., testing a T/C human
autosomal SNP could not generate a G:T heterozygote genotype),
and so PaGE-OM includes a class called Latent_genotype to
represent these valid alternatives. The Latent_genotype class is
therefore associated via an aggregation type of relationship with
the Genomic_allele class where its potential constituents would be
listed, and it is also associated with the Assayed_genomic_genotype
class to rationally constrain permitted values for each' “measured
genotype.” But this is only the first of two possible ways the
Latent_genotype concept can be used. It may also be employed to
list the set of genotypes that a particular Variation_assay is actuall)}
able to detect—since some genotyping methods for some markers
may fail to resolve all possible valid genotypes. This “detectable
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Figure 2.  GENOTYPE domain of PAGE-OM. A: The principal classes (colored red) and class relationships from the GENOTYPE domain, as
described in the text. One additional class (colored blue) is also included, taken from the SAMPLE domain. At the project website, sections of
the model called Marker, Frequency, and Assay are provided to represent subsections of the GENOTYPE domain. As indicated, the model offers
a choice between using interclass relationships “with assay details” and “without assay details,” for scenarios in which assays details are or
are not being considered, respectively. Similarly, the model makes a distinction between using the Latent_genotype class to process data on
“detectable genotypes” (theoretical genotypes that an assay could produce) and “measured genotypes” (genotypes produced in a real sample).
B: Shows how the model in (A) could be used to represent typical genotyping results, indicating the detection of a C/T genotype (1/3 possible
genotypes) at marker rs12345 in one individual from a Japanese normotensive cohort, plus allele frequency data for this marker in that total
cohort. Assay details are not being recorded in this example, but this would be possible via the Variation_assay class. Likewise, the cohort’s

genotype frequency data are not presented, but this would be possible via the Genomic_genotype_population_frequency class.

genotype” role is enabled via an association between Latent_gen-
otype and Variation_assay, and it will become increasingly
important as more complex forms of DNA variation become
examined in the future.

In addition to single genotype results, marker frequency data
also needs to be handled. This is achieved by including a Frequency
class to carry actual frequency values, and connecting this to the
Abstract_observation_target and Variation_assay classes. Frequency
is also directly associated to the Genomic_variation class so that
frequencies can be meaningfully presented in scenarios where no

972

HUMAN MUTATION, Vol. 30, No. 6, 968—977, 2009

Variation_assay is identified. In reality of course, marker frequency
data is made up of both allele frequency and genotype frequency
data. Reflecting this, the Frequency concept represents a superclass
that sits over two subclasses Genomic_allele_population_frequency
and Genomic_genotype_population_frequency. The first of these is
associated with the Genomic_allele class so that one can state
which allele the frequency value refers to, and the second is
associated with the Latent_genotype class to specify the valid
genotype whose frequency is being stated. One further supeljclass
of note is called Genomic_observation. This is not shown in Figure
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2 for simplicity, but it sits over the subclasses Assayed genomic_
genotype, Frequency, and Genomic_allele, and it is intended to
represent any of the above result types from a genetic analysis.

PHENOTYPE Domain

The PHENOTYPE domain of PaGE-OM specifies a structure
for data that relates to any conceivable phenotype. The solution is
designed to be equally applicable to human and model organism
studies, to clinical and research phenotypes, to descriptions of
molecules, cells, tissues, or whole organisms, and to quantitative
as well as categorical traits. This implies extreme diversity and
complexity for the phenotype realm that needs to be supported,
and to solve this modeling problem we devised a simple and
elegant way to partition the concept of “a phenotype” into its
fundamental components.

In PaGE-OM the term “phenotype” is considered to have three
fundamental elements. First, there is the “feature” of the phenotype,
such as “blood pressure at rest”—meaning the concept that an
individual at rest has a certain blood pressure that can be measured.
Second, there is the “method” of the phenotype, such as “manual use
of an upper arm pressure cuff plus stethoscope with subject seated
and rested for 5 minutes”—meaning the precise way in which the
phenotype was assessed. This component is important, because while
some similar measurement regimes will be equivalent in what they
assess, others will actually report on different phenotype features and/
or have differing degrees of accuracy. For instance, the given example
would not be equivalent to measuring blood pressure immediately
after exercise, nor necessarily equivalent if the measurement were
performed by an automated cuff and pulse detector. Third, there is
the “value” of the phenotype, such as “high blood pressure of 160/
90 mmHg"—meaning the actual finding generated by measuring the
blood pressure. This example also nicely illustrates how there are two
subconcepts in the value component: 1) any number of primary
measurement values (in this case two values, 160 and 90 mmHg for
systolic and diastolic pressures); and 2) the single value conclusion or
inference (namely “high blood pressure”), which is typically derived
from the primary measurements. Some phenotype value datasets will
comprise information relating to both these subconcepts, whereas
others may only need to use just one of them.

As shown in Figure 3, to reflect the feature+method+value
conceptualization of a phenotype, PaGE-OM has classes named
Observable_feature, Observation_method, and Observed_value. The
root of these names is “Observation” rather than “phenotype,”
since as well as using these classes to support phenotype data we
anticipate also using them to handle environmental data. Work is
now underway to validate this utility, but until that is complete we
do not formally sanction this extended use of the
model. Nevertheless, to signal this intended dual usage, the
Observable_feature class is here presented as a superclass over both
Phenotype_feature and Environment_feature subclasses.

Sitting over Observable_feature is a class called Observable_fea-
ture_category, which provides a flexible means by which
Observable_features can be variously classified. For example, one
might implement a categorization based upon anatomic scale,
and/or one based upon a disease classification, and/or one might
use controlled keywords. These categorizations will sometimes
derive their list of available options from formalized ontologies.
Using ontologies here also means that the logical interrelation-
ships between available categories is predefined, and such useful
structures are then automatically propagated down to Observa-
ble_features connected to the various ontology terms (e.g., “Type
I Diabetes Disease Status” might be defined in a disease ontology

to have “subphenotypes” such as “Body Mass Index” and
“Glucose Tolerance”). This organization of terms is managed in
PaGE-OM via the recursive self-association indicated for Ob-
servable_feature_category. .

A “one to zero or many” association connects the Observa-
ble_feature and the Observation_method classes, since each
Observable_feature may be defined by no or up to many different
phenotype methods (though preferably at least one). Similarly, a
“one to zero or many” association is placed between the
Observation_method and the Observed_value classes, since each
Observation_method may be referencing no or up to many
different sets of measurement values. The two level conceptual
split of measurement values into measured and inferred types is
conveniently allowed for by establishing a recursive self-associa-
tion for the Observed_value class, with the manner of distinction
between primary and inferred value types being discretionary and
managed at the level of model implementation.

EXPERIMENT Domain

The EXPERIMENT domain of PaGE-OM specifies a structure
that brings together data from the GENOTYPE and PHENOTYPE
domains, along with experimental result information that
elucidates how genetic variations influence phenotypic variation.
It is based upon data elements traditionally employed for
reporting experimental investigations in manuscripts and similar
reports. In that respect, this part of PaGE-OM has a lot in
common with the FuGE object model [Jones et al., 2007].

As shown in Figure 4, at the top of the EXPERIMENT domain
lays the Study class, which acts to hold summary level
information, such as the title, abstract, background, hypothesis,
conclusion, and acknowledgement parts of a scientific manuscript.
This class has an aggregation type of relationship to a class called
Genotype-phenotype_correlation_experiment, representing the set
of experiment subsections that would normally be listed in the
results section of a G2P manuscript. As such, each Genotype-
phenotype_correlation_experiment would typically be accompanied
by statements regarding the experiment’s objective and outcome.
A class called Experiment_result is then provided to capture the
distinct primary results that came out of an experiment (such as
the allele-association p-value for a SNP tested in a case~control
association study), and this is connected to Genotype_phenotype_
correlation_experiment via a zero or many to zero or many
relationship.

The Experiment_result class provides the natural location in the
EXPERIMENT domain, where connections should to be made to
components from the GENOTYPE and PHENOTYPE domains to
substantiate the Experiment_result entry. To this end, associations
are provided from Experiment result to the following other
classes: Abstract_observation_target, to state the utilized study
subject materials; Observable_feature, to state the phenotype(s)
being investigated; Observed_value, to state the phenotype
measurement(s) being considered; Genomic_variation, to state
the marker(s) examined; and Genomic_observation, to state the
genotype measurements being considered.

COMMON Domain

The COMMON domain provides discrete classes of general
utility, the need for which is common across PaGE-OM. Key
examples include Identifiable, Annotation, and Db_xref, though
there are several other such classes in the total model. Identifiable
provides a standard way to provide an identifier value and a
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Figure 3.

PHENOTYPE domain of PAGE-OM. A: The principal classes (colored purple) and class relationships from the PHENOTYPE domain,

as described in the text. One additional class (colored blue) is also included, taken from the SAMPLE domain. B: Shows how this model could be
used to represent a situation in which the blood pressure of an individual has been measured using a specific automated protocol (rather than
an alternative manual protocol) and the systolic-diastolic blood pressure ratio is thereby found to be 160/90 mmHg, which is summarized as
“high blood pressure.” The “blood pressure” phenotype could be categorized in many different ways to aid in subsequent data analysis and

integration, with this example showing the use of keywords, of which two are provided.

descriptive name for any other class in the model that can logically
have such attributes. A special case of Identifiable would be
Ontology_term (taken from FuGE [Jones et al., 2007]), which
specifies a vocabulary system that must be used. Annotation
likewise assists by providing a standard way to place annotations
on entities, and Db_xref provides a universal means to assign
cross-links to other websites or database entries on the web. Using
these COMMON classes greatly simplifies data modeling and
provides streamlined utility in implementations where all objects
must be accessed on an equal footing. Value is another powerful
support class in the COMMON domain, and it is used whenever
the type of a value cannot be stated in advance. For example, the
Observed_value for phenotypes might sometimes be a string or
sometimes a numeric value, OF even a:set of values. The solution
is, therefore, to simply reference the: alye class, wherein the value
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type.is stated and controlled as needed. Overall, the many different
COMMON domain classes of PAGE-OM are very much aligned to
those of equivalent domains in other data models.

Discussion

Current and future developments of PaAGE-OM are occurring at
a time of rapid change for the G2P data field. A recent review of
this subject, which places into context both PAGE-OM and many
of the resources and projects mentioned in this manuscript, has
recently been published [Thorisson et al., 2009b]. It was against
this backdrop that the PAGE-OM consortium became motivated
by the urgent need for a robust G2P object model, given that no
suitable generic solution yet existed.
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Figure 4. EXPERIMENT domain of PAGE-OM. A: lllustrates the principal classes (colored yellow) and class relationships from the
EXPERIMENT domain, as described in the text. Additional classes are also included, taken from the SAMPLE (colored blue), GENOTYPE (colored
red), and PHENOTYPE (colored purple) domains. B: Shows how this model could be used to represent data from a replication genetic
association study into hypertension, composed of multiple experiments on different genes. Further details are given for the experiment on “gene
y." specifically showing the outcome of a simple allele frequency association test on marker rs12345, which revealed the C allele to be a risk
factor, given its increased frequency in hypertensives compared to normotensive controls. Generic and ancillary information about the study
and its component experiments would be stored in those sections of the model. If there were redundancy regarding aspects of the Sample,
Genotype, or Phenotype information underlying multiple results, then these data instances could be related directly to the experiment or study
sections of the model, rather than to the individual results as presently shown. ’

Initial development efforts produced the PML, which was
formally approved as a standard by the OMG in December 2005
(www.omg.org/technology/documents/formal/snp.htm). That ba-
sic model, which dealt with only DNA-related information, was
further refined and extended to produce the complete PaGE-OM
that itself has recently (March 2008) been accepted as an OMG
standard, with formal approval being scheduled for mid-2009.

Database of Genotype-to-Phenotype Information (HGVbaseG2P;
www.hgvbaseg2p.org) [Fredman et al., 2004], International
Haplotype Mapping (HapMap) project database (www.hapmap.
org) [Thorisson et al, 2005], dbSNP (www.ncbi.nlm.nih.gov/
projects/SNP) [Sherry et al,, 2001], PharmGKB (www.pharmgkb.
org) [Altman, 2007], Indian Genome Variation database (IGVdb;
http://igvdb.res.in) [Indian Genome Variation Consortium, 2005],

PML comprised both a platform independent -object model, as
well as a platform-specific data exchange format based upon XML.
Both the PML model and its exchange format were successfully
tested with real datasets by the Human Genome Variation

Japanese SNP database (JSNP; http://snp.ims.u-tokyo.ac.jp)
[Hirakawa et al., 2002], and Allele Frequency Database (ALFRED;
http://alfred.med.yale.edu) [Rajeevan et al., 2003]. Small changes
and several new classes were subsequently included to create the
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PaGE-OM Platform-independent object model, which has now
been used effectively as the basis for a full database implementa-
tion to generate an XML exchange format specification, and the
HGVbaseG2P database (www.hgvbaseg2p.org) [Thorisson et al.,
2009a]. It has also been validated with respect to datasets from
dbGaP (www.ncbi.nlm.nih.gov/gap), PharmGKB (www.pharmgkb.
org) [Altman, 2007), and several locus specific databases. PaGE-
OM continues to be improved, with the latest version available for
inspection online (www.pageom.org).

Further work on PaGE-OM could proceed in a number of
different directions. The field it supports continues to evolve
rapidly (e.g., the emerging need to handle copy-number variation
and resequencing data) and new use cases are arising all the
time—implying the need to constantly evaluate and adapt the
model to address these new challenges. Furthermore, the model
could be increasingly aligned with other initiatives, such as MAGE
and FUGE, to optimize data integration possibilities between
fields. Such work is now underway, and will be reported elsewhere.
Additionally, simpler versions of PaGE-OM could be extracted
from the full model, tailored to the needs of particularly common
use cases, and data exchange specifications for each could be
created. Examples of this, called “schemalets,” are available at the
project website. Support tools could also be devised to aid groups
in their uptake and further development of PaGE-OM. All these
ideas for taking PaGE-OM forward are being considered, and
several of them are being worked upon by the GEN2PHEN project
(www.gen2phen.org). But it is important to emphasize that PaGE-
OM is a fully-open-source project that is not “owned” by any
team or institute, and any group that wishes to work further on
the model are welcomed and encouraged to do so, either
independently or in partnership with the authors of this work
and/or the GEN2PHEN initiative.

In its current form, PaGE-OM will be of use in supporting
many of the most common G2P data uses in the field, including
data capture (from experiments and the published literature), data
storage, and data exchange applications. For example; a company
whose business involved DNA analysis kits might use only the
Genomic_variation and Variation_assay parts of the model. In
contrast, a genome variation database might employ multiple
parts of the GENOTYPE and the SAMPLE domains. Projects
involving clinical data would have a need for the PHENOTYPE
and SAMPLE domains, and if their activities extended to DNA
analysis then the GENOTYPE and the EXPERIMENT domains
could also be deployed. These few examples illustrate the
modularity and flexibility of PaGE-OM, as well as the general
usability of the model in quite diverse scenarios.

Most domains of PaGE-OM encompass well-recognized data
components for which the use of the model should be
straightforward. The PHENOTYPE domain is, however, rather
more open to interpretation and hence worthy of further
explanation. First, the model’s structure is such that an
Observable_feature must always be accompanied by a sufficiently
complete Observation_method if any Observed_values are to be
given, as this method component is essential for meaningful
interpretation of the phenotype data. Another benefit of
recognizing the centrality of this method concept is that it enables
one to clearly identify where one phenotype ends and another
begins. The guiding principle would be that when one applies a
single Observation_method then the results produced represent or
demarcate the extent of one phenotype. In more complex
situations, such as the use of questionnaires to gather phenotype
data, each question should be entered as a distinct Observable_
feature plus Observation_method pairing, so that the responses to
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identical questions can be integrated across results for different
persons. The recursive association provided at the level of the
Observable_feature_category can then be used, via a “list of
questionnaires” categorization set, to group together the different
questions within a questionnaire. Another complex use case would
be the representation of quantitative phenotype data derived from
a ‘Panel of Individuals. In this situation, values that describe a
distribution (e.g., maximum, minimum, median, standard devia-
tion) would be entered as the primary Observed_values, and a
summary statement for this distribution would be entered as the
single Observed_value conclusion or inference.

In conclusion, PaGE-OM is now available as a useful object
model to support G2P activities. However, it provides only one
aspect of what is needed to move toward full data interoperability
in this bioscience area. Infrastructure components, minimal
dataset requirements, data exchange technologies, and ontologies
must also be increasingly improved and harmonized. As a
platform independent object model PaGE-OM in no way limits
these options, and may even help guide some the choices that are
made.
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Meta-analysis of genetic association studies:
methodologies, between-study heterogeneity

and winner’s curse

Hirofumi Nakaoka2 and Ituro Inoue!

Meta-analysis is a useful tool to increase the statistical power to detect gene-disease associations by combining results from
the original and subsequent replication studies. Recently, consortium-based meta-analyses of several genome-wide association
(GWA) data sets have discovered new susceptibility genes of common diseases. We reviewed the process and the methods

of meta-analysis of genetic association studies. To conduct and report a transparent meta-analysis, the search strategy, the
inclusion or exclusion criteria of studies and the statistical procedures should be fully described. Assessing consistency or
heterogeneity of the associations across studies is an important aim of meta-analysis. Random effects model (REM) meta-
analysis can incorporate between-study heterogeneity. We illustrated properties of test for and measures of between-study
heterogeneity and the effect of between-study heterogeneity on conclusions of meta-analyses through simulations. Our
simulation shows that the power of REM meta-analysis of GWA data sets (total case-control sample size: 5000-20 000) to
detect a small genetic effect (odds ratio (OR)=1.4 under dominant model) decreases as between-study heterogeneity increases
and then the mean of OR of the simulated meta-analyses passing the genome-wide significance threshold would be upwardly
biased (winner’s curse phenomenon). Addressing observed between-study heterogeneity may be challenging but give a new

insight into the gene-disease association.
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INTRODUCTION
Population-based association studies provide a powerful approach
to the identification of susceptibility genes underlying common
diseases.”2 A very large amount of information about genetic variants
in the human genome has been accumulated through the Interna-
tional Human Genome Sequencing Project and the International
HapMap Project.>® Combined with the establishment of high-
throughput single-nucleotide polymorphism (SNP) typing systems,
genome-wide association (GWA) studies have been widely applied.”
Accordingly, gene-disease associations have been reported.
Replication studies were extensively implemented to establish the
credibility of the initial positive findings. However, comprehensive
reviews of the published literatures in the era of the candidate gene
approach show that most of the initial positive associations were not
reproduced in the subsequent replication studies.®>"!® These findings
suggest that a large number of original findings were false-positive
reports and another possibility is that most of the studies were
underpowered to detect small genetic effect.®® Furthermore,
inconsistency or between-study heterogeneity of results of genetic

associations can be observed regardless of whether the associations
are true or not,'®! and it may be attributed to population stratifica-
tion, genotyping errors, differences in the pattern of linkage disequili-
brium (LD) structure and other factors.!>!6 In the era of GWA
studies, this problem remains one of the most difficult issues of
genetic association studies.!®!>6 For example, the large-scale inter-
national study of Parkinson’s disease failed to replicate 13 SNPs
identified by the previous GWA study.!”

In these circumstances, meta-analysis can be a useful tool to
combine both statistically significant and nonsignificant results from
individual studies on the same research question. In case~control
study, the odds ratios (ORs) for individual studies are combined to
calculate a summary OR. Meta-analysis improves the estimation of a
summary OR and 95% confidence interval (CI) and increases the
statistical power to detect gene-disease associations.'® Therefore,
conclusions from a meta-analysis are more robust than those from a
single small study. In addition, meta-analysis is useful to investigate
the consistency or heterogeneity of the associations across studies.
Testing for and quantifying between-study heterogeneity is an
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important aim of meta-analyses to determine whether there are
differences underlying the results of the study.!”? Addressing the
observed between-study heterogeneity could generate a new insight
into the gene-disease association.?

In this review, we begin with describing the process of meta-analysis
of genetic association studies. The statistical backgrounds, methodo-
logical issues and sources of between-study heterogeneity of
meta-analysis of genetic association studies are briefly reviewed.
Finally, we present the results of our simulation study to illustrate
the effect of between-study heterogeneity on conclusions of meta-
analyses.

LITERATURE-BASED META-ANALYSIS

In a basic meta-analysis, data are retrospectively collected from published
literatures to assess whether a gene-disease association of interest is true
or not.!® When planning a meta-analysis, it is important to define precise
search strategy beforehand.?! If relevant studies are excluded or inade-
quate studies are included, conclusions of the meta-analysis may be
biased.?? The literature search is conducted in databases such as PubMed
and EMBASE. The HuGe Published Literature database (http://
www.cdc.gov/genomics/hugenet/) is also useful, as it includes pub-
lished literatures on genetic associations and other human genome
epidemiology.?* It is important to collect the largest possible number of
studies; therefore, we should use appropriate key words. Once the
search has been completed, bibliographies of retrieved articles should
be examined for further relevant publications.

These processes make up the essential part of the methods section
of a meta-analysis, because literature-based meta-analysis is subjected
to bias caused by difficulty to identify and include all conducted and
relevant studies,'»?* and small difference in selected literatures may
alter conclusions of meta-analyses on the same genetic association.?
However, the essential features of the search strategy have not fully
reported in most meta-analyses of genetic association studies.?® In
order to avoid such biases, it may be recommended to have two or
more different researchers conducting the same search.?! When
conducting and reporting a literature-based meta-analysis, flowchart
detailing the exclusion and inclusion criteria and the number of
studies excluded and included at each step of the literature search is
useful (Figure 1).

Meta-analysis of genetic association studies may be subjected to
publication bias.1826 Publication bias tends to occur when small studies
showing negative or nonsignificant results remain unpublished and may
result in the overestimation of the genetic effect. If the presence of
publication bias is suspected by statistical tests,*”?® conclusions from the
meta-analysis should be cautiously reported and the potential impact of
the publication bias should be mentioned.'$

The results obtained from the meta-analysis would be assessed by the
following: (i) the size of the summary OR; (ii) the extent and possible
cause of between-study heterogeneity; and (iii) the sufficiency and
stability of the meta-analysis by using the cumulative and recursive
cumulative meta-analysis approaches.?-3! In the cumulative meta-
analysis, studies are sorted chronologically and a summary OR is
calculated when a new study is added.?® As a result, we can present
how the summary OR has shifted over time. The recursive cumulative
meta-analysis is an extension of the cumulative meta-analysis, where the
relative change in the summary OR by adding a new study is
evaluated 3!

CONSORTIUM-BASED META-ANALYSIS
Consortium-based meta-analysis is the meta-analysis of individual
patient data through the collaboration of consortium of investigators.
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Literature identification in database
search {e.g. PubMed, EMBASE and
HuGe), n

Excluded, n
Reason 1, n
Reason 2, n

Abstracts retrieved for evaluation, n

Excluded, n
Reason 1, n
Reason 2, n

Full texts retrieved for evaluation, n

Excluded, n
Reason 1, n
Reason 2, n

Search in bibliographies, n

l

{Studies meeting eligibility criteria, n

Figure 1 Flowchart detailing the exclusion and inclusion criteria and the
number of studies excluded and included at each step of the literature
search.

Consortium-based meta-analysis attains increased attention, >34
because integration of several GWA data sets has been designed and
new susceptibility genes have been discovered.*> Although meta-
analysis of GWA studies can be implemented using reported ORs and
95% Cls or P-values from different GWA studies, it is preferable to
reanalyze several GWA data sets with individual patient data.® In the
latter case, one can use imputation techniques for missing data when
SNPs have been genotyped in some platforms but not in others.4
Barrett et al.>® conducted a meta-analysis of three GWA data sets for
Crohn’s disease that used different genotyping platforms using impu-
tation methods. The combined GWA data sets included 635 547 SNPs
in 3230 cases and 4829 controls. They used the GWA data sets at the
screening stage. The power of the meta-analysis was reported to be
0.74 to detect associations with per allele OR of 1.2 and with risk allele
frequency of 0.2 at the significance level of P=1.0x107>. The meta-
analysis of the GWA data sets and additional replication data sets
confirmed 11 previously reported loci and identified genome-wide
significant signals for novel 21 loci.

GENETIC ASSOCIATION STUDY-SPECIFIC METHODOLOGICAL
ISSUES
There are methodological issues relevant to meta-analysis of genetic
association studies: (i) assessment of Hardy—Weinberg equilibrium
(HWE) and (ii) definition of genetic models.

Deviation from HWE in control samples is the most commonly
used test for genotyping error*! However, the test for HWE
has relatively low statistical power to detect genotyping error.*?
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Furthermore, SNPs that are not in HWE can be used for inference about
genetic model of disease susceptibility at the locus.*® Although there is
no consensus how meta-analyses should handle the studies that are not
in HWE, three strategies have been applied: including all studies
regardless of departure from HWE,* performing sensitivity analyses
in order to evaluate whether the genetic effects are different between
subgroups of studies classified according to test for HWE645-47 and
excluding studies showing statistically significant departure from
HWE.!® Reporting the extent of departure from HWE measured by
such as ,* the inbreeding coefficient,*? and the disequilibrium para-
meter™ is also useful **

In a genetic association study, subjects are classified into three
exposure groups (AA, Aa and aa). Let A be the susceptibility allele,
there are several methods of dichotomizing these exposure groups for
conducting a meta-analysis:28 by comparing allele frequency, by assum-
ing a specific mode of inheritance (recessive, dominance, complete
overdominant or codominant) and by performing multiple pairwise
comparisons. All these methods, with exception of the method perform-
ing multiple pairwise comparisons, assume a particular genetic model.
When performing multiple pairwise comparisons or testing multiple
genetic models, results of all analyses undertaken should be reported. In
order to choose most likely genetic model describing the genetic
architecture underlying a disease of interest, Minelli et al.>! presented
a ‘genetic model free’ approach. Their procedure is based on the
estimation of the ratio (1) of the log OR of Aa versus aa compared
with the log OR of AA versus aa. 4 will be 0 under a recessive model, 0.5
under a codominant model and 1 under a dominant model.

ESTIMATION OF A SUMMARY OR AND TEST FOR AND
MEASURE OF BETWEEN-STUDY HETEROGENEITY

The statistical methods of combining the results of different
studies are described. We consider a meta-analysis of k separate
genetic association studies to estimate the genetic effect () for
dichotomous disease outcome quantified by log OR. Let 6; and 6;
be the true and observed log OR for ith case~control study, respec-
tively (i=1, ... ,k). Let v; denote the variance of §; , the weight for ith
study is given by wi=1/v; (that is, the inverse of the variance). OR for
each study is given by OR=a;di/bic;. 0; = In(OR;). v; is defined as
vi=1lai+1/bi+1/c;+1/d;, where a; and b; correspond to numbers
of affected individuals with and without the susceptible geno-
type, respectively, and ¢; and d; correspond to numbers of unaffec-
ted individuals with and without the susceptible genotype,
respectively.

There are two commonly used procedures for combining O;s:
‘fixed effects model’ (FEM) and ‘random effects model’ (REM).
FEM assumes that 0;s are homogeneous across studies (that is,
0,=0,=...=0;) and all differences are due to chance. Inverse-var-
iance, Mantel-Haenszel®? and Peto’s™ methods are commonly used
for FEM meta-analysis. Using the inverse-variance method for
combining the results across studies, a summary log OR under FEM
is calculated as a weighted average of the study estimates:
(ZLI w;b;)/ (Zle w;). The variance of fggy is given by
v = 1/ Yh, wi

The assumption underlying FEM should be examined with
the test for heterogeneity, Cochran’s Q test’* Test statistics of
Cochran’s Q test is

Q= iZ:l:Wi(éi - émw)z

Orem =
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Under the null hypothesis of homogeneity (that is, 0,=0,=...=0y),
this statistics approximately follows a %? distribution with k~1 degrees
of freedom. Cochran’s Q test has relatively low statistical power to
detect between-study heterogeneity, especially when the number of
studies is small;’® therefore, the test is usually preformed at the
significance level of 0.1.5

REM assumes that the genetic effects may vary across studies
because of genuine difference and/or differential biases. The estimate
of the between-study variance (t?) is included into the weight as
w = 1/(wy 1+‘c2) A summary log OR under REM are estimated
as follows: Bgps = (E‘_l W, 0 D/ (E 1 w) The variance of Oggy is

approximated as veeat = 1/ 3k, wi.

In DerSimonian and Laird> REM meta-analysis, the 72 is estimated
as follows:

%%)L - Q — (k - 1)
Zf:l Wi — (Z:‘;l W;'Z/Ei';l Wi)

When Q<k — 1, t}; takes negative value. In practice, max {0, t%, } is
used. Therefore, the precision of a summary log OR with REM
(1/vgem) can never exceed that with FEM (1/vggm).

The 95% CI for § is given by B+1. 96x+/v . Test statistic of test for
the genetic effect is given by Z = 8/,/% . Under the null hypothesis,
Z follows a standard normal distribution.

Higgins and Thompson®® proposed three criteria (H, R and )
for measure of heterogeneity, which have following desired character-
istics: (i) dependence on the extent of heterogeneity, (ii) scale
invariance (that is, comparison can be made across meta-analyses
with different scales and different outcomes) and (iii) size invari-
ance (that is, independence on the number of studies included).

= /Q/(k — 1) is the relative excess of Q to its degrees of freedom.
Mittlbock and Heinzl®® proposed HZ = ‘—M as a modification of
H. H, is the proportion of between- study variance to within-study
variance, In practice, max {0, H}} is used. HZ values over L0

indicate considerable heterogeneity.™® R = \/vgg/vepy is the ratio
of the standard error of a summary effect with REM to the standard
error with FEM. R represents the inflation of the CI for REM
compared with FEM. H and R coincide when all studies have equal
weight®® 2 = 100x £ ((; u,
max {0, I’} is used in practice. I* represents the proportion of
between-study variance to the total variation in study estimates and
ranges from 0 to 100%. P is most widely used for measure of
heterogeneity. I* values over 50% indicate large heterogeneity.3860
Potential drawback of P is that Cls are very large, especially when
the number of studies is small.5!

If heterogeneity is present or suspected by the statistical test or
measures, there are several commonly used approaches: (i) performing
sensitivity analysis by excluding one or more studies showing outlier
effect size, (ii) stratifying the studies into homogeneous subgroups
such as racial groups and applying FEM for each subgroup and (iii)
implementing REM when observed heterogeneity could not be
addressed. Some researchers recommend that the use of REM is
preferable compared with FEM, because both models give similar
summary effects when there is no between-study heterogeneity, FEM
gives narrower CI for summary effect compared with REM when
between-study heterogeneity exists and a negative result of test for
heterogeneity does not always indicate homogeneity when the number
of studies is small.2’

PP can take negative value, but

617
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SOURCE OF HETEROGENEITY

A number of reasons have been advanced for heterogeneity in the
genetic effects across the results of various studies.®!*1%47 False-
positive results in the initial studies and false-negative results in
small replication studies are implicated as the most likely reasons
for non-replications.®-1%1314 Inconsistency and between-study hetero-
geneity may be caused because of biases or genuine differences in the
genetic effects across populations. We review briefly in this article.

Biases

Differential biases due to population stratification, misclassification of
clinical outcome, genotyping error and overestimation of genetic
effect in the first study can be sources of between-study heterogeneity.

The presence of population stratification tends to spurious associa-
tions. It can be caused when there are undetected genetically different
subgroups within a study population and disease prevalence differs
among these subgroups.!*? The effect of population stratification on
the results of genetic association studies is debatable.5%-% According to
systematic reviews of meta-analyses of genetic association studies, it is
not so much frequent that difference in racial or ethnic groups could
explain heterogeneity.?7

Inadequate assignment of cases and controls may cause misclassi-
fication bias. Although there is a possibility that misclassification of
cases and controls would weaken the gene-disease association, the
results of misclassification bias may be modest unless the trait is
common.!>%

Ioannidis et al.1% conducted a systematic review of 36 meta-analyses
including a total of 370 genetic association studies. Statistically
significant between-study heterogeneity was observed in 14 meta-
analyses. Restricting to meta-analyses with at least 15 studies, 7 of 9
meta-analyses showed significant heterogeneity. In 25 or 26 meta-
analyses, the first study showed more predisposing or protective OR
than subsequent replication studies. Using cumulative meta-analysis
plots, the authors depicted the process that strong associations
claimed in the first study were regressed toward null associations, as
subsequent replication studies were accumulated over time. Similar
findings were reported in Lohmueller et al® Associations passing
predetermined thresholds of statistical significance tend to overesti-
mate the size of the genetic effect, especially when the sample size of
the study is small and the threshold is stringent in multiple testing
sitnations.587* Such an upward bias is called as winner’s curse
phenomenon,®

Genuine differences
Differences in the pattern of LD structure over chromosomal regions
of interest across populations are implicated as a cause of between-
study heterogeneity in the genetic effects. Zondervan and Cardon”
show that marker allelic OR can vary according to the extent of LD
between marker and true disease allele in terms of D’ and according to
mismatch between disease allele frequency and marker allele fre-
quency. This issue may be especially pronounced in the GWA settings
because the SNPs that most efficiently surrogate the other SNPs in a
genomic region with high LD (that is, tag SNPs) rather than putative
functional SNPs have been used to increase genome coverage. When
the extent of LD between tag SNP and true disease allele varies across
studied populations, the observed ORs could vary across studies.
Many common diseases are implicated to have a complex etiology
involving multiple genetic and environmental factors including their
interactions. Gene—disease associations can be modified when the
gene—gene or gene—environment interaction exists. If these interac-
tions are not identified and controlled for, the gene—disease associa-
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tions would be heterogeneous across populations according to
distribution of a genetic variant or prevalence of a particular environ-
mental exposure. It is needed to conduct a consortium-based
meta-analysis of individual patient data in large scale to account for
gene—gene or gene—environment interactions.*’

SIMULATION STUDY

We conducted a simulation study to illustrate (i) the power of
Cochran’s Q test, (i) the properties of measures of between-study
heterogeneity (I and HZ} and (iii) the type I error rate and the power
of meta-analysis for detecting the gene-disease association in the
presence of between-study heterogeneity.

We consider meta-analysis of k case—control association studies
to estimate the overall genetic effect (6; log OR) of disease outcome.
The exposure status (AA, Aa and aa) of subjects included in each
case~control study are ascertained in the sampling manner outlined
below.”® The values ye{1, 0} are labels encoding case (1) or con-
trol (0). Let A denote the susceptibility allele, we assume the domi-
nant model and then the SNP genotype predictor value x was designed
as 1=AA or Aa, 0=aa. Under the assumption of HWE, the frequency
of x written as f, is calculated based on the disease allele frequency
fa: fi=1—(1—fy)% The logistic regression model for ith study
(i=1,2,...,k) is produced as follows:

log (Pr(Y= 1]x)/(1 — Pr(Y = 1|x))) = o;+0;x
where «; is the intercept and 0; is the log OR for ith study. §; is
drawn from N (0, t®). 7% is the between-study variance. o; can be
calculated by using the equation for the prevalence of the disease
T=3_ . %ﬁ;{;g‘—&x fx. The genotypes of case and control subjects are

generated based on the conditional probabilities of x given by y as
follows:

_ _ _f_t exp(a,-+6,~x)
PrX =Y =1) = n o TE exp(o+8ix)’

fx 1

Tt exp(a;+0ix)

Pr(X =x|Y =0) = ]

For each study, the genotypes of case—control samples were generated
and then the OR and its variance were calculated. Then, the ORs for k
studies were combined by FEM and REM meta-analyses. Cochran’s
Q test was conducted and the I and HE were measured.

We considered simple five simulation scenarios of meta-analyses.
The description of simulation scenarios is shown in Table 1. The
scenarios I, II and III were designed to be same in sample size within
each study but different in the number of included studies. In
scenarios III, IV and V, numbers of studies were different but total
number of case~control samples included in meta-analysis was fixed at
20000. The pairs of scenarios I and V or II and IV were designed to
have the same number of studies but differ in sample size within
each study.

We examined 126 parameter combinations for each scenario. The
between-study variance (t2) varied from 0.0 to 0.02 with increments
of 0.001. The true summary OR (exp(6)) was set to be 1.0, 1.4 or 2.0.
The disease allele frequency fj was assigned to be 0.1 or 0.3. The
disease prevalence © was fixed at 0.01. The values of 2 were based on
the literature values reported by Moonesinghe et al.’® for the con-
firmed 10 loci in a meta-analysis of three GWA studies of type 2
diabetes.”” Therefore, our simulation would reflect the possible range
of between-study variance. For each scenario and parameter combina-
tion, 100000 simulations were carried out.
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Table 1 Description of five simulation scenarios of meta-analysis

Scenario k Ncase/Mcontrol
i 5 500/500
Il 10 500/500
1 20 500/500
Y% 10 1000/1000
v 5 2000/2000

k denotes the number of included studies and ncaee and Aegaye are the number of cases and
controls within each study, respectively.
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The empirical power of Cochran’s Q test was evaluated by the
proportion of the simulation runs crossing the significance level of
0.1 when *>0.0. The top row of Figure 2 shows the powers of
Cochran’s Q test obtained with five scenarios as the function of 72
when the overall OR=1.0 and f3==0.1 or 0.3. For each scenario, the
power increased as t? increased. Comparing among scenarios I,
II and 11, the power increased as the number of studies increased.
When total number of case—control samples was fixed (that is,
comparing among scenarios III, IV and V), the powers were similar
but scenarios with smaller number of studies showed higher power
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Figure 2 Behaviors of test for and measures of between-study heterogeneity for five simulation scenarios as the function of t2, the disease allele frequency
fa=0.1 or 0.3, and the overall odds ratioc (OR)=1.0. The top row shows the power of the Cochran’s Q test at the significance level of 0.1. The middle and
bottom rows show the means of /2 and qu, respectively. The lines of qu for scenarios I, il and HI are overlapping. The description of each simulation

scenario is in Table 1.
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when 2 was small. When numbers of studies were identical (that is,
two pairwise comparisons of scenarios I versus V or II versus IV),
meta-analyses with larger sample size showed higher power for the
same 12, The powers obtained with f3=0.3 were higher than those
with fy=0.1. For most of our parameter settings, the powers of
Cochran’s Q test did not reach at 0.8, although the significance level
was set to be 0.10.

The means of 100000 simulated values for the measures of
heterogeneity (2 and H,Z\,x) are shown as the function of 12 when
the overall OR=1.0 and f3=0.1 or 0.3 (the middle and bottom rows
of Figure 2). In practice, max{0, 2} and max{0, H}} are used to
restrict the ranges of these measures as positive. As the simulation
study of Mittlbock and Heinzl,> unrestricted values of I and HE; were
used to obtain unbiased distributions for these measures in this
study. These two measures presented monotonic increases as 2
increased. I and H increased as the sample size per study increased
(scenarios I versus V or 1l versus IV). The two measures obtained with
f4=0.3 were higher than those with fy==0.1. These results indicate that
I and HY; increased as within-study variance, k/ (325, wy), decreased.
Comparing scenarios I, II and I shows the important difference
between I and HZ: whereas P increased as the number of studies
increased, Hy did not change (the lines of H} for scenarios I, II
and III are overlapping in the bottom rows of Figure 2). This
suggests that Hi, may be a good indicator of comparing the
extent of between-study heterogeneity across meta-analyses. Similar
results and further discussion are provided by Mittlbock and
Heinzl® The 95% intervals of simulated P and Hy were large,
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especially when the number of studies is small (Supplementary
Figure S1).

The type I error rate in meta-analysis was assessed as the proportion
of the simulation runs showing significant summary OR at the
significance level of 0.05 when the null hypothesis was true
(that is, the true overall OR=1.0). Figure 3 shows the type 1 error
rates of five scenarios when fy=0.1 or 0.3. When there was no
between-study variance (?=0.0), the type I error rates under FEM
were well controlled at 0.05, but REM showed slightly conservative
results (the type I error rate~0.04). As t? increased, the type I error
rates under FEM rapidly inflated, but those under REM slightly
increased. The type I error rates under both models for the same 72
increased when sample size per study was large or fy=0.3. We should
note that the use of FEM could increase the type I error rate even to
the extent that the between-study heterogeneity could not be fully
identified by Cochran’s Q test and two measures I and HZ. For
example, in case of 1=0.005 and f4=0.3, the type I error rate under
FEM for five scenarios were 8.5-19.2% (Figure 3). For the parameter
setting, the powers of Cochran’s Q-test were 20.6-48.3%, the means of
P were —51.9 to 20.8% and the means of H}; were 0.31-1.25
(Figure 2).

The power of detecting a gene—disease association was evaluated as
the proportion of simulation runs reaching the significance level of
5.7x 1077, assuming the consortium-based meta-analysis of GWA data
sets. As shown in Figure 3, applying FEM meta-analysis to hetero-
geneous genetic associations could lead to false-positive findings;
therefore, we considered only REM when assessing the power of
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Figure 3 The type | error rate in fixed effects model (FEM) and random effects model (REM) meta-analyses at the significance level of 0.05 for five scenarios
as the function of t2 and the disease allele frequency fa=0.1 or 0.3. The top and botiom rows show the type | error rates when applying FEM and REM,
respectively. The fines of the type | error rate under FEM for scenarios |, Il and 1l are overlapping. The description of each simulation scenario is in Table 1.

Journal of Human Genetics

— 2bb —



OR=14,f,=01 OR=14,1,=03
@ 10 0 10 g
2 K3 T
T2 >0 .
29 08 g 08
& @ [=
e} ]
8% 06 &% 06
22 il
52 04 E5 0441
5% 29 i
o D N —_
§ 0.2 g 5 0.2 %
0.0 TTTTTYT T T T ¢ 0.0 =V
FIrryryr T rr T i T T Ty T
0.0 0.005 0.01 0.015 0.02 0.0 0.005 0.01 0.015 0.02
‘t? 1:2
25 155, <
53 22
g3 ge
E2 150 38
Iz £
53 %2
&£ 145q” oS¢
52 S5
7 cc
= a2
o 1.40- g2
L 20 B N Q LI 20 0 0 2 ]
0.0 0.005 0.01 0.015 0.02 0.0 0.005 0.01 0.015 0.02
2 2

Meta-analysis of genetic association studies
H Nakaoka and | Inoue

OR=20,7,=0.1 OR=20,f,=0.3
g 100y o 100 —
2 5
T4 088 T4 o098
c @ % o
P8 v s
£g 0% &5 o
E5 0w E2 g04 =
o0 °5 =il
g5 092 25 o2yl
& & )
050 TR T 0.80 J———
0.0 0.005 0.01 0.015 0.02 0.0 0.005 0.01 0.015 0.02
‘(2 12
2 § 2030 @ g 2,030 r—y
c
20 2028 20 2025 1|1
85 2
23 2020 2o 2020 |-l
£ 23 -
5 g 2015 22 205
g < 2010 Z< 2010
o
§g 2005 5 £ 2005
173 o —
=g 2000 28 2000 e
AT Ty T rIrTTTrm Ty T Ty Ty
0.0 0.005 0.01 0.015 0.02 0.0 0.005 0.01 0015 0.02
7 2

Figure 4 Simulations for the powers in random effects model (REM) meta-analyses of detecting a gene-disease association at the significance level of
5.7x10~7 (the top row) and the mean odds ratio (OR) of the simulations passing the threshold (the bottom row) as the function of 2, the disease allele
frequency fp=0.1 or 0.3, and the overall OR=1.4 or 2.0. When the overall OR=2.0, the lines of the powers for scenarios H, HI and IV are overlapping.

The description of each simulation scenario is in Table 1.

meta-analysis. The top row of Figure 4 shows the result, assuming the
dominant model and f3=0.1 or 0.3. When the true overall OR=14,
the power for each scenario gradually decreased as 2 increased.
Comparing scenarios III, IV and V, the decreases in the power for
the same ©* were larger in the scenarios with large sample size per
study. While the values of vggy for scenarios III, IV and V were not
different, the values of vrgy for scenarios 111, IV and V varied when
between-study heterogeneity was present. For the same 72 (>0), the
following inequality was true: vpgy; for scenario V> vppy for scenario
IV > gy for scenario III. When 60, the mean of the distribution of
the Z-test under REM is A = 8/, /Vgmy. The power of detecting gene-
disease association of effect size of 8 is’®

Power = 1 — ®(Cyyy — A P(—C,py — 4)

where @ is the cumulative distribution function of the standard
normal and C,; is the upper /2 percentage point of the standard
normal distribution. Along with the inequality described above, the
decrease in the power for the same 12 is larger in the scenarios with
large sample size per study when the total sample sizes are equal across
scenarios. When the overall OR was set to be 2.0, the powers did not
so much decrease in the simulated range of 2. Furthermore, we
calculated the mean OR of the simulations passing the genome-wide
significance threshold (P-value<5.7x1077). The estimates of mean
OR were upwardly biased, especially in scenarios whose powers of
detecting gene-disease associations were low (the bottom row of
Figure 4). On the other hand, if the meta-analyses were sufficiently
powered (for example, the true overall OR=2.0), upward biases were
not so pronounced in the simulated range of 72,

Our simulation suggests that the power of meta-analysis of GWA
data sets to detect small genetic effect would decrease due to between-
study heterogeneity (t>~0.02). As a result, the discovered gene—
disease association could have inflated effect (winner’s curse phenom-
enon). Such a winner’s curse phenomenon can be seen even to the
extent that the between-study heterogeneity could not be fully
identified. Similar results were obtained when different genetic models

(that is, recessive and additive in log-odds scale models) were
examined (data not shown).

CONCLUSION

We reviewed the process and the methods of meta-analysis
of genetic association studies. To conduct and report a transparent
meta-analysis, the search strategy, the inclusion or exclusion criteria of
studies and the statistical procedures should be fully described.
Assessment of HWE and determination of genetic model are
methodological issues relevant to meta-analysis of genetic association
studies.

In genetic association studies of common disease, effect size of
consistently replicated gene-disease associations were found to be
small (OR=1.2-1.5);"° therefore, meta-analysis of GWA data sets is
the most important approach to increase the power to detect such
gene—disease associations.>

Our simulation shows that the power of REM meta-analysis of
GWA data sets to detect a small genetic effect could decrease due to
between-study heterogeneity and then the mean OR of the simulated
meta-analyses that passing the genome-wide significance threshold
would be upwardly biased. Recently, Moonesinghe et al’6 show
that the required sample size in meta-analysis to detect an overall
association with adequate power at a significant level increases as
between-study heterogeneity increases and when the between-study
heterogeneity exceeds a threshold, meta-analysis cannot reach the
power regardless of how large included studies are. At the same
time, empirical evaluation of published meta-analyses®! and our
simulation study show the uncertainty of estimated between-study
heterogeneity is large unless many studies are combined.

These findings suggest that when a meta-analysis of GWA data sets
shows association signals reaching genome-wide significance with
small between-study heterogeneity, the result should be cautiously
reported and further replication studies by institutions other than
GWA teams are required.35 Moreover, when a large number of data
sets are available, challenges to explain and reduce the observed
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between-study heterogeneity may become important.”47¢ The knowl-
edge about the potential causes of between-study heterogeneity may
help. Such post-GWA research will enable us to map the causative
variant finely”® or to detect polymorphisms associated with clinically
important subtypes of diseases."
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