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Puromycin Insensitive Ph ol

Leucyl-Specific Aminopeptidase
(PILSAP) Affects RhoA Activation
in Endothelial Cells

TAKAHIRO SUZUKI,'? MAYUMI ABE,' HIROKI MIYASHITA,' TOSHIMITSU KOBAYASHI,?
AND YASUFUMI SATO'*

' Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, japan

?Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan

Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) expressed in endothelial cells (ECs) plays an important role in angiogenesis
dueto its involvement in migration, proliferation and network formation. Here we examined the biological function of PILSAP with respect
to EC morphogenesis and the related intracellular signaling for this process. When mouse endothelial MSS31 cells were cultured, a
dominant negative PILSAP mutant converted cell shape to disk-like morphology, blocked stress fiber formation, and augmented
membrane ruffling in random directions. These phenotypic changes led us to test whether PILSAP affected activities of Rho family small
G-proteins. Abrogation of PILSAP enzymatic activity or its expression attenuated RhoA but not Racl activation during cell adhesion. This
attenuation of RhoA activation was also evident when G-protein coupled receptors such as proteinase-activated receptor or
lysophosphatidic acid receptor were activated in ECs. These results indicate that PILSAP affects RhoA activation and that influences

the proper function of ECs.

J- Cell. Physiol. 211: 708-715, 2007. © 2007 Wiley-Liss, Inc.

Angiogenesis is the formation of new blood vessels through
endothelial cell (EC) proliferation and migration in combination
with tubular morphogenesis. Angiogenesis is indispensable for
various physiological and pathological processes, such as
embryonic development, wound healing, diabetic retinopathy,
and solid tumor growth. A number of molecules regulate
angiogenesis both positively and negatively. However, the
molecular mechanism of angiogenesis is not yet completely
understood.

We searched for novel molecules involved in angiogenesis
regulation, and isolated puromycin insensitive leucyl-specific
aminopeptidase (PILSAP) with the use of subtraction strategy
whose expression was augmented during the in vitro
differentiation of murine embryonic stem (ES) cells to ECs
(Miyashita et al., 2002). The expression of PILSAP in ECs is
evident at the site of angiogenesis in vivo, and is regulated,
at least in part, by a transcription factor polyomavirus
enhancer-binding protein 2 (PEBP2) (Miyashita et al., 2002;
Niizeki et al., 2004). Interestingly, endoplasmic reticulum
aminopeptidase associated with antigen processing (ERAAP)
was found to be identical to PILSAP, which was involved in the
cleavage of various peptides for antigen presentation by MHC
class | molecules (Serwold et al., 2002). Nevertheless, our
analyses have revealed that PILSAP plays an important role in
angiogenesis by its involvement in migration, proliferation and
network formation (Akada et al., 2002; Miyashita et al., 2002).
Aminopeptidases catalyze the sequential removal of amino
acids from unblocked N-termini of peptides and proteins and
play important roles in various biological processes, such as
maturation, activation, modulation, degradation of bioactive
peptides (Taylor, 1993). PILSAP belongs to the M|
aminopeptidase family, which contains an HEXXH(18X)E motif
and a central Zn>" ion essential for enzymatic activity. We
examined the mechanism by which PILSAP regulates vascular
endothelial growth factor (VEGF)-stimulated proliferation of
ECs. As PILSAP is an aminopeptidase, PILSAP is expected to
modulate cell function by catalyzing its physiological substrates.
Our analysis have revealed that PILSAP binds to

© o077 WILEY 1SS InC

phosphatidylinositol-dependent kinasel (PDK1) and removes
9 amino acids from the PDK| N-terminus, which subsequently
allows S6 kinase (S6K) to associate with PDK | and PILSAP upon
VEGF stimulation (Yamazaki et al., 2004).

Cell migration is a mechanically integrated molecular process
that involves dynamic, coordinated changes in cell adhesions
and cytoskeletal reorganization. The migration process
includes protrusion of the leading edge, formation of new
adhesions at the front, cell contraction, and the release of
adhesions at the rear (Lauffenburger and Horwitz, 1996; Sheetz
etal, 1998; Li etal., 2005). Reorganization of actin cytoskeleton
generates locomotive force, and this process is regulated by
Rho family small GTPases such as RhoA, Rac, and Cdc42. Rho
family small GTPases act as molecular switches by cycling
between GTP- and GDP-bound states and transmit
extracellular chemotactic signals to downstream effectors.
Activated Rac and Cdc42 induce reorganization of actin
cytoskeleton at the leading edge. This reorganization of actin
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PILSAP AND RHOA ACTIVATION

cytoskeleton induces the formation of membrane protrusion
such as membrane ruffling (Small etal,, 2002). In contrast, RhoA
regulates the assembly of contractile acto-myosin filaments.
This RhoA-mediated acto-myosin contractile force promotes
locomotion of the cell body and the trailing edge (Nobes and
Hall, 1999). These organized activities of Rho family smalil
GTPases make the proper cell polarity.

We previously showed that PILSAP did not affect integrin
expression, but was involved in adhesion to extracellular matrix
proteins (Akada etal., 2002). Here, we extended our analysis to
elucidate the molecular mechanism as to how PILSAP regulates
adhesion of ECs. Our present analysis revealed that PILSAP
takes part in the activation of RhoA in ECs.

Materials and Methods
Materials

The following materials were used: growth factor-reduced
Matrigel (Collaborative Research, Bedford, MA); a-minimum
essential medium («MEM), Opti-MEM, Lipofectamine, Superscript
Il reverse transcriptase, oligo(dT)12-18 primer, and
oligofectamine (Gibco BRL, Rockville, MD); anti-RhoA Ab and
anti-Racl Ab (Santa Cruz Biotechnology, Santa Cruz, CA); Isogen
(Nippon Gene, Toyama, Japan); PAR ! agonist peptide (PAR-1 AP)
(TFLLR-NH,, Tocris Cookson, Bristol, UK); Y27632 (EMD
Bioscience, San Diego, CA); lysophosphatidic acid (LPA; Biomol
Laboratories, Plymouth Meeting, PA); nitrocellulose membranes
(Amersham Biosciences, Buckinghamshire, UK); FUuGENE 6
Reagent (Roche Diagnostics, Mannheim, Germany); C3
exoenzyme (Calbiochem, La jolia, CA). Other chemicals were
purchased from Sigma (St. Louis, MO).

Cell culture

Mouse endothelial MSS31 cells isolated from mouse spleen
microfossils (Yanai etal., 1991) were routinely cultured in aMEM
containing 5% fetal bovine serum (5% FBS/aMEM; Oda etal., 1999).
MSS31 cells were stably transfected with pcDNA4A (invitrogen,
Carlsbad, CA) empty vector (Mock), Wt-PILSAP or Mut-PILSAP
(Yamazaki et al., 2004). Established transfectants in bulk were
maintained in 5% FBS/aMEM containing 100 pg/ml of zeocin
(Invitrogen). Mut-PILSAP acts as a dominant negative molecule in
which glutamate residue 343 is substituted with an alanine (E343A)
in the aminopeptidase motif of PILSAP.

Immunofluorescence staining

For the inhibition of RhoA, cells were treated with C3 exoenzyme
according to the method described by Minambres et al. (2006).
Briefly, C3 exoenzyme (2.5 ug) was precomplexed with FuGENE 6
Reagent (5 pi} in 100 pi of opti-MEM, and C3 exoenzyme complex
was added to the cultures. For the inhibition of Rho kinase, cells
were incubated in 5% FBS/aMEM on type-| collagen coated dishes
for 8 or 10 h with or without Y27632. In addition, cells were
culturedin | % FBS/aMEM prior to inoculation onto type- | collagen
coated dishes for 10 h and then stimulated with or without PAR-|
AP (40 M) or LPA (10 uM).

Thereafter, cells were fixed with 3.8% formaldehyde for 10 min at
room temperature and permeabilized with 0.1% Triton X-100 in
phosphate buffered saline (PBS). Non-specific binding sites were
blocked with 1% bovine serum albumin (BSA) in PBS. Filamentous
actin (F-actin) was detected by rhodamine phalloidine (Molecular
Probes, Eugene, OR) and focal adhesion complexes were detected
by indirect immunofluorescence by using anti-paxillin Ab
(Transduction Laboratories, Lexington, KY) and FITC-labeled
secondary Ab (Jackson ImmunoResearch, West Grove, PA). Then,
cells were observed by confocal microscopy (LSM410, Carl Zeiss
Jena GmbH, Jena, Germany).

JOURNAL OF CELLULAR PHYSIOLOGY DOI 10.1002/jCP

Cell morphology during movement

Transfected cells were plated onto type-| collagen coated 35 mm
dishes for 10 hin 5% FBS/aMEM at a sparse density, so that cells
did not affect the movement of each other. Cells were cultured
at 37°C in 5% CO;. Next, cells were photographed by
phase-contrast time lapse microscopy in random high-power
(200 ) fields after additional incubation of 2—-6 min.

RhoA and Racl activities

Pull-down assay kits (Rho activation assay kit and Cdc42 activation
kit, Upstate Biotechnology, Lake Placid, NY) were used to measure
RhoA, Racl and Cdc42 activities in stable transfectants,
leucinethiol (LT), a specific inhibitor of leucine aminopeptidase,
treated parental cells or siRNA transfected parental cells. The
Cdc42 activation kit includes p2| activated kinase | (PAK-1)
binding domain agarose. PAK-1 binds both Racl and Cdc42 thus; it
can measure both Racl and Cdc42 activity. Cells were cultured in
1% FBS/aMEM for 24 h and replated in 1% FBS/aMEM on type-|
collagen coated dishes for 10 h. In LT treatment experiments,
parental cells were plated onto type-| collagen coated dishes for
10 h in 1% FBS/aMEM with or without LT. In some experiments,
cells were treated with or without 1% FBS/aMEM containing
PAR-1 AP (40 uM) or LPA (10 uM) for 5 min. Cells were extracted
with lysis buffer A (25 mM HEPES pH 7.5, 150 mM NaCl, % Igepal
CA-630, 10 mM MgCl,, | mM EDTA, and 10% glycerol). The
pull-down of activated RhoA, Racl, or Cdc42 was performed
according to the manufacturer’s protocol. A protein assay was
performed to equalize the protein amount of each treatment
group.

Western blot analysis

The proteins extracted by lysis buffer A or the samples obtained by
puli-down assay were separated by SDS—polyacrylamide gel
electrophoresis ona {0% gel and then transferred to nitrocellulose
membranes (lwasaka et al., 1996). The membranes were blocked
for | h at room temperature with Tris-HCl-buffered saline (TBS),
pH 7.4, containing 5% skim milk, and then incubated for | h at room
temperature in TBS containing 0.05% Tween-20 (T-TBS), 1% BSA,
and anti-RhoA Ab (1:1,000) or anti-Rac! Ab (1:1,000). The filters
were washed three times with T-TBS and incubated for | h with
horseradish peroxidase-conjugated protein G (Bio-Rad, Hercules,
CA) diluted 1:3,000 in T-TBS. After the filters were washed with
T-TBS three times, signal was detected by an enhanced
chemiluminescence method with the ECL Western blotting
detection kit (Amersham Bioscience). The results were visualized
with LAS-1000 (Fuji Film, Tokyo, Japan).

siRNA transfection

RNA interference of the ERAAP gene (identical to PILSAP) was
described by Serwold et al. (2002). We generated another
siRNA to strengthen the siRNA-mediated knock down of PILSAP.
The coding strands of the two pair of siRNA oligonuclectide
directed to the 5 end of mouse PILSAP messenger RNA

were 5-AGCUAGUAAUGGAGACUCATT-3,
5-UGAGUCUCCAUUACUAGCUTT-3 and
5'-CCUCAGCACUCGACUUUCTT-3,
5.GAAAGUCAGAGUGCUGAGGTT-3' and scrambie

RNAs, the negative control of siRNA, were
5-AAGAUUCGACGAGCUAUAGTT-3,
5-CUAUAGCUCGUCGAAUCUUTT-3 and
5-UUAGCCCGUCUACGAAUUUTT-3,
5'-AAAUUCGUAGACGGGCUAATT-3'. RNA duplexes were
denatured in annealing buffer (100 mM NaCl, 50 mM Tris-HClI
pH 7.5) at 90°C for | min and subsequently annealed at 60°C for
I h. MSS31 cells were cultured in 5% FBS/aMEM for 24 h, and then
oligonucleotides were transfected into cells using oligofectamine
according to the manufacturer’s instructions. Twenty-four hours
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after transfection, MSS31 cells were cultured in 5% FBS/«MEM for

24 h. The gene silencing effect was confirmed by a quantitative real
time RT-PCR.

Quantitative real time RT-RCR

Quantitative real time RT-PCR was performed using a Light Cycler
System (Roche Diagnostics) as described previously (Shibuya etal.,
2006). Total RNA isolated from parental MSS 31 cells was
extracted by ISOGEN according to the manufacturer’s
instructions. RNA was reverse transcribed with AMV reverse
transcriptase (Roche Diagnostics) and oligo(dT)12—-18 primer
according to the manufacturer's instructions. PCR conditions
consisted of an initial denaturation step at 95°C for 10 min,
followed by 40 cycles of 15 sec at 95°C, 5 sec at 60°C and

I5 sec at 72°C. The primer pairs used were: PILSAP
5'-GATGATGGATGGGCTTCTCT-3' (forward primer) and
5-GGCTTTTCTCAGTACTAGAC-3' (reverse primer); mouse
B-actin 5-TCGTGCGTGACATCAAAGAG-3' (forward primer)
and 5-TGGACAGTGAGGCCAGGATG-3' (reverse primer).
Each mRNA level was measured as a fluorescent signal corrected
according to the signal for B-actin.

Network formation

The transfected cells were harvested with 0.25% trypsin and | mM
EDTA, resuspended in 5% FBS/aMEM with or without Y27632
(10 wM) in a final volume of | ml, replated (2 x 10° cells per dish)
onto 35 mm dishes coated with Matrigel (700 pl per dish), and
incubated at 37°C for 12 h. Cells were observed by phase-contrast
microscopy. The length of network structures was quantified with
Soft Imaging System Analysis.

Calculations and statistical analysis

The statistical significance of differences in the data was evaluated
by the use of unpaired analysis of variance. P values were calculated

ET AL.

by the unpaired Studentt-test. P < 0.05 was accepted as statistically
significant.

Results
PILSAP is involved in F-actin formation during
cell adhesion

The consensus HEXXH(18X)E motif is defined as a unique
signature for zinc metalloproteinase and glutamate residues are
essential for catalytic activity (Hooper, 1994). We previously
established a plasmid in which glutamate residue 343 is
substituted with an alanine (E343A, namely, HAXXH(I18X)E) in
the aminopeptidase motif of PILSAP, and this mutant PILSAP
acts as adominant negative molecule (Yamazaki et al., 2004). To
investigate the biological function of PILSAP in ECs, we
transfected MSS31 cells with empty vector (Mock), wild-type
PILSAP (Wt-PILSAP) expressing vector or mutant PILSAP
(Mut-PILSAP) expressing vector, and established the respective
stable transfectants. Cells were routinely cultured on type-|
collagen coated dishes. The most significant change that we
found was cell morphology. As shown in Figure | A, Mut-PILSAP
transfectants showed disk-like morphology and lost cell
polarity in sparse to subconfluent conditions. Because of this
phenotypic change, we examined the actin cytoskeleton
organization. Stress fibers were scarcely formed in Mut-PILSAP
transfectants (Fig. IB). In contrast, formation of membrane
ruffling was increased but in random directions in Mut-PILSAP
transfectants (Fig. |C).

ECs use at least a typel collagen receptor integrin a2B1, a
fibronectin receptor a5B I, and vitronectin receptors av33 and
avB5 for angiogenesis (Brooks et al., 1994; Collo and Pepper,
1999). Expression of these integrins was unaltered, and
identical phenotypic changes were observed when
transfectants were plated on fibronectin or vitronectin coated
dishes (data not shown).

F-actin

Mock

Wt

Mut

(x 100)

Paxillin

Er

(x 400) (x 400)

Fig. I.

Involvement of PILSAP in cell shape change, actin organizationand membrane ruffling. A: Transfectants were plated onto type-| collagen

coateddishesandincubated for 8 hin 5% FBS/aMEM. Cell shape was observed by a phase-contrast microscopy (upper part, 40X, lower part, 100X).
B: Transfectants were plated onto type-| collagen coated dishes, and incubated for 8 h in 5% FBS/aMEM, and then stained with rhodamine-
phalloidin (red) and anti-paxillin Ab (green). A scale bar indicates 50 pm. C: Cell morphology during movement was observed by time lapse
microscopy. Typical pictures are shown here. Arrow heads indicate membrane ruffling.
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PILSAP is invoived in RhoA activation for
EC morphogenesis

As Rho family small GTPases play a pivotal role in actin
cytoskejeton reorganization, we examined the activities of
RhoA, Racl and Cdc42 in transfectants upon cell adhesion. We
observed that RhoA activity was attenuated, while Rac| activity
was augmented in Mut-PILSAP transfectants (Fig. 2A). Cdc42
activity was hardly detected (data not shown). Involvement of
PILSAP in RhoA activation was confirmed by two additional
treatments. We previously showed that PILSAP was highly
sensitive to LT, but was insensitive to puromycin (Miyashita
et al,, 2002). LT inhibited spreading of MSS3! cells upon
extracellular matrix such as typel collagen, fibronectin and
vitronectin (Akada etal., 2002). Here we examined whether LT
influenced RhoA activity. As shown in Figure 2B, LT inhibited
RhoA activation in parental MSS31 cells when added to the
medium. Moreover PILSAP siRNAs, which knocked down to
16% of the control level of PILSAP mRNA (Fig. 2D), decreased
RhoA activity of parental MSS31 cells (Fig. 2C).

RhoA regulates cell contractility through its downstream Rho
kinase (Alblas et al., 2001). To further confirm the involvement
of RhoA activity in EC morphogenesis, we employed specific
RhoA inhibitor, C3 exoenzyme, or a Rho kinase inhibitor,
Y27632. When parental MSS31 cells were treated with C3
exoenzyme or Y27632, cells exhibited cell-shape changes
identical to that in Mut-PILSAP transfectants (Fig. 3A,B).

ECs form network-like structures when plated on Matrigel.
This network formation was aborted in Mut-PILSAP

transfectants, or by the treatment of Wt-PILSAP transfectants
with Y27632 (Fig. 4). These results indicate that PILSAP is
involved in RhoA activation for proper morphogenesis and
organization of ECs.

PILSAP is involved in RhoA activation via
G-protein coupled receptors

During the maintenance of transfectants in culture, we noticed
that Mut-PILSAP transfectants showed delayed cell shrinkage
upon trypsin/EDTA treatment for cell harvest. We reasoned
this delay of cell shrinkage was due to impaired RhoA activation.
Indeed, when transfectants were pretreated with Y27632, cell
shrinkage upon trypsin/EDTA treatment was inhibited in Mock
or Wi-PILSAP transfectants (data not shown). Trypsinactivates
proteinase-activated receptors (PARs). PARs belong to the
G-protein coupled receptors (GPCRs), and ECs express PAR|
and PAR2 (Brass and Molino, 1997). Western blot analysis
revealed that protein levels of PARI and PAR2 were identical
between the three transfectants (data not shown). It was
previously reported that PAR| or PAR2 agonist induced RhoA
activation in HUVEC (Vouret-Craviari et al., 2003). Here we
used the PAR| AP toinduce RhoA activity in our system. There
was no significant difference in the basal level of RhoA activity
between transfectants. However when transfectants were
treated with the PARI AP, RhoA activation was almost
completely abolished in Mut-PILSAP transfectants (Fig. 5A).
Moreover, with respect to actin reorganization, PAR| AP
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Fig. 2. Involvement of PILSAP in RhoA activation. A: Transfectants were incubated on type-1 collagen for 10 hin 1 % FBS/aMEM. Then, RhoA and
Racl activities were determined. B: Parental M$S31 cells wereincubated on type-! collagenfor 10 hin 1% FBS/aMEM with or without LT (10 pmol/
L). Next, RhoA and Rac| activities were determined. GTP-RhoA or GTP-Raci was quantified by density and normalized to that of total RhoA or
total Racl. The values are expressed as the mean = SD from three independent experiments; *P<0.05,**P<0.01. C: Parental MSS31 cells were
transfected with PILSAP siRNA and incubated in 1% FBS/aMEM for 24 h. Then, transfectants were plated onto type-| collagen coated dishes and
incubated for 10 h. Next, RhoA and Rac! activities were determined. The values are expressed as the mean * SD from two independent

experiments; *P < 0.05. D: The genesilencing effect of PILSAP siRNA was confirmed by quantitativereal time RT-PCR. The valuesare expressedas

the mean =+ SD from three samples; **P <0.01.
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Fig. 3. Effectsof RhoA and Rho kinase inhibitors on cellmorphology. A: Parental MSS31 cells were plated onto type-| collagen coated dishes and
incubated for | hin 5% FBS/aMEM. Next, cells were treated with or without C3 exoenzyme precomplexed with FUGENE 6 Reagent for additional
7 h.Cells were then stained with rhodamine-phalloidin (red) and anti-paxillin Ab (green). B: Parental MSS3 | cells were plated onto type-1 collagen
coated dishes and incubated for 8 h in 5% FBS/«MEM. Next, cells were treated with or without Y27632 (10 pmol/L) for 30 min. Cells were then
stained with rhodamine-phalloidin (red) and anti-paxillin Ab (green).
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Fig. 4. Role of Rho kinase in alteration of network formation mediated by PILSAP. Transfectants were plated onto Matrigel and incubatedin 5%
FBS/&«MEM for 12 h. In some experiments, cells were incubated in the presence of Y27632 (10 pmol/L). The total length of network structures per
field (X 40 magnification) was quantified with Soft Imaging System Analysis. The values are expressed as the mean & SD of four fields; **P<0.01.
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Fig. 5. Involvement of PILSAP in RhoA activation upon stimulation through PARs. A: Transfectants were incubated on type-| collagenfor 10 hin
1% FBS/aMEM, and then treated with or without PAR-1 AP (AP) (40 pmol/L) for 5 min. Next, RhoA activity was determined. GTP-RhoA was
quantified by density and normalized to that of total RhoA. The values are expressed as the mean * SD from four independent experiments;
*P<0.05.B: Transfectantswereincubated ontype-1 collagenfor 10 hin 1% FBS/aMEM, and then treated with or without PAR-1 AP (AP) (40 pmol/L)
for 5 min. Subsequently, they were fixed and stained with rhodamine-phalloidine. A scale bar indicates 50 pm.

induced stress fiber formation in Mock or Wt-PILSAP Mut-PILSAP transfectants (Fig. 6A). Stress fiber formation was
transfectants but not in Mut-PILSAP transfectants (Fig. 5B). not induced by LPA in Mut-PILSAP transfectants (Fig. 6B).
LPA binds to the LPA receptor and activates RhoA for F-actin Moreover, LT or PILSAP siRNA inhibited LPA-stimulated
formation in ECs (Panetti, 2002). When transfectants were activation of RhoA in parental MSS31 cells (Fig. 7A,B). These
treated with LPA, RhoA activation was significantly lower in results indicate that the involvement of PILSAP in RhoA
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Fig. 6. Involvement of PILSAP in RhoA activation upon LPA stimulation. A: Transfectants were incubated on type-| collagen for 10hin 1% FBS/
«MEM, and then treated with or without LPA (10 pmol/L) for 5 min. Next, RhoA activity was determined. GTP-RhoA was quantified by density and
normalized to that of total RhoA. The values are expressed as the mean + SD from four independent experiments; P < 0.05. B: Transfectants were
incubated on type-| collagen for 10 hin | % FBS/«MEM, and then treated with or without LPA (10 pmol/L) for 5 min. Subsequently, they were fixed
and stained with rhodamine-phalloidine. A scale bar indicates 50 pm.
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