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but they may have distinct genetic alterations, as observed
in the characteristic occurrence of H-ras mutations in MNU-
induced cancer and LOH regions in PhIP-induced cancer.
The existence of indirect effects of carcinogens is suggested
for both ionizing radiation and MNU models, though the
identity of these indirect effects is uncertain. Estrogens may
play a crucial role in the development of cancer in both radi-
ation and chemical models, but the protective effect of parity
seems weaker for radiation. Specifically, ionizing radiation
may have a strong impact on cancer initiation in a lactating
gland. Though only partial evidence is available, ionizing
radiation and some chemical carcinogens such as MNU may
target stem/progenitor cells located at the TEB or throughout
the gland. We perceive that the animal model of radiation
catcinogenesis will continue to play a crucial role in bridg-
ing results of in vivo animal experiments and observations
from human studies and translate into a better understanding
of mammary carcinogenesis.
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We examined the response of the developing mouse intestine
to X radiation using neonates (1 day postpartum), infants (2
weeks postpartum) and adults (7 weeks postpartum). Irradiated
adult small intestinal crypts displayed two waves of apoptosis.
The first wave peaked at 3 h and was followed by a broad wave
with a peak persisting from 24 to 48 h, p53 was expressed during
the first wave but not the second wave, For the infant small
intestine, the intensity of the first wave was approximately half
that of the adult wave, and for the colon the intensity was even
smaller. In neonates, apoptosis was delayed, peaking at 6 h for
small intestinal crypts and at 24 h for colonic crypts. Although
no apoptosis occurred at 3 h postirradiation in neonates, p53
was present in both the small intestine and colon, owing at least
in part to the inability of p53 to increase the level of Noxa, a
p53-dependent pro-apoptosis protein, suggesting a discontinuity
in the p53-Noxa-caspase pathway in neonates. By contrast, the
induction of p21, a pro-survival protein, was greater in neonatal
cells than in adult cells. Thus it appears that the developing and
adult intestine mount distinct apoptotic responses to radia-
tion,  ©2010 by Radiation Research Soclety

INTRODUCTION

Fetuses and young children should not be considered
simply as small adults but rather as a unique cohort
when assessing the health risks of exposure to environ-
mental carcinogens such as ionizing radiation. Members
of this cohort appear to be especially vulnerable to
radiation because their organs grow more rapidly and
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are less differentiated than those of adults. Radiation
damage to the tissues has been shown to depend on the
degree of cell proliferation and the extent of differenti-
ation. A century ago, Bergonie and Tribondeau stated
that “tissues appear to be more radiosensitive if their
cells have a greater proliferative capacity, divide more
rapidly, and are less-well differentiated” (I). The cells of
the developing cerebral cortex and the developing
kidney are highly susceptible to radiation-induced
apoptosis—a sensitivity that is lost after differentiation
(2, 3). Irradiated hematopoietic and mammary stem cells
of weanling mice have been shown to be more severely
damaged than those of adult mice (4, 5). Exposure of
infant mice to 1.5 Gy of radiation depresses their levels
of hematopoietic stem cells for a long time thereafter (6).
Apoptosis is a form of programmed cell death, i, a
genetically controlled self-destruction process, occurring
during developmental tissue morphogenesis and adult
tissue homeostasis (7). Apoptosis can be induced by
exposure to exogenous DNA-damaging agents including
ionizing radiation. Intestinal tract organs of wild-type
and genetically engineered adult mice have been used
extensively as in vivo systems to assess the effects of
radiation-induced apoptosis (8). The properties that
have been monitored include dose response, temporal
patterns of apoptosis, spatial distribution of susceptible
cells in crypts, differential susceptibilities of small
intestinal and colonic epithelial cells and of regions
within the colon, and p53, p21 and Bcl-2 activities (9-
24). However, similar studies using the intestines of
neonates and infants have not been undertaken,
Therefore, in this study we characterized the features
of radiation-induced apoptosis in the postnatally devel-
oping small intestine and colon of C57BL/6J mice and
compared these features to those of identically treated
adult mice. We found that the postnatally developing
intestine is more resistant to radiation-induced apoptosis
than with the adult intestine, which could be ascribed in
part to an apparent inability to completely carry out the
post-p53-mediated pathway to apoptosis.
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MATERIALS AND METHODS
Mice

Female C57BL/6] mice were purchased from Charles River
Laboratories (Kanagawa, Japan). All mice were exposed to a 12-h
dark-light cycle, a temperature of 23 * 2°C, and 50 £ 10% humidity.
They were fed a standard laboratory diet (MB-1; Funabashi Farm
Co., Ltd., Chiba, Japan) and given water ad libitum. The experimental
protocol was reviewed and approved by our institution’s animal use
committee.

Irradiation of Mice

Irradiation was performed using a Pantak X-ray generator (Pantak
Ltd., Bast Haven, CT). One-day-old (neonate), 2-week-old (infant),
and 7-week-old (adult) mice were whole-body irradiated with 2 Gy at
a dose rate of 0.7 Gy/min (200 kVp, 20 mA, with a filter composed of
0.5-mm-thick copper and aluminum plates). Subsequently, mice were
killed humanely at 0 (unirradiated), 3, 6, 12, 24, 48 and 72 h after
irradiation.

Pathology

Unirradiated and irradiated mice were killed after ether anesthesia.
Then their small intestines and colons were removed, rinsed in ice-
cold phosphate-buffered saline, and fixed quickly in 10% neutral-
buffered formalin for about 12 h. Each organ was divided into
proximal, middle and distal sections. All samples were embedded in
paraffin, sectioned transversely (34 pm thick), and stained with
hematoxylin and eosin.

Immunohistochemistry

Immunostaining of paraffin-embedded samples followed standard
procedures. To retrieve antigens using the primary antibodies [rabbit
polyclonal anti-active caspase-3 (1:750, AF835; R&D Systems,
Abingdon, UK); rabbit polyclonal anti-p53 (1:500, NCL-p53-CMS5;
Novocastral Laboratories Ltd., Newcastle, UK); rabbit polyclonal
antl-Noxa (1:100, LS-B184/6830 LifeSpan Biosciences, Seattle, WA);
rabbit polyclonal anti-p21 (1:500, sc397; Santa Cruz Biotechnology
Inc., Santa Cruz, CA); and rat polyclonal anti-Ki-67 (1:100, M7249;
DAKO Carpinteria, CA)], the tissue sections in 10 mM sodium
citrate, pH 6.0, were heated at 120°C for 20 min. After the primary
antibodies were washed away, sections were incubated with a
peroxidase-conjugated secondary antibody [Histofine® Simple Stain
MAX PO(R) or Histofine® Simple Stain MAX PO(Rat); Nichirei
Biosciences, Tokyo, Japan]. Peroxidase activity was visualized by first
staining with 3,3’-diaminobenzidine (Simple Stain DAB Solution,
Nichirei Biosciences, Tokyo, Japan) and then counterstaining with
hematoxylin.

Scoring the Numbers and Types of Small Intestinal and Colonic Crypts

The crypt number was defined as the total number of crypts per
circumnference and was determined by counting the number from
crypts found in two to three transverse sections of three mice. For the
purpose of identifying the small intestinal crypts, the presence of
Paneth cells defined the crypts of mature mice, and clear epithelial
invaginations into the mucosa defined the crypts of neonatal and
infant mice. We counted a crypt undergoing cleavage, ie., “crypt
fission” or “branching”, as two crypts.

Morphologically, apoptosis was defined as the presence of an
apoptotic body. This definition correlated well with one that relied on
immunohistochemical staining of active caspase 3 (I7). To quantify
the extent of apoptosis, we used two different scoring systems: scoring
the number of crypts (as a percentage) containing one or more active
caspase 3-positive cells per circumference, and scoring the mean

number of apoptotic cells per crypt. However, the extent of apoptosis
in the small intestine of l-day-old mice was scored as the mean
number of active caspase 3-positive cells per circumference in the
transverse sections, because crypts had not yet formed. The same
scoring systems were used to quantify the number of p53-positive
crypts (as a percentage) and the mean number of p53-positive cells per
crypt. All scoring was performed without knowing whether the mice
had been irradiated.

Statistical Analysis

Data are expressed as means + SEM. Each experiment used three
mice. The Student’s ¢ test (P < 0.05) was used to determine whether
experimental values differed significantly between two groups.

RESULTS

Normal Development of Crypts in the Small Intestine
and Colon

We first examined the development of intestinal
crypts, focusing on morphology and the number of
crypts. Plots of the number of crypts present as a
function of time and examples of crypt cells expressing
Ki-67, reflecting active phases of the cell cycle, are
shown in Fig. 1. Supplementary Fig. S1 shows micro-
graphs that document the developmental changes
occurring in the anatomical structures of normal small
intestinal and colonic crypts between 1 day and 7 weeks
postpartum,

1. Small intestine

In the small intestine at 1 day postpartum, invaginat-
ing clusters of epithelial cells could be found, but crypts
had not yet formed. Morphologically apparent crypts
were identified in the proximal region between 4 days
and 1 week postpartum and were found next in the
middle region and finally in the distal region (Fig. 1A).
Then the size and number of crypts increased rapidly
(with occasional crypt fission) until 4 weeks postpartum
when morphologically mature crypts appeared (Fig. 1A
and Supplementary Fig. S1). The number of crypts was
nearly constant thereafter (Fig. 1A). Goblet cells were
observed 1 day postpartum in the distal region, and
Paneth cells, located at the bottom of crypts, developed
1 to 2 weeks postpartum (Supplementary Fig. S1).

At 1 day postpartum, Ki-67 expression was observed
in the nuclei of clustered epithelial cells, presumably
indicating crypt formation. At 2 weeks postpartum, Ki-
67 staining was uniform within a crypt, ie., was
independent of cell position. By 7 weeks postpartum,
cells in the proliferative zone (above cell position 4) were
most heavily stained (Fig. 1C), as has been reported
previously (I8, 19).

2. Colon

Crypt-like structures were observed at 1 day postpar-
tom (Fig. 1B and Supplementary Fig. S1). Crypt
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FIG. 1. Developmental changes in the mean number of crypts per circumference for the proximal, middle and distal regions of the small
intestine (panel A) atid the colon (panél B). Data are reported as means = SEM. Each experiment used three mice. Panel C: Photomicrographs of
Ki-67-stained sections of the small intestine and colon of 1-day-old (1d), 2-week-old (2w) and 7-week-old (7w) mice.

number and size increased with age until 3 to 4 weeks
postpartum and were accompanied by frequent crypt
fission. Morphologically mature crypts appeared 4
weeks postpartum. The proximal region contained
approximately twice as many crypts as did the middle
and distal regions (Fig. 1B). Goblet cells developed
during the fetal stage (data not shown), which was much
earlier than in the small intestine (Supplementary Fig.
S1). Ki-67-positive cells were located in the basal one-
half to two-thirds of the crypt regardless of age, which
was distinctly different from what was seen in the small
intestine (Fig. 1C).

Radiation-Induced Apoptosis in Small Intestinal and
Colonic Crypts

We next analyzed radiation-induced apoptosis in mice
exposed to 2 Gy at 1 day, 2 weeks and 7 weeks
postpartum as representatives of neonates with imma-
ture or undifferentiated crypts, infants with active
proliferative crypts, and adults with a steady number
of crypts maintained, respectively (Fig. 1). The dose of 2

Gy was selected based on evidence that the apoptosis in
response to ionizing radiation saturates at 1 Gy (25).
Apoptotic cells were defined as those containing
apoptotic bodies and strongly staining for active caspase
3 (17). The age and region dependences of the apoptotic
response in these mice are shown in Figs. 2, 3 and 4.

1. Small intestine

For mice irradiated at 7 weeks postpartum, apoptosis
of crypt cells occurred in two waves (Figs. 2A and 3A).
The first wave peaked 3 h after irradiation, as reported
previously (17), followed by a rapid decrease. The
percentage of apoptotic crypts in the first wave was
greater than 75% in all regions of the small intestine
(Figs. 2A and 4A), and the average number of apoptotic
cells was two per crypt (Fig. 3A). The second wave arose
thereafter, and its peak level persisted until 48 h. From
10% to 20% of the crypts exhibited apoptosis (Fig. 2A).
There were no clear differences among the temporal
patterns of the proximal, middle and distal regions
(Figs. 2A and 3A). The second apoptotic wave might
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FIG. 2. Percentage of apoptotic crypts as a function of time for the
proximal, middle and distal regions of the small intestine (panel A)
and the colon (panel B) of mice irradiated at 1 day (1d), 2 weeks (2w)
and 7 weeks (7w) postpartum. The inset is a plot of the mean number
of apoptotic cells per circumference for 1-day-old irradiated mice. All
data are reported as means = SEM. Each experiment used three mice.
For the data points for 2- and 7-week-old mice labeled with an
asterisk (*), P < 0.05.

have been the result of a delayed mitotic crisis involving
cells that escaped apoptosis during the first wave but
then reached the G,/M checkpoint (12).

Compared with the results for 7-week-old mice, the

percentage of apoptotic small intestinal crypts in 2-
week-old mice at 3 h postirradiation was significantly
lower (approximately 20% to 30%; P < 0.05; Figs. 2A
and 4A). The peak of the first wave occurred 6 h
postirradiation, and the average numbers of apoptotic
cells per crypt were 0.4, 0.6 and 0.3 for the proximal,
middle and distal regions, respectively (Fig. 3A). Only
the crypts of the distal region were involved in the
second wave of apoptosis (Fig. 2A).

Because no small intestinal crypts were found before
the first postpartum day, for the tissues of 1-day-old
mice, we used the mean number of apoptotic cells per
circumference as a measure of apoptosis. We did not
observe any apoptotic cells 3 h after irradiation, instead
finding that the maximum apoptosis index occurred at
6 h and persisted until 24 h (Figs. 2A inset and 4A). The
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FIG. 3. Mean number of apoptotic cells per crypt as a function of
time for the proximal, middle and distal regions of the small intestine
of mice irradiated 2 weeks (2w) and 7 weeks (7w) postpartum (panel
A) and the colon of mice irradiated 1 day (1d), 2 weeks (2w), and 7
weeks (7w) postpartum (panel B). All data are reported as means =*
SEM. Each experiment used three mice. For the data points for 2-
and 7-week-old mice labeled with an asterisk (*), P < 0.05.

mean numbers of apoptotic cells per circumference at
6 h postirradiation were 4.8, 6.2 and 2.3 for the
proximal, middle and distal regions, respectively
(Fig. 2A insets). At 1 day postpartum, there were
approximately 300 to 400 epithelial cells per circumfer-
ence, which means that approximately 1% of the
epithelial cells were very radiosensitive.

2. Colon

For 7-week-old mice, the apoptotic response peaked
sharply 3 h postirradiation and was followed by a
smaller broad response between 24 and 48 h (Figs. 2B,
3B and 4B). Fewer apoptotic cells were found in colonic
crypts than in small intestinal crypts (Fig. 3B),. as
reported previously (20). The percentage of apoptotic
crypts for the first wave ranged from 47% to 63%, and
the average was slightly more than 0.8 apoptotic cell per
crypt (Fig. 2B). Conversely, the apoptosis index of
colonic crypts of mice irradiated 2 weeks postpartum
was much lower, and the maximum values observed for
crypts in the proximal and middle regions occurred at
6 h (Fig. 2B). No apoptotic cells were found in the distal
region until 12 h postirradiation (Fig. 2B). Colonic cells
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FIG. 4. Photomicrographs of small intestinal (panel A) and
colonic (panel B) tissue sections for unirradiated mice and for 1-
day-old (1d), 2-week-old (2w) and 7-week-old (7w) mice 3 h after
irradiation. From left to right, sections were stained with hematoxylin
and eosin or were immunohistologically stained for active caspase 3,
P53, Noxa and p21. The arrows point to apoptotic bodies or active
caspase 3-positive apoptotic cells.
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FIG. 5. Age-dependent distribution of apoptotic cells in small
intestinal (panel A) and colonic (panel B) crypts. The 2-week-old and
T-week-old mice were irradiated 3 h before being killed. The
apoptosis index was calculated using active caspase 3 expression,

irradiated at 1 day postpartum had a unique response to
radiation—apoptosis occurred 12 to 24 h postirradia-
tion (Fig. 2B). Moreover, there were regional differences
in the mean numbers of apoptotic cells present. The
maximum apoptosis index was greater for the proximal
colon than for the middle region, and few if any
apoptotic crypts were seen in the distal region during the
72-h postirradiation period (Figs. 2B and 3B).

Distribution of Apoptotic Cells in the Small Intestine
and Colon

The distribution of apoptotic cells along small
intestinal and colonic crypt lengths was determined for
22-50 apoptotic half-crypts of irradiated mice at 2 and 7
weeks of age. The distribution at 3 h postirradiation is
shown in Fig. 5. Small intestinal crypts in 7-week-old
irradiated mice showed a characteristic peak in the
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apoptosis index around cell position 4, a putative stem
cell site (17, 20, 21). In this study, the small intestinal
crypts of 2-week-old mice had smaller apoptosis indices
than did those of the adult intestine. Additionally, no
specific cell position was associated with a greater
radiosensitivity than was any other; instead, similar
values for the apoptosis index were broadly distributed
as the base of the crypt was approached. Conversely, the
frequency of apoptosis in colonic crypts of 7-week-old
mice was greatest at cell positions 1-4, the putative stem
cell zone (17, 20), and declined as the cell position
number increased. The colons of 2-week-old mice also
had apoptotic cells at the bottom of crypts. These results
suggest that normal differentiation of small intestinal
cells leads to susceptibility to radiation-induced apopto-
sis uniquely at cell position 4 during development of the
crypt functional architecture, whereas colon cells remain
unchanged with regard to cell position-associated
radiosensitivity, as indicated by the lack of a difference
between 2- and 7-week-old mice.

p53, Noxa and p21 Expression

We examined the age dependence of expression of
p53, Noxa and p21, each of which is a crucial
determinant of apoptosis (Figs. 4 and 6). Expression of
p53 was observed 3 h postirradiation in the cells of the
basal half of most intestinal crypts of 7-week-old mice
(Fig. 4A and B). Eighty-one percent of the small
intestinal crypts were p53 positive, and 100% of the
colonic crypts were pS53 positive (Fig. 6). Expression of
p53 was also high in small intestinal and colonic crypts
of irradiated 2-week-old mice, with frequencies of 86%
and 95%, respectively. Notably, the apoptosis indices of
2-week-old mice were much lower than those of 7-week-
old mice for both the small intestinal and colonic crypts
(Fig. 6). Significant p53 expression also occurred in the
intestinal crypts of irradiated 1-day-old mice (Fig. 6).
Small intestinal cells expressing p53 were clustered in the
intervillus region (Fig. 4A); those of the colon were
restricted to cells in newly forming crypts (Fig. 4B). It is
possible that a link between p53 expression and
apoptosis does not exist in the intestine of 1-day- and
2-week-old mice. The levels of p53 expression in the
intestinal crypts of 1-day-, 2-week- and 7-week-old mice
were negligible at 24 h postirradiation (during the
second wave of apoptosis), suggesting that apoptosis
was independent of p53 during this time (Fig. 6).

To further characterize the apoptotic response, we
immunohistochemically examined the expression of the
p53-dependent pro-death factor, Noxa, and pro-survival
factor, p21, in the intestinal epithelia of 1-day-old, 2-
week-old and 7-week-old irradiated mice. In the small
intestine of irradiated 7-week-old mice, Noxa expression
increased markedly in cells at positions greater than 4
compared to unirradiated cells, and the expression was

23
g5
29
a8 1200 44 B P53-positive crypt
a3 I Apoptotic crypt
oQ
28 o
£ Control 3 24
23
<
100 )
e w R 88 aw
[+ % = :
gg ° £y 0
[: S Control 3 24 g2 Control 3 24
58 O =
g -
_%0100 Tw NS ggs.,,w .
B == v
§. Ns ¥ 3 § NS *
- =
0 Control 3 24 0 Control 3 24
‘s
&
100 S 6
1d s 1d
2 ] i
£ o e & 4
g Control 3 24 8 " contol 3 24
g £
2100 . 2 6
8 2w g8 | ow
T (3]
3 2 .
5 0 =n 20
i) Control 3 24 s  Control 3 24
8 B
[+]
§ 100 = g 6 *
< w * 5 w
) NS 8 #*
0 s g 4 NSNS
Control 3 24 2  Control 3 24
Time after Time after
lradiation (h) irradiation (h)

FIG. 6. Percentages of apoptotic crypts and p53-positive crypts
(left column) and the mean numbers of apoptotic and p53-positive
cells per half crypt (right column) present in tissue sections of the
proximal small intestine (panel A) and the colon (panel B) of
irradiated mice. For the data for small intestine tissue presented in the
right column, mice were 2 weeks old (2w) or 7 weeks old (7w). For 1-
day-old (1d) mice, the data for small intestine tissue in the right
column are presented as the mean number of apoptotic or p53-
positive cells per circumference. Times were 3 h and 24 h after
irradiation. The control group was not irradiated. Data are reported
as means * SEM. Each experiment used three mice. For the data
points for 7-week-old mice labeled with an asterisk (*), P < 0.05
compared to 2-week-old mice.

clearly visible (see dots in Fig. 4A). In irradiated 2-week-
old mice, this expression was moderately induced
compared to that in 7-week-old mice (Fig. 4A). Unex- -
pectedly, the intervillus region of the small intestine of 1-
day-old neonates expressed a substantial amount of
Noxa, but the expression level was not influenced by
radiation (Fig. 4A). In the colon, Noxa expression was
less than that in the small intestine at all ages examined,
which may correlate with the relatively low frequency of
apoptosis compared to the small intestine (Fig. 4B). The
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level of Noxa expression after irradiation in the colonic
epithelial cells of 7-week-old mice was increased only
slightly. By contrast, in 1-day-old and 2-week-old mice,
Noxa expression remained almost unchanged after
irradiation (Fig. 4B).

The basal p21 expression levels in the nuclei of small
intestinal crypts were the same for 7-week-old mice
regardless of whether they had been irradiated. The level
of p21 expression increased slightly in cells of 2-week-old
irradiated mice. At 1 day postpartum, strong p2l
expression was observed both in the nuclei of clustered
cells and the cytoplasm of villus and intervillus epithelial
cells (Fig. 4A). For the colonic cells of all mice
examined, p2l expression was always greater when the
mice had been irradiated, as reported previously (22).
The expression of p21 occurred in the nuclei of cells
within the proliferative zone in adult crypts of 7-week-
old mice, whereas it occurred throughout crypts of 1-
day- and 2-week-old mice (Fig. 4B).

DISCUSSION

For this study, we documented the developmental
changes that occur in the small intestine and colon of
mice in response to ionizing radiation, an inducer of
apoptosis. Unexpectedly, the rapidly growing intestinal
epithelial cells of neonatal and infant mice were more
radioresistant than were those of adults. Three notable
differences were found for how adult and immature
crypt cells responded to radiation, as follows. Immature
epithelial cells had a delayed first wave of apoptosis in
comparison with those of adults. Cells that were
extraordinarily susceptible to radiation at mature crypt
position 4 were not absorbed in the immature crypt.
Especially in neonates, regional differences in radiosen-
sitivities along the intestinal tract were also found—the
cells of the small intestinal and colonic distal regions
were more radioresistant than were those of the
proximal regions.

It has been believed that actively proliferating,
immature, undifferentiated epithelial cells are much
more sensitive to radiation-induced apoptosis than are
differentiated cells (2-3, 26). However, as we report here,
the intestinal epithelial cells of neonatal and infant mice
were more resistant to radiation-induced apoptosis than
were those of adulis. It has been reported that a dynamic
balance between pro-survival and pro-death proteins
may determine whether cells undergo apoptosis (27-29).
In this study, p53 accumulated in irradiated cells
regardless of the age of the mouse, whereas there were
marked differences in the expression levels of Noxa (a
p53-induced pro-apoptosis protein) and p2l (a pro-
survival protein) between neonatal, infant and adult
intestines. Noxa expression in irradiated adult small
intestine increased markedly over the basal level,
whereas this was not the case in irradiated neonatal

mice. By contrast, p21 expression increased significantly
in the cytoplasm and nucleus of neonatal cells in
comparison with adult cells. It has been reported that
nuclear p21 is necessary for cell cycle arrest (30, 31),
whereas cytoplasmic p21 inhibits an initiator caspase
(32, 33). Therefore, after radiation-induced DNA
damage, p53 may only marginally induce the expression
of pro-apoptosis proteins in neonatal intestinal cells,
whereas the cell cycle of neonatal intestinal cells may be
arrested efficiently by p53, allowing the cell time to
repair its DNA and prevent apoptosis. The balance
between cell cycle arrest and apoptosis in response to
DNA damage probably changes with development.

Another possible mechanism underlying the radiore-
sistance of neonatal and infant epithelial cells is related
to the increased expression of cellular Bel-2. Bel-2, which
is survival factor, is expressed throughout the intestinal
epithelium at embryonic day 14.5 (34). At embryonic
day 18.5, Bcl-2 expression is restricted to the base of
villi; in adult cells, it has been detected in only a small
fraction of crypt cells (/). Thus the different radiosen-
sitivities of the adult and infant small intestine and colon
may be partly explained by their distinctly different Bcl-
2 expression profiles (11, 13, 14). It was recently found
that Wnt/beta-catenin mediates the radioresistance of
mouse mammary progenitor cells (35). The Wnt
signaling pathway is intimately involved in the regula-
tion of intestinal development and maintenance (36—40).
During the late fetal period, Wnt signaling occurs in
newly formed villi and by 3 days postpartum in
intervillus cells. After weaning, Wnt activity is confined
to the cells of the crypt base (4I). Therefore, develop-'
mental changes in Bcl-2 activity and Wat signaling may
also account in part for radioresistance. Additionally,
radioresistance may also be associated with the degree to
which cells can repair DNA damage, the rate and mode
of stem cell division, and the type and abundance of
intestinal microflora present (42—45).

Potten has hypothesized that the observed greater
resistance to apoptosis by colonic crypts (compared with
small intestinal crypts) may account for the greater
incidence of colonic carcinoma (24, 46). We found here
that neonatal and infant intestinal epithelial cells were
more resistant to radiation-induced apoptosis than were
those of adults. Temporally, Apc*™* mice, a murine
model of human familial adenomatous polyposis, have
been shown to be most sensitive to intestinal tumor
induction when irradiated at 10 to 12 days of age (47,
48). This age-related tumor susceptibility could be
explained by a failure of cells with sustained DNA
damage to undergo apoptosis and is a possible
mechanism carcinogenesis that is consistent with Pot-
ten’s proposal (24, 46).

In conclusion, we demonstrated that, in the develop-
ing intestine of C57BL/6J mice, the extent of radiation-
induced apoptosis is dependent on age, tissue type and
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organ region. Neonatal and infant intestinal epithelial
cells were more resistant to radiation-induced apoptosis
than were those of adults. When the molecular
mechanisms underlying age-related radiosensitivity are
better characterized, it may be possible to predict more
accurately when children exposed to radiation will
develop cancer and use preventive measures to decrease
their risk.

SUPPLEMENTARY INFORMATION

Supplementary Fig. S1. Photomicrographs of trans-
verse sections of small intestinal (A) and colonic (B)
tissue taken from unirradiated female mice between the
ages of 1 day (1d) and 7 weeks postpartum (7w). The
arrows labeled A point to clusters of epithelial cells,
Arrows labeled B point to crypts undergoing fission.
http://dx.doi.org/10.1667/RR1905.1.51
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Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent
mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although fre-
quent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing
have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inac-
tivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we

Keywords: assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of
.;P;fyr;ﬁ ¢ lymphotha Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice. We found no evidence for
Epigenetic silencing methylation-associated silencing of Pten; rather, complex structural abnormalities comprised of mis-
Mutation sense and nonsense mutations, 1- and 3-bp insertions, and focal deletions were identified in 8 of 23
Deletion lymphomas (35%). Sequencing of deletion breakpoints suggested that aberrant V(D)J recombination and
Radiation * microhomology-mediated rearrangement were responsible for the focal deletions. Seven of the 8 lym-

phomas had biallelic alterations, and 4 of them did not express Pten protein. These Pten aberrations
coincided with downstream Akt phosphorylatxon In conclusion, we demonstrate that Pten inactivation
is frequently biallelic and is caused by a variety of structural abnormalities (rather than by epigenetic
silencing) and is involved in radiation-induced lymphomagenesis.

© 2010 Elsevier B.V, All rights reserved.

1. Introduction

The phosphatase and tensin homolog (Pten)is an important lipid
phosphatase that antagonizes the phosphatidylinositol-3-kinase
(PI3K)/AKkt signaling pathway [1,2]. The PI3K/Akt signaling path-
way is aberrantly activated in a variety of tumors, often resulting
from defects in the PTEN gene [3,4]. Once activated, Akt promotes
fundamental cellular processes such as cell survival, growth, pro-
liferation, angiogenesis, and cellular metabolism. Pten also plays a
crucial role as guardian of genome integrity by maintaining chro-
mosomal stability through physical interaction with centromeres

* Corresponding author. Tel.: +81 43 206 3200; fax: +81 43 206 4138,
E-mail address: y_shimad@nirsgo.jp (Y. Shimada).
1 These authors contributed equally to this study.
2 present address: Pharmaceutical Research Laboratories, Sanwa Kagaku,
Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-shi, Mie 511-0408, Japan.

0027-5107/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.mefrmmm.2009.12.011

and by controlling DNA repair, both of which are independent of
Akt activation [5].

PTEN is mutated in a variety of human carcinomas [6,7], and
PTENis the second most frequently mutated gene in human cancers
after TP53 [8,9]. Germline mutations of PTEN in humans are respon-
sible for Cowden disease, which is characterized by a high risk for
thyroid and breast cancers [10]. In addition to genetic alterations
resulting in missense, nonsense or frameshift mutations, epige-
netic silencing of PTEN has been reported in the pathogenesis of
gastric and breast cancers [11,12]. Furthermore, overexpression of
PTEN-targeting microRNAs correlates with decreased expression of
PTEN protein in hepatocellular [13] and ovarian cancers [14]. These
reports indicate that there are multiple mechanisms responsible for
PTEN inactivation,

Interestingly, there are significant differences in the location of
mutations in PTEN with respect to cancer type. For example, a high
proportion of glioblastomas have missense mutations in exon 6,
which encodes part of the phosphatase domain of PTEN, whereas
few mutations have been found in exons 7 and 8, which encode



Y. Yamaguchi et al. / Mutation Research 686 (2010) 30-38 31

Table 1

Summary of expression and aberrations of Pten in 23 thymic lymphomas, in parallel with the activation of a downstream factor of Akt

2 Lost allele is shown, (-), retention of heterozygosity.
b Ins, insertion; Del, deletion; nd, not detected.

© S, serine; M, methionine; C, cysteine; V, valine; A, alanine; I, isoleucine; F, phenylalanine,
4 “Activated” means that the phosphorylation of Akt protein at Ser473 was detected; nd, not detected.
¢ Sequencing analysis indicates the presence of both mutated and non-mutated sequence, the latter of which may be due to contaminated normal cells.

the C2 domain, In contrast, endometrial carcinomas rarely contain
mutations in exon 6; rather, frameshift mutations in exons 7 and
8 are common [6,7]. Deletion of PTEN has been identified in 77%
of prostate cancer cases, with 25% containing homozygous dele-
tions [15]. Because previous studies have examined only single or
limited categories of causal alterations, the overall contribution
of each causal PTEN alteration remains unclear for many tumor
types.

Radiation is a clear etiology for leukemia and lymphoma.
Radiation-induced murine thymic lymphomas have been used as
a suitable model of human T-cell acute lymphoblastic leukemia
(ALL), many of which exhibit Notch1 and Ikaros mutation, p15 and
pl6alteration, and aberrant activation of Jak-Stat signaling [ 16-20].
Loss of heterozygosity (LOH) within a broad genomic region of
chromosome 19, including the mouse Pten locus, has been demon-
strated in many thymic lymphomas [21,22]. Although it has been
suggested that Pten undergoes epigenetic silencing by DNA methy-

" [ation in radiation-induced murine thymic lymphomas [22], direct

evidence has not yet been reported.

To identify the mode of Pten inactivation in hematopoietic
malignancies, we systematically analyzed the status of Pten alle-
les and Pten expression at the RNA and protein levels in 23
radiation-induced thymic lymphomas developed in B6C3F1 mice;
downstream activation of Akt was also analyzed. These analy-
ses revealed that biallelic structural abnormality of Pten, but not
epigenetic silencing, plays a significant role in radiation-induced
lymphomagenesis.

2. Materials and methods
2.1, Tumeor induction

The induction of thymic lymphomas was carried out as described [23], with
minor modifications. In brief, female B6C3F1 mice .were exposed weekly to
2.0Gy whole-body X-ray radiation for four consecutive weeks starting at four
weeks of age. Mice were observed daily until moribund and were then sacri-
ficed under ether anesthesia. All experiments with mice were conducted according
to the legal regulations in Japan and were in compliance with the guidelines
for the care of laboratory animals of the National Institute of Radiological Sci-
ences,

2.2, LOH analysis

For LOH analysis, genomic DNA was amplified by PCR using the following
polymorphic markers: DI19Mit59, D19Mit46, D19Mit19, D19Mit53 and D19Mit34
(see Supplementary Table 1). To determine LOH at the Pten locus, the microsatel-
lite sequence was searched using the UCSC Genome Bioinformatics database
(http://genome.ucsc.eduf). A repetitive region within intron 2, which contained
fragment length polymorphism between C57BL/6 and C3H/He] mice, was iden-

tified. PCR products amplified from genomic DNA of C57BL/6 and C3H/He] mice
that contained this region were sequenced, and the polymorphism was confirmed,
The primer sequences and the conditions for each PCR reaction are described in
Supplementary Table 1. PCR products were resolved using a capillary electrophore-
sis system HAD-GT12 Genetic Analyzer (eGene Inc,, Irvine, CA, USA) or by 3% NuSieve
agarose (3:1) gel electrophoresis (FMC, Rockland, MA, USA),

2.3. RT-PCR analysis

Total RNA was extracted from tumor tissues using the acid guanidinium
thiocyanate-phenol-chloroform method [24}, and the cDNA was reverse transcribed
using 10 p.g total RNA, Moloney murine leukemia virus reverse transcriptase (Toy-
obo Co,, Ltd,, Osaka, Japan), and random hexamers (Takara Bio) according to the
manufacturer's recommendations. The primer sequences and the conditions for
each PCR reaction are described in Supplementary Table 1. PCR products were
resolved by 2% agarose gel electrophoresis and analyzed using a Luminescent image
analyzer LAS-3000 (Fujifilm, Tokyo, Japan). PCR products were directly sequenced
usingaBig Dye Terminator v3.1 (Applied Biosystems, Foster City, CA, USA)and an ABI
PRISM 3100 Genetic Analyzer (Applied Biosystems) or sequenced after TA cloning
using a TOPO TA cloning kit (Invitrogen Co., Carlsbad, CA, USA).

2.4. Bisulfite sequencing analj./sisv

Genomic DNA (1.0.g) was subjected to bisulfite modification using a
CpGenome DNA modification kit, No. 57820 (Chemicon, Temecula, CA, USA), accord-
ing to the manufacturer’s instructions. Bisulfite-modified DNA (40 ngful) was then
subjected to PCR amplification using primers specific for methylated CpG cytosines
as described in Supplementary Table 1. PCR products were sequenced after TA
cloning.

2.5, Western blot analysis

Thymic lymphoma cells and normal thymocytes were dissolved in cell lysis
buffer (Cell Signaling Technology Inc., Danvers, MA, USA) containing phenyl-
methanesulfony! fluoride. Proteins were denatured by heating at 100°C for 5min
in sample buffer containing SDS, and then lysates (20 ug) were separated by
10% SDS-PAGE and transferred to a PVDF membrane (Millipore Co., Billerica, MA,
USA). Anti-Pten, anti-Akt, anti-phospho-Akt (Ser473) and anti-beta-actin (Santa
Cruz Biotechnology Inc, Santa Cruz, CA, USA) were used as primary antibodies,
Horseradish peroxidase-conjugated anti-rabbit (Cell Signaling Technology) or anti-
goat (Santa Cruz Biotechnology) IgG was used as secondary antibody. Signals were
developed using ECL plus Western Blotting Detection Reagents (GE Healthcare, Lit-
tle Chalfont, Buckinghamshire, UK) and analyzed using the LAS-3000 luminescent
image analyzer (Fujifilm).

2.6. Array-CGH analysis

We designed and used an Agilent 8 x 15k-formatted mouse custom array-CGH
microarray (#020410; Agilent Technologies, Santa Clara, CA, USA), which consisted
of about 15,000 oligonucleotide probes, including 1499 for the genomic region cov-
ering the Pten locus on chromosome 19 (about 430kbp). Fluorescence labeling of
DNA, microarray hybridization and post-hybridization washing were carried out
according to the manufacturer’s protocol (version 5) for genomic DNA analysis using
oligonucleotide array-CGH. Scanning was performed using an Agilent microarray
scanner (G2565BA). Signal intensities were measured and evaluated using Agilent
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Feature Extraction software v9-5-35 and CGH analytics software v3-5-14, respec-
tively, The microarray data reported in this article have been deposited in the
Gene Expression Ominibus (GEO) database, www.ncbi.nim.nih.gov/geo (accession
no. GSE17751).

2.7. Quantitative real-time RT-PCR

Quantitative real-time RT-PCR analysis of miR-19a and miR-21 was performed
using a TagMan MicroRNA assay kit (Applied Biosystems) according to manufac-
turer's recommendations. Quantitative PCR amplification of cDNAs was performed
using a Mx3000P real-time PCR system (Stratagene, La Jolla, CA, USA) and TagMan
Universal PCR Master Mix (Applied Biosystems). Data were normalized to the levels
of the small nucleolar RNAs 202 and 234. Each reaction was performed in triplicate.
Data were analyzed with MxPro software, version 4.10 (Stratagene),

3. Results
3.1. LOH analysis

Mouse Pten encodes a protein product predicted to have
403 amino acid residues and is located at 24.5 ¢cM on chromo-
some 19. We analyzed LOH using five independent microsatellite
simple-sequence-length polymorphism makers on chromosome
19. LOH at the Pten locus was also examined using a microsatel-
lite marker within intron 2, which distinguished the polymorphism
between C57BL/6 and C3H/He] mice. LOH around the Pten locus
was identified in seven lymphomas (TL8, 11, 12, 14, 19, 20 and
21) (Fig. 1). The LOH frequency (30%; 7 of 23 lymphomas) was
roughly consistent with previous studies examining radiation-
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induced thymic lymphomas in various F1 hybrid mouse strains
[22,23,25].

3.2. Expression of Pten mRNA and protein

We examined the expression of Pten transcripts by reverse tran-
scriptase (RT)-PCR analysis using three sets of primers (Fig. 2).
Altered expression of Pten mRNA was observed in 5 of 23 lym-
phomas (TL5, 8, 11, 14 and 20). TL5 had an additional but faint PCR
product that was larger than the predicted product when amplified
using primers EX2F and ExX7R. For TL8, RT-PCR products generated
using any primer combination were faint or undetectable. LOH at
the Pten locus in TL8 indicated that one Pten allele remained. Thus
the absence of Pten transcripts suggested the transcriptionalsilenc-
ing at the Pten promoter region in the remaining allele. Using the
Ex1F-7R primer pair, TL11 generated one RT-PCR product of the
predicted length and three longer RT-PCR products; TL14 generated
a faint, short RT-PCR product in addition to a product of the pre-
dicted length. TL20 generated a faint product when primers EX1F
and Ex7R were used, but a substantial amount of product was gen-
erated using either of the remaining two sets of primers, suggesting
that a 5 portion of exon 1 was missing,

3.3. Sequencing of bisulfite-modified DNA

Because our data for TL8 implicated transcriptional silencing
of Pten (Figs. 1 and 2), we analyzed the DNA methylation pat-

123456 7891011121314151617181920212223

123456 78 910111213141516 17181920212223

2133(3 || |38

® C3H M B8

Lost allele

Fig. 1. LOH analysis of chromosome 19 in 23 radiation-induced thymic lymphomas. (A) The first three lanes represent control DNA samples from the maternal C57BL/6
strain (B6), the paternal C3H/He]J strain (C3H), and the B6C3F1 hybrid (F1), respectively. Numbers above the remaining lanes reflect the tumor identification numbers.
PCR amplification of genomic DNA was performed using the indicated polymorphic marker primer pair followed by electrophoretic analysis of amplification products. (B)
Schematic diagram of LOH on chromosome 19 in each lymphoma. Lymphoma identification numbers are indicated at top. Polymorphic markers are shown to the right of the
chromosome schematic, and marker positions indicating distances (cM) from the centromere are shown at left. The Pten marker is located between exons 2 and 3. Absence
of a circle or square indicates the retention of heterozygosity.
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Fig. 2. Alteration of Pten in radiation-induced thymic lymphomas. (A) Schematic representation of Pren. Shading indicates the Pten coding regions. RT-PCR amplification
primers and their annealing locations are indicated by arrows. Ex, exon; PTPase, phosphotyrosine protein phosphatase. (B) RT-PCR analysis of Pten using the primer pairs
indicated at left and genomic DNA isolated from thymocytes (Thy) of 20- or 8-week-old mice (control lanes 1 and 2, respectively), or from the lymphoma indicated at top, was
performed and reaction products were subjected to 2% agarose gel electrophoresis. G3pdh was used as a control for RT-PCR amplification and as a loading control. Asterisks
indicate RT-PCR products longer or shorter than the expected size. (C) Schematic representation of aberrant Pten transcripts. Black bars in TL11 indicate inserted intronic
sequences. #, Positions of newly generated in-frame stop codons that possibly cause immature translation.

terns in the 5 (upstream) region of Pten (Supplementary Fig. 1A,
indicated as P1) in all lymphomas; this region corresponds to the
promoter of human PTEN that was shown to be aberrantly methy-
lated in T-cell ALLs [26]. However, no aberrant methylation was
detected (Supplementary Fig. 1B). Although the CpG sites at posi-
tions -39 and -40 relative to the transcriptional start site were both
methylated in most of the lymphomas, these CpG sites were also
frequently methylated in normal thymocytes. For TL8, we analyzed
anadditional Pten region (Supplementary Fig. 1A, indicated as P2)in
which hypermethylation has been suggested to be associated with

a lack of PTEN expression in non-small cell luﬁg cancer [27], How-
ever, we again did not detect aberrant methylation (Supplementary
Fig. 1C). Thus, the absence of Pten transcripts likely resulted froma
mechanism other than silencing by DNA methylation.

3.4. Sequence analysis of Pten transcripts
Next, we determined the sequence of the RT-PCR products from

alllymphomas including those products that were longer or shorter
than predicted in TL5, 11 and 14 (Fig. 2C). In TL5, the longer
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PCR product generated using the Ex2F-7R primer pair contained
duplicated exons 6 and 7. The product of predicted length had
an insertion of 3 bp, which encoded an amino acid change from
Ser170 to Met and Cys. Because the normal Pten sequence was
not observed, TL5 may contain biallelic Pten mutations, TL11 had
one RT-PCR product of predicted length and three longer products
when amplified using the Ex1F-7R primer pair. The most predomi-
nant longer fragment generated from TL11 (Fig. 2B, indicated as -y)
contained two large nucleotide insertions of 88 and 122 bp within
intron 1 that generated a stop codon, together with a deletion of
exon 2. The least predominant longer fragment generated from
TL11 (Fig. 2B, indicated as o) contained a 1078-bp insertion in
intron 1 and a deletion of exon 2, generating a stop codon. Sequenc~
ing of the TL11 PCR product (8 could not be achieved. The faint
product of predicted length had no mutations but may have been
derived from contamination of the tumor sample with healthy cells.
In TL14, the predominant product of predicted length generated
using the Ex6F-9R primer pair had a frameshift mutation due to a
1-bp insertion (962insA) in the poly(A)6 stretch in exon 8, creating
adownstream stop codon. The faint/short PCR product of TL14, gen-
erated using either EX1F-7R or Ex2F-7R primer pairs, had both the
frameshift mutation and loss of exons 4 and 5, the latter of which
generated a stop codon at residue 264. TL15 had an allele with a
Pten nonsense mutation owing to a substitution (base 862G to T) in
addition to a wild-type allele. TL19 had a Pten missense mutation
owing to a substitution (base 158T to C), resulting in V53A. TL19
generated both mutated and wild-type PCR products, coincident
with incomplete allelic LOH in TL19 (Fig. 1A). TL20 expressed only
a single Pten transcript that lacked exon 1. TL21 had a missense
mutation (base 364A to T) in Pten, resulting in I122F,

Overall, Pten transcripts in radiation-induced lymphomas had a
variety of genetic lesions including missense mutations (TL19 and
21), nonsense mutations (TL15), 1- and 3-base insertions (TL14
and 5, respectively), partial intron insertions (TL11), exon dupli-
cation (TL5), exon deletion (TL11, 14, 20), and null expression
(TL8). Although these mutations are very complicated, they were
in good agreement with previous reports demonstrating that mis-
sense mutations occur in the Pten phosphatase domain whereas
nonsense and frameshift mutations, resulting in protein truncation,
occur in the C2 domain of Pten. In total, seven of eight lymphomas
carrying a Pten mutation (88%) contained biallelic alterations.

3.5. Array-based comparative genomic hybridization
(array-CGH) analysis of genomic DNA from TL8, 11 and 20

In order to know the reason for the absence or aberrant tran-
scription of Pten in TL8, 11 and 20 (Fig. 2), we analyzed genomic
structures around the Pten locus in TL8, 11 and 20 using array-
CGH, which was designed for intensive analysis of the Pten locus. As
shown in Fig. 3, the array-CGH profiles suggested partial homozy-
gous deletions (<30kbp) in the Pten locus in these lymphomas,
which were positioned within the regions of hemizygous deletion
in TL8 and 11. A region of homozygous deletion (~24 kbp) in TL8
occurred in the 5 (upstream) region of Pten, encompassing both the
putative promoter region and the transcription initiation site; this
may account for the Pten silencing observed in TL8 (Fig. 2). Two RT-
PCR products from TL11 had a deletion of exon 2 together with one
or two insertion(s) of a partial sequence of intron 1 (Supplementary
Fig. 2). Array-CGH indicated that TL11 had a homozygous deletion
that extended 1kbp downstream of exon 1 into the 5 flanking
region of exon 2, suggesting that the abnormal transcripts were
generated by aberrant splice-site selection likely resulting from
the absence of correct splice sites at the intron 1/exon 2 boundary.
Array-CGH analysis of TL20 also revealed homozygous deletion of
genomic regions (~4 kbp), including both the putative promoter
region and the Pten transcription initiation site. RT-PCR analysis
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Fig. 3. Array-CGH analysis reveals homozygous focal deletions in three radiation-
induced thymic lymphomas (TL8, 11 and 20). Schematic of Pten (top), in which
shaded bars represent exons aligned to the genomic positions on chromosome 19
indicated along the x-axis in the array-CGH profiles below the schematic. Moving
averages of the normalized log, Cy5/Cy3 ratio, calculated based on 10 data points,
are plotted in the array-CGH profiles. Arrows on the x-axis correspond to genomic
regions amplified by PCR and sequenced to identify breakpoints.

indicated the presence of a Pten transcript, however, suggesting
that the ectopic transcription was initiated at a cryptic promoter in
TL20.

To explore the mechanism responsible for these deletions,
genomic regions containing the breakpoints (indicated by the x-
axis arrows in Fig, 3) were amplified by PCR and sequenced (Fig. 4),
which identified nucleotide insertions at the breakpoint junctions
in TL8 and 11. In TL11, a pair of recombination signal sequence-
like sequences, composed of heptamer- and nonamer-like motifs
separated by non-conserved spacers of 12 or 23 bp, were located
between but immediately adjacent to the breakpoints, suggesting
that illegitimate V(D)] recombination gave rise to the deletion. In
contrast, a 0.8-kb templated nucleotide sequence was inserted in
the TL20 deletion region. Overlaps of 1 or 2 nucleotides at both
breakpoints of the two junctions were identified, suggesting that
microhomology-mediated rearrangements might have led to the
deletion.

3.6. Loss of Pten and downstream activation of Akt

Pten protein expression varied in the lymphomas we examined
(Fig. 5). To determine whether decreased expression correlated
with loss of Pten function, we analyzed the degree of Ser473 phos-
phorylation in Akt (Fig. 5). Pten was not expressed in lymphomas
TL8, 11, 14 and 20, consistent with the aberrant stop codon and
genomic deletions in the Pten promoter region. Pten expression
level correlated inversely with phosphorylation of Akt. Lymphomas



