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Robust model selection for classification of microarrays

the classification performance of'the proposed system.
The cross-validation (CV) technique is used widely
for predicting true classification error rate in samples
that are not included in either the training or the test
sample sets. Among the CV methods, the leave-one-
out cross-validation technique (LOQO) is often used
because of its small bias." These studies, however,
paid little attention to the variances of estimated
classification error rates.

The estimated variances in the assessment process
are important for practical applications. Even if a
classifier has a sufficiently low error rate accompanied
instead by large variance in prediction, it suffers from
a high risk of having a large actual error rate when
applied to unknown test samples.”! The LOO criterion
sometimes selects a classifier involving a very small
number of genes, or even a single gene. Although the
single-gene classifier fits the “as few genes as possible’
criterion, classifiers involving redundant genes tend
to exhibit lower noise and provide better prognosis.’
Several recent methods consider the estimated error
rate variances,” ** and unsupervised methods™ also
minimize the variance of the model by focusing on the
stability of the signatures instead of on the supervised
class labels. However, there has been no discussion
from the viewpoint of mini-chip design, namely, to
explore a reliable predictor based on as few genes as
possible.

In the present study, we consider both the bias and
the variance of performance estimation so asto achicve
a reliable predictor. We applied a bootstrap sampling
method to estimate the distribution of possible error
rates, with bias and variance, and propose a min-max
criterion to obtain a stable classifier. We conducted
a simulation study and found that the min-max
criterion tends to select better candidate predictors
than the LOO criterion, especially when the number
of samples is small. We then compared two supervised
analysis procedures, T-WV and R-SVM, and showed
that T-WV achieves reliable predictors with a small
number of genes, indicating that T-WV with the min-
max criterion is desirable for our purpose of obtaining
a reliable predictor with as few genes as possible.

2. Methods

2.1. Notations
Letx =(x,, .., .\tw) be a vector of the M-dimensional
gene expression profile of the i-th sample, and y,

a binary class label y € {-1,1} representing the
binary status of the i-th sample, for example, tumor or
non-tumor. The numbers of samples in the negative
(¥, = —=1) and positive (v, = 1) classes are denoted
as n and n, respectively. Suppose that we have a
dataset D = {d [i = 1, ..., N} including N samples,
where d = (x, ) is a pair of input (expression) and
output (class label) of the i-th sample. By applying a
supervised machine learning method to the dataset D,
we construct a discriminant function /(x | D) such that
we predict a label P(x') for a new input x' by

- 1 if A(x'|D)=0
! — l
) -1 if A(x'|D)<0 )

2.2. T-WV method

The WV method is a typical supervised machine
learning method that employs the top 4 significant
genes. Since the significance of the j-th gene is
defined according to the following t-score, the entire
procedure is referred to as the T-WV method,

Xy =X,

i)

N Sk T 3
JU/n +1/n, S, v

where X, and X, are the average expression levels
of the j-th gene over the training samples labeled 1
and -1, respectively, and S? is the pooled within-class
variance of the j-th gene,

—_— 2 —_—
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The genes are ranked according to the absolute
value of |7], and the top-ranked & genes are selected
as significant genes so that the sct of these genes is
denoted as C,. The discriminant function obtained by
the T-WV method is then constructed as

hk(xlD)=%ij(xj_fj)1 4)

JeCy

where x; = LZ},V x; 1s the average expression level of
the j-th genc in the training samples.

In the discriminant function /, the difference
between the j-th gene expression and its average is
weighted by its significance, i.¢. the t-score. Note that
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the function /1, depends on the number /& of significant
genes, and thus we need to specify k appropriately.

2.3. R-SVM method

R-SVM isanothertypical supervised machine learning
method, which was developed to select important
genes for SVM classification.”” An R code package
is publicly available at http://www.hsph.harvard.edu/
bioinfocore/R-SVM.html. The discriminant function
of a linear SVM is defined as

N
h(xX'|D)=(w-x)+b= ay,(x,-x)+b, (5)

i=1

where x'is a new input expression vector and x, is the
i-th sample expression vector in the training dataset.
o, and b are parameters to be determined so that training
data points with different class labels are classified
with the largest margin. x-x’= X' x x’, denotes the
inner product. Each element of w, w, is defined as

n
Wy= zaiyixii’ (6)
i=1
the absolute value |w| of which represents the
significance weight of the jth gene in the current
discriminant function.

As in the T-WV method, the classification
performance of SVM also depends on gene subset
selection. R-SVM applies a recursive feature
elimination (RFE) procedure.”’” In RFE, less
significant genes in the current discriminant function
are recursively eliminated, and the next discriminant
function is constructed based on the new, smaller set
of genes. Consequently, a sequence of discriminant
functions with decreasing numbers of genes is
constructed. Thus, the prediction performance of each
discriminant function /2, depends on the number k of
significant genes, which causes the same problem as
in T-WV, i.e. setting an appropriate number 4. In the
following section, we describe a common way to set
the number of genes in both T-WV and R-SVM.

2.4. LOO model selection

T-WV and R-SVM, both produce many candidate
classifiers, from which we should select the best one by
an assessment process. Although the true performance
of a classifier is measured as classification accuracy

on an unknown dataset given in the future, we should
instead estimate the performance using the dataset
obtained in the assessment process. Note that we
refer to each candidate in the assessment process as a
model, to clarify that we arc assessing all procedures
used to construct a classifier rather than assessing
solely the classifier. In T-WV and R-SVM, a model is
characterized by the number of significant genes that
it includes.

The LOO procedure has been widely used to
estimate, or predict, the future performance of a
classifier. In LOO, a classifier /1 is built using each
leave-one-out dataset D, i =1, ..., N; that 1s, the /-th
sample d is excluded in the training procedure from
the dataset D, and becomes a validation sample. The
classification performance of / is assessed using the
validation sample. After the assessments ford , ..., d,,
the LOO error rate of the classifier A, GI Oo(h | D), is
calculated as the averaged error rate

1 & ;
Groo(h| D) = F‘;I(y,.h(x,- |D™)<0), (7)

i=1

where /(R) denotes the indicator function that takes
a value of one if condition R holds, and is otherwise
zero. When we select the number & of significant
genes by

h>° = argmin G oq (5, | D), (8)

this model selection is said to be based on the LOO
criterion.

2.5. Resampling bootstrap method

It is known that the error rates used to estimate
the LOO procedure are nearly unbiased. Molinaro
et al'® compared estimated generalization error rates
between different resampling methods and showed
that LOO had the smallest bias for a simulation dataset
and a real microarray dataset. However, LOO has a
tendency to include large variance, despite its small
bias,”® because classifiers constructed based on the
leave-one-out datasets, D, are quite similar to each
other, whereas the data points used for validation vary
widely. The large variance of the error rate estimation
leads to a high risk of selecting a classifier whose
‘true’ performance is poor, and this risk becomes
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higher as the number of candidates becomes larger.
When we assess the performance of many candidate
classifiers with large variances, some of the candidates
often exhibit remarkably low errors, even if their true
performance is poor. This is the same problem as
overfitting, which was originally found in parametric
learning especially when there are many parameters
to be learnt. Therefore, it is important to reduce the
estimation variance to obtain a robust classifier.

We applied a bootstrap method to simulate
possible variation of the given dataset and to obtain
the distribution of LOO error rates over the range
of that variation. We generated bootstrap datasets
{D* | b =1, ..., B}, in which each bootstrap dataset
is defined as

D*={d’=(x"y")|r=L..,N-1}, (9

where d* is randomly sampled with replacements
from the LOO dataset D', The single validation sample
d_ is evaluated by the classifiers that were trained by
different datasets D*, leading to a set of LOO error rates:
C;LO()(hI:l |D‘l)’ G[.()()(hl:2 | D‘2 )’ s> GLOO(h;B | D‘B)' hk‘b’

b=1,.., B,is given by Eq. (4) after replacing the
dataset D with the bootstrap dataset D*. This set of
LOO error rates is considered to be a distribution of
G and provides a guideline to determine the number

LOO

of genes used in the T-WV classifier.

2.6. Min-max model selection

Using the simulated distribution of LOO error rates,
{Goo (B | D)}y, we defined a risk score called
a min-max criterion,

Ghoor (B, | D) =Per95({G oo (" | D™)}2,),  (10)

where ‘Per95’ denotes the 95th percentile of the set of
values. Based on this risk score, an appropriate model
(1.e. the number of genes, k) is selected as

B = argmin{Gyoor (h, | D)} (11)
k

We considered the 95th percentile with the number
of bootstrap B = 100 as the representative of possible
high error rates for cach model with different numbers

of genes. The 95th percentile is a robust criterion to
estimate the risk of sclecting a bad model against
the possibly asymmetric nature of the error rate
distribution.

Our approach is referred to as the “min-max”
selection criterion because we minimized the risk of
selecting a model for which the expected prediction
error rate was almost the maximum in the distribution
of possibilities. This min-max model selection is
likely to refuse classifiers for which the estimated
error rates are distributed with a large variance, even
if LOO shows the lowest error rate from a single
dataset. Therefore, the min-max criterion reduces the
instability stemming from the variation of possible
future datasets that could be simulated by random
sampling from a large pool of samples.

In other words, the min-max criterion assumes an
underlying game between an analyzer and nature.
A dataset is given by nature, and a model is selected
by an analyzer. For the analyzer to achieve stability,
one good idea is to minimize the risk (Eq. (11)),
which stems from the possibility that nature could
provide a bad situation (and hence the classifier has
been over-trained) (Eq. 10).

The number 95 of the percentile and number of
bootstrap B = 100 were determined arbitrarily by
considering trade-offs between computation time,
estimation variance of the percentile point, and
appropriateness as a representative of high error rates:

e The computation time is proportional to the number
of bootstrappings.

e Estimation variance is a monotonic function of
both the percentile number and the number of
bootstrappings. Namely, the variance becomes
large as the percentile number diverges from 50
and as the number of bootstrappings is small.

e The criterion should evaluate possible high error
rates even when the distribution of bootstrap
samples is asymmetric,

We did not select the 50th percentile, i.e. the
median, because of the third reason above; we
attempted to obtain a safe classifier rather than to
show good average performance. Although the 99th
percentile could be another representative of possible
high error rates, we rejected it, because it relies on
1% of bootstrap samples, and will therefore lead to
high variance especially with small B. The estimation
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variance of cach percentile of the bootstrap error rate
can be evaluated in terms of the standard deviation
of the corresponding order statistic if the distribution
of error rates is known. Table 1 shows the standard
deviations (SDs) of several percentiles when the
distribution of error rates is a standard normal
distribution. These SDs are proportional to the SD of
the distribution of error rates, implying that the SDs
of the percentiles can represent their variation well
even for non-normal distributions.

3. Results

3.1. Results for real datasets
We evaluated our method using four published real
gene expression profile datasets:

e Breast cancer
van't Veer ectal® obtained gene expression
microarray data for approximately 5,000 genes for
78 + 19 breast cancer tissue samples. The samples
were classified into favorable and unfavorable
samples: patients with recurrence-free survival
in five years and those with recurrence in five
years, respectively. The authors trained supervised
classifiers using 78 samples (34 favorable and
44 unfavorable samples), which we call the
training dataset, and tested using 19 independent
samples (7 favorable and 12 unfavorable samples),
which we call the test dataset. The same group also
providedalargerdatasetconsistingof295samples.”
Among the 295 samples, 32 samples were also
included in the former dataset’ and 10 samples
were censored in five years; hence, we used the
remaining 253 (192 favorable and 61 unfavorable)
samples for the second test dataset.
e Colon cancer

The colon cancer dataset’ contains microarray
expression data for 2,000 genes for 62 colon tissues.

Table 1. Estimated standard deviations of bootstrap
percentiles. Bold type marks the setting which we used in
the current study.

B =100 B=500  B=1000
99th 0315 0.171 0.120
95th 0.216 0.095 0.067
90th 0.172 0.077 0.054

50th 0.125 0.056 0.040

Among the 62 tissue samples, 40 and 22 were
labeled as “tumor” and “normal,” respectively,
and these were used as the labels to be predicted.

e Neuroblastoma (NBL)
The NBL dataset® consists of microarray
expression data for 5,180 genes for 136 patients.
Among the 136 samples, 25 and 102 were labeled
as “favorable” and ‘“‘unfavorable” patients,
respectively, according to their status at 24 months
after diagnosis, and these were used as the labels
to be predicted. The remaining nine samples of
unknown status at 24 months after diagnosis were
omitted.

e Breast cancer Affymetrix (Affymetrix)
Wang et al’! analyzed 286 breast cancer patients
with an Affymetrix chip harboring 22,283 genes.
Among the 286 patients, 183 and 93 were labeled
as favorable and unfavorable, respectively, and
these were used as the labels to be predicted. We
omitted 10 samples which were censored in five
years. Although this dataset concerned breast
cancer, we did not consider relationship between
this set and the breast cancer datasets at the top of
this list because these two datasets were assembled
by entirely different systems and hence had fairly
different characters in distribution. Considering
different systems of microarrays together may be
an important issue, but is beyond the scope of the
current study.

For cach of the above four datasets, we trained
T-WV and R-SVM classifiers with various numbers
of genes using the training samples, and assessed
their classification errors in terms of LOO, 3-, 5- and
10-fold-CV, and min-max criteria. In the case of
the breast cancer dataset with large numbers of test
samples,** we also assessed their classification errors
in the test datasets.

Figure 1 shows the results for the breast cancer
dataset. The results with the T-WV classifier (left
panel), indicated characteristic behaviors of the
three criteria to assess the classification error rate,
LOO (dashed line), 3-fold-CV (dotted line), and the
proposed min-max criterion (solid line at the top of
the blue area). The 90% interval of LOO error rates
(blue area), which was estimated by the resampling
bootstrap method, describes the estimation variance
of error rates. The LOO error rate profile showed the
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Breast cancer: cross—validation error profile of T-WV
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Figure 1. Estimated classification errors in the breast cancer dataset. The left and right panels show the results obtained with the T-WV and R-SVM methods,
respectively. The vertical and horizontal axes denote classification error rates estimated by various criteria and the number of genes included in each
classifier, respectively. The 90% interval of resampling bootstrap of the estimated classification errors at each number of genes is denoted by blue areas.
The classification errors estimated by the three criteria, min-max criterion (solid line on the top of blue area), LOO error rate (dashed line), and 3-fold-CV
error rate (dotted line), are plotted against different numbers of genes. Vertical lines indicate the numbers of genes selected by the three criteria.

lowest value with a small number of genes, & = 1, so
that &k = 1 was selected as the best number of genes
by the LOO criterion. On the other hand, the 90%
interval of the bootstrap distribution at & = 1 exhibited
a large width in the error rate, and the 95th percentile
error rate was above the chance level 0.5, suggesting
large risk of the k = 1 classifier falling into a poor
predictor around the chance level. Also, the LOO
error rate at £ = 1 was below both the 5th percentile
and the 3-fold-CV error rate, indicating that the low
LOO error rate at &k = | could have been obtained by
chance. The 3-fold-CV showed a smoother profile
than those obtained by the LOQO, and stayed in the
midst of the 90% interval. The 3-fold-CV criterion
selected a classifier with &£ = 5 where the 90% interval
was narrower than that at £ = 1. We also calculated
5- and 10-fold-CVs and observed similar curves
to that of the 3-fold-CV. The proposed min-max
criterion, i.e. the 95th percentile, selected a larger
number of genes, k = 590. The LOO and 3-fold-CV
error rates at & = 590 were higher than those at £ = |
and k& = 5; however, we expected that the classifier
of &£ =590 would have a lower risk of being a poor
predictor than those at k=1 and & = 5.

In the right panel of Figure 1, a similar comparison
is shown between LOO, 3-fold-CV, and the min-max

criteria with the R-SVM classifier. The LOO criterion
showed an instability similar to that of T-WV, so
that the lowest LOO error rate at k = 376 seems to
have been obtained by chance. All criteria selected
larger numbers of genes than in the cases of T-WV
classifiers.

In Table 2, test error rates of the selected
predictors were assessed using two test datasets
with 19 and 253 samples, where five criteria (LOO,
min-max, and 3-, 5- and 10-fold-CVs) with two
classifiers (T-WV and R-SVM) are compared. The
min-max criterion outperformed the other criteria,
LOO and k-fold-CVs, on both test sets. The LOO
exhibited poor performance with 19 test samples
and worse with 253 test samples whose test error
rate was around the chance level. Intuitively, this
result pointed out a defect of the LOO criterion in
terms of the risk of taking a poor classifier, which has
already been suggested by the 90% interval shown
in Figure 1. The 3-, 5- and 10-fold-CVs achicved
better performance in test error rates than LOO, but
worse than the min-max criterion. T-WV tended to
exhibit lower error rates than R-SVM with smaller
numbers of genes, although we cannot conclude the
general superiority of T-WV based on this single
example.
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Table 2. Selected numbers of genes and corresponding test error rates in the breast cancer dataset with LOO, min-max,
and k-fold CVs assessed by two test datasets with 19 and 253 test samples.

T-Wv > 1 R-SVM
it Ctgneisﬁ  Test 1971 7Teisit2753: - # Ger(liesi - Test19 Test 253
LoO 1 02105 0.4862 376 04737 04664
min-max 590 0.1578 0.2925 4,833 0.4211 0.3992
3-fold 5 0.3158 0.3992 4,833 0.4211 0.3992
5-fold 2 0.2632 0.4071 626 0.6316 0.5217
10-fold 1 0.2105 0.4862 376 0.4737 0.4664
Test error rates on 253 samples were significantly breast cancer dataset, it would be serious in the case
worse than the error rates on 19 samples, possibly for designing a mini-chip, because differences between
the following reasons: systems will probably be inevitable due to the

reduction of system size from a full-size chip to a
mini-chip.

We compared three criteria, LOO, min-max,
and 3-fold-CV, with the two classifiers T-WV
and R-SVM on the other three datasets (NBL,
colon cancer and breast cancer Affymetrix) in
Figures 2, 3 and 4, respectively. From the total
comparisons over Figures 1-4, we observed the
following tendencies:

e The 19 samples were by themselves easily
classified.

e The number of samples (19) was too small to
reproduce the error rate with low variance.

e The test data of 253 samples were gathered from
different populations from those for the training
data of 78 samples and the other test data of
19 samples.

e The microarray measurement system differed

between the two sets of data. e Although the error rates estimated by LOO

The considerations above will be important when fluctuate as the number of genes increases, they
designing mini-chips based on training datascts. stay mostly within the 90% interval. This suggests
Although the last reason, difference in microarray that the LOO estimation of the tuned number of
systems, may not be very serious in the case of this genes includes a large variance and the character

Colon: cross-validation error profile of T-WV Colon: cross-validation error profile of R-SVM
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Figure 2. Estimated classification errors in the colon cancer dataset. See Figure 1 legend for details.
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NBL: cross—validation error profile of T-WV
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Figure 3. Estimated classification errors in the NBL dataset. See Figure 1 legend for details.

Figure 4. Estimated classification errors in the Affymetrix dataset. See Figure 1

of the variance is well captured by the estimated
90% interval.

In contrast to the fluctuating profile of LOO error
rates, the profiles of the 3-fold-CV and the 95th
percentile (G, ) exhibit smoother curves. This
suggests a more stable character for the 3-fold-CV
and the min-max criterion than the LOO criterion,
With T-WYV, the 90% confidence interval was
likely to be wide when the number of genes was
small, & <10, indicating that prediction based
on too few genes is risky; we occasionally get a
model with poor performance. The 95th percentile

Affymetrix: cross-validation error profile of T-WV

is likely to show a higher error rate for a smaller
numberof genes, e.g. k< 10, than for a large number
of genes. Thus, the min-max criterion based on the
95th percentile can avoid risky prediction so that a
smaller error rate is achieved on average.

The 3-fold-CV profile stayed almost in the middle
of the 90% interval and showed a similar curve to
the 95th percentile. However, there was difference
between the 3-fold-CV and the 95th percentile in
the range of 90% interval, which was prominent
in T-WV with small numbers of genes, & < 10.
The 3-fold-CV and the min-max criterion lead

Affymetrix: cross-validation error profile of R-SVM
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to different numbers of genes being selected;
relatively large numbers of genes are selected
by the min-max criterion in comparison to the
3-fold-CV.

e [n the case of T-WYV, the 90% interval was likely to
be narrow for datasets with large sample sizes. The
numbers of training samples were 78, 62, 127 and
276, and the widths of the 90% interval were about
0.15, 0.15, 0.1 and 0.07, for breast cancer, colon,
NBL and A ffymetrix datasets, respectively.

e In the case of R-SVM, LOO profiles fluctuated
more than those of the min-max criterion, as well
as with T-WV, suggesting that the min-max is a
better model selection criterion than the LOO
criterion.

e Whereas the best performance was comparable
between R-SVM and T-WV, a larger number of
genes was required to achieve the best performance
by R-SVM than by T-WV. Thus, T-WV employing
a relatively small number of genes is more
suitable for practical clinical applications, which
is consistent with a previous finding."?

e The confidence intervals for R-SVM were likely
to be narrower than those for T-WV, implying that
SVM, as a large margin classifier, is more stable
against observation noise than T-WV. Even though
we are not interested here in classifiers with a large
number of genes, say & > 1,000, this finding may
be important for applications other than mini-chip
construction.

e The Affymetrix data set was unbalanced, with the
numbers of favorable and unfavorable samples
being 183 and 93, respectively. This suggests that
the error rate would become 0.34 if every label
prediction is called favorable, which actually
occurred for R-SVM with & << 10. Therefore, the
narrow confidence interval in such a case did not
correspond with stable prediction.

The experiments showed that a reduction of risk is
achieved by the proposed min-max criterion, and this
was particularly convincing in the breast cancer dataset.

3.2. Simulation study on synthetic

datasets

In the previous section, we tested our new criterion
on four real datasets; however, the ground truth was
unknown and the number of samples was limited in
many cases, which prevented us from obtaining strong

evidence for the superiority of the min-max criterion.
We conducted a simulation study based on artificial
datasets to prepare a sufficient number of test samples,
which will be more realistic in future clinical studies.

We randomly generated expression profiles
for 2,000 genes, where 30 out of the 2,000 were
differentially expressed (DE) between two classes
of samples and the others were not (non-DE). For
non-DE genes, expression levels were generated
from a normal distribution with mean zero, N(0,1),
and for DE genes, the expression levels of samples
with positive and negative class labels were generated
from N(i, 1) and N(—L, 1), respectively, where we
set it = 0.5 for all DE genes. By this process, we
generated synthetic datasets of 20 to 150 samples
for training, and 1,000 samples for testing, where the
numbers of samples with the two class labels were set
to be equal.

The proposed simulation scheme is illustrated
in Figure 5. For cach training dataset, the candidate
classifiers involving various numbers of genes were
trained and assessed, and the best numbers of genes
were selected by the LOO and the min-max criteria,
where the number B of the bootstrap in the min-max
procedure was set at 100. The performance of the
finally selected classifier was then assessed by a test
dataset with 1,000 samples. We repeated this process
with a randomly generated training dataset and
assessed the corresponding test error rates by using
a test dataset of 1,000 samples. The distributions of
the test error rates were compared between different
conditions.

We designed the above setting to clarify how well
the min-max criterion improves the model selection.

Simulation scheme

Test dataset

1,000 samples

Training dataset

20-150 samples

Classifier | Weighted voting

LOO
hk

LOO model selection

BOOT
D
Min-max model selection

Figure 5. Setting of the simulation experiment.
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The number of test datascts was set sufficiently
large, and 1s commonly used in various settings of
the other features to reduce the variance of error rates
that stems from random sampling of the test dataset.
The number of DE genes (30) and the strength of
differential expression (¢ = 0.5) were determined to
examine typical situations that arise in realistic cases.
We omitted other realistic features of datasets that may
arise such as variation in the number of DE genes,
strength £, and the proportion of numbers of positive
and negative samples, because they had shown no
significant effect in our preliminary experiments. We
also omitted correlations of gene expression patterns
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between DE genes because such correlations would
not affect either T-WV or R-SVM.

Figure 6 shows the distributions of test error rates
of the T-WV classifiers selected by LOO and min-
max, with 20, 50, 100 and 150 training samples. We
found that there were certain levels of variance for
both criteria, and the variance was larger for smaller
numbers of samples. LOO sometimes showed
much worse results than min-max, as indicated by
the points in the bottom-right area of cach panel in
Figure 6. Note that the number of test samples, 1,000,
was so large that there was no significant increase
in sampling variance. Table 3 shows the means and
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Figure 6. Distribution of test error rates of T-WV. The vertical and horizontal axes denote the test error rates of classifiers selected by the min-max and
LOO criteria, respectively. The results from 100 trials of random sampling of 20, 50, 100 and 150 samples are shown in the four panels.
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Table 3. Test error rate of simulation dataset.

Number of?traiﬁing salhﬁles o Seigction criterion Mean Standard deviation
20 LOO 0.241 0077
min-max 0.210 0.064
50 LOO 0.042 0.024
min-max 0.026 0.012
100 LOO 0.015 0.013
min-max 0.006 0.003
150 LOO 0.012 0.010
min-max 0.002

standard deviations of test error rates of the classifiers
selected by LOO and min-max. Through 20-150
training samples, min-max outperforms LOO in terms
of smaller means and smaller standard deviations of
test error rates.

We counted the number of true DE genes in the
selected genes for cach trial and found that the min-
max criterion tended to include many of the 30 true
DE genes, and that the ratio of the true DE genes in the
selected genes became large as the training samples
increased. In contrast, LOO sometimes sclected a
very small number of genes, leading to large error
rates. Both criteria occasionally selected more than
30 genes, although this did not cause a large increase
in the error if the selected genes included many of
the true DE genes. As the number of training samples
increased, the means and variances of test error rates
became smaller, which is consistent with the previous
observation. Even when the number of training
samples increased and mean error rates decreased,

0.004

however, the test error rates of LOO still showed
larger variance than those of min-max.

We also conducted a similar simulation with
R-SVM; the simulation settings were the same
as those for T-WV except that we performed 50
trials, (half the number used for T-WV), and we
excluded the case of 150 samples because of the
large computational cost of bootstrap simulation
for R-SVM. Figure 7 shows the distributions of test
crror rates of R-SVM classifiers selected by LOO
and min-max with 20, 50, and 100 training samples.
A similar tendency to that of T-WV was observed in
the cases of 50 and 100 samples, although in the case
of 20 samples, the error rate was almost the chance
level (0.5) for both the LOO and min-max criteria.

4. Concluding Remarks

In the present study, we investigated model selection
methods with the aim of designing a reliable cancer
prognosis predictor based on gene expression
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Figure 7. Distribution of test error rates of R-SVM. The vertical and horizontal axes denote the test error rates of classifiers selected by the min-max and
LOO criteria, respectively. The results from 50 trials of random sampling of 20, 50 and 100 samples are shown in the three panels.
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microarrays involving as small a number of genes as
possible. We assessed possible variation in prediction
error rate of each microarray-based predictor by
simulating a distribution of classification error rates
via a resampling bootstrap method. Accordingly,
we proposed a novel min-max criterion to select a
predictor from multiple candidates. In numerical
comparisons that used real and synthetic datasets, we
showed that the conventional LOO estimation of their
error rates resulted in large variances; conscquently,
the LOO criterion had a large risk of choosing
inappropriate classifiers that would exhibit extremely
poor prediction performance. In contrast, we showed
the stability of the min-max criterion relative to
well-established statistical criteria including the LOO.
We also compared two different supervised analysis
procedures, T-WV and R-SVM, and found that, in
general, T-WV performed the best when it involved a
small or moderate number of genes in contrast to that
R-SVM performed the best when it involved almost
all genes, although the mean and variance of the best
possible performances were not always significantly
different between those achieved with T-WV and
R-SVM. Thus, overall, we concluded to recommend
T-WV with the min-max criterion, which satisfied
our demand; the most reliable predictor involving as
small a number of genes.

It should be important to note that, we proposed
our procedure to select a set of genes for designing
a good predictor of cancer prognosis, rather than for
determining a set of genes which have statistically
significant relationship to the prognosis; these purposes
are different from each other in general. In other
words, the ‘robust’ model selection is meant to lower
the risk to select an extremely poor predictor, rather
than to select a stable set of genes. In fact, different
research groups reported prognosis prediction systems
with different sets of genes based on different sets
of microarray data for the same type of cancer.® The
microarray-based predictors for breast cancer, were
designed with 70 and 76 genes by two different research
groups,™! respectively, and these gene sets had only
three genes in common. Namely, the sclected sets of
genes were not stable at all, however, the 70 gene-
based diagnosis system of breast cancer have been
verified by increasingly large number of new patients
and authorized by Food and Drug Administration in
USA.¢ In our own numerical experiments, we also

observed that number of common genes tended to
be small between any gene sets that were selected
based on different datasets generated by resampling
bootstrap (data not shown), although we achieved
good predictors in vast amount of the cases as we had
shown. Thus, it should be emphasized that such an
instable selection of gene subsets did not necessarily
cause a poor predictor as long as the predictor was
selected by a robust model selection method.

Once a prediction system based on a small number
of genes is developed, the system can be transfered
not only to mini-chip microarrays but also to other
casy accessible devises such as quantitative real-time
polymerase-chain-reaction (RT-PCR) analysis,*? which
would be tractable if only tens of genes were targeted.
Robust model selection methods, like the proposed
one, will be needed especially when we consider such
a transfer work between different measurement devises
because large bias is often expected between different
devises. In general, when a procedure is designed to be
robust against measurement variance, such a method
is also robust against an unknown bias which would
appear like in the above transfer; thus, our min-max
criterion will be used for this purpose.

In order to design a practical tool for real scenes in
clinical cancer therapy, new demands in informatics
can alwaysarise. As we had seen in this study, although
past efforts in informatics tended to pursue good
performances in average, minimizing risk to catch
poor predictor against possible variability in cancer
diagnosis systems becomes a next issue. There are few
methods to directly seek such risk minimization as
long as we know. Reducing cost by selecting relevant
genes based on high-dimensional gene expression
profile is a relatively well-investigated field of
rescarch. However, the combination of the cost and
reliability is not investigated well. Thus, there must
be room to develop a novel supervised classification
method that satisfies these demands for designing
mini-chip systems, and future studies in cancer
informatics should proceed to such directions.
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Figure S2. Distributions of test errors
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High expression of ncRAN, a novel non-coding RNA
mapped to chromosome 17q25.1, is associated
with poor prognosis in neuroblastoma
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Abstract. Neuroblastoma shows complex patterns of genetic

aberrations including MYCN amplification. deletion of

chromosome Ip or 11, and gain of chromosome 7. The
179 gam s frequently observed in high-risk neuroblastomas,
however, the candidate genes still remain clusive. In the
present study, we integrated the data of comparative genomic
hybridization of 236 tumors by BAC array and cxpression
profiling of 136 tumors by using the in-house ¢DNA micro-
array carrying 5340 genes derived from primary neuro-
blastomas. A novel candidate gene mapped to chromosome
179251 with two splicing variants, Nbla 0727 and
Nblal206], was identified. The transeript size appeared to be
2.3 kb by Northern blot. however. the ¢DNA sequences had
no obvious open reading frame. The protein product was
undetectable by both in vive and in vitro translation assays,
suggesting that the transeript might not encode any protein
product. Therefore. we named it as neRAN (non-coding RNA
expressed in aggressive neuroblastoma). In analysis of 70

paticnts with sporadic neuroblastoma, the high levels of

neRAN mRNA expression were significantly associated with
poor outcome of the patients {(p<0.001). The multivariate
analysis showed that expression of ncRAN mRNA was an
independent prognostic factor among age. stage, origin and
MYCN expression. Ectopic expression of neRAN induced
transformation of NIH3T3 cells in soft agar, while knock-
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Center Research Institute, 666-2 Nitoni, Chuo-ku, Chiba, Chiba
260-8717 Japun
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down of endogenous neRAN with RNA interference
significantly inhibited cell growth in SH-SYSY cells.
Collectively. our results suggest that neRAN may be a novel
non-coding RNA mapped to the region of 17¢ gain and act
like an oncogene in aggressive neuroblastomas.

Introduction

Neuroblastoma is one of the most common pediatric solid
wmors in children and originates from sympathoadrenal
lineage of the neural crest. Its chinical behavior is hetero-
geneous because the tumors often regress spontancously when
developed in patients under one year of age. while they grow
rapidly and cause very poor clinical outcome when occurring
in patients over one year of age (1), Recent cyvtogenetic
analyses have revealed that given subsets of neuroblastoma
with unfavorable prognosis often have MYCN amplification,
gains of chromosome lq. 2p.and 17q as well as allelic
tosses of Ip, 3p.and g (1), However, the precise molecular
mechanisms underlying pathogenesis and progression of
neuroblastona still remain unclear,

Accumulating evidence shows that gain of chromosome
17 or 17q is the most frequent genetic abnormality in neuro-
blastoma (1-4). We have previously conducted microarray-
based comparative genomic hybridization (array-CGH) with
i DNA chip carrying 2464 BAC clones to examine genomic
aberrations in 236 primary neuroblastomas (33, Our array-
CGH analysis demonstrated three major groups of genomic
aberrations in sporadic neuroblastomas (n=112) that can well
define the prognoses of neuroblastomas: a genetic group of
silent chromosomal aberration (GGS, 3-year cumulative
survival rater 68%), a genctic group of partial chromosomal
gains and/or losses (GGP. 43%). and a genetic group of
whole chromosomal gains and/or losses (GGW. 80% 3. The
classification of three genetic groups corresponded well with
the pattern of chromosome 17 abnormalities, namely, no

-y

gain al either chromosome 17 or 174, gain of chromosome



932

[17q. and gain of whole chromosome 17, respectively (5).
Thus, 17q gain has been implicated in close correlation with
aggressiveness of neuroblastoma (5-7). The region has been
narrowed down to 17¢21-qgter, in which several important
candidate genes such as Survivin and PPM1D were suggested
to be involved in acquiring aggressiveness of neuroblastoma
(4.7.8).

In the present study. by combining with our previous array-
CGH data, we searched for the candidate 17q gain gene(s) by
applying the results of our genc-expression profiling obtained
from the analysis of 136 neuroblastoma samples using an in-
house ¢DNA microarray carrving 5,340 genes isolated from
primary neuroblastomas (9.10). This approach has led us to
identify a novel non-coding RNA as the candidate mapped
to the region of chromosome 17q gain. his high expression is
significantly associated with aggressiveness of primary
neuroblastomas.

Materials and methods

Patients. Tumor specimens were collected from the patients
with neuroblastoma who had undergone biopsy or surgery al
various institutions in Japan. Two hundred and thirty-six
and 136 tumor samples were used for array-CGH and
expression profiling, respectively (5.10). Among them,
sporadic cases were 112 and 70, respectively. The clinical
stage of tumor was classified according to the INSS criteria
(11). Expression data for the latter 70 sporadic neuro-
blastomas, which were composed of 15 stage 1. 8 stage 2, 17
stage 3, 25 stage 4, and 5 stage 4s tmors, were used for the
Kaplan-Meier analysis. The status of MYCN amplification
in each tumor had been determined as described previously
(8). Patients were treated according to previously described
protocols (12,13). The procedure of this study was approved
by the Institutional Review Board of the Chiba Cancer Center
(CCC19-9).

Microarray-based comparative genomic hybridization (array-
CGH) and gene expression profiling. Array-based CGH
experiments for 236 neuroblastomas by using a chip carrying
2464 BAC clones which covers the whole human genome at
~1.2-Mb resolution were performed as described previously
(5). For the gene expression profiling of 136 neuroblastomas,
we employed an in-house ¢cDNA microarray, carrying 5340
¢DNAs obtained from the oligo-capping ¢cDNA libraries
generated from anonymous neuroblastoma tissues (10.14-16).
The array-CGH and gene expression profile data are available
at NCBI Gene Expression Omnibus (hitpz//www ncbinlm.nih.
gov/geo/) with accession numbers GSE 5784 and GSE 5779,
respectively.

Cells, cultwre and transfection. NIH3T3, COS7 and human
neuroblastoma cell lines were cultured in Dulbecco's modified
Eagle's medium (DMEM) or RPMI-1640 medium containing
10% (vol/vol) heat-inactivated fetal bovine serum (FBS)
and antibiotics. Cultures were maimained in a humidified
atmosphere containing 5% CO, at 37°C. COS7 and NIH3T3
cell lines were transiently transfected using Lipofectamine
2000 reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer's protocol.

YU ef al: neRAN MAPPED TO chrt7q25 IN AGGRESSIVE NEUROBLASTOMA

Construction of expression plasmid. The full-length ¢cDNAs
of Nbla10727 and Nbla12061 were cloned from the established
full length-enriched ¢cDNA libraries which we made from the
primary neuroblastomas as described (14-16). The full-length
¢DNAs were then inserted into pcDNA3 or pcDNA3-FLAG
plasmids.

In vitro transcription and translation assay. In vitro trans-
lation was carried out in the presence of [*S}-methionine using
TNT T7 Quick coupled transcription/translation system
(Promega, Madison, W1. USA) according to the manufacturer's
instructions. The products were resolved by SDS-PAGE and
detected by autoradiography.

In vivo [PS]-labeling experiment. COST cells were transfected
with the FLAG-tagged ncRAN expression vectors or the HA-
tagged MEL1 expression plasmid. After 24 h cells were
rinsed with 1X PBS 3 times and recultured in fresh growth
medium without methionine and antibiotics. Two hours later,
[¥S}-methionine (GE Healthcare, Tokyo. Japan) was added
to the medium to a final concentration of 0.1 mCvml. and
cells were further incubated. Cells were harvested and whole
cell lysates were subjected to immunoprecipitation using
a monocional anti-Flag antibody or a polyclonal anti-HA
antibody. Immunoprecipitates were resolved by SDS-PAGE
and detected by autoradiograph.

RNA isolation and semi-quantitative reverse transcription-
PCR (RT-PCR). Total RNA was isolated from frozen tumor
tissues by an AGPC method (8). Total RNA (5 ug) was
employed to synthesize the first-strand ¢cDNA by means of
random primers and SuperScript II reverse transcriptase
(Invitrogen) following the manufacturer's protocol. We
prepared appropriate dilutions of each single stranded
c¢DNA for subsequent PCR by monitoring an amount of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH ) as a
quantitative control. The PCR amplification was carried out
for 28 cycles (preheat at 95°C for 2 min, denature at 95°C for
15 sec, annealing at 55°C 15 sec, and extension at 72°C 20 sec)
for ncRAN (Nblul0727 and Nblal2061). The primers used
were: neRAN (Nblal0727) 5'-CAGTCAGCCTCAGTTTC
CAA-3" (forward); 5'-AGGCAGGGCTGTGCTGAT-¥
(reverse), ncRAN (Nblal2061) 5'-ATGTTAGCTCCCA
GCGATGC-3' (forward): 5-CTAACTGCCAAAAGGTTT
TCC-3' (reverse).

Northern blot analvsis. Total RNA (20 jeg) was subjected to
electrophoresis and Northern blotting. The ¢cDNA insert
(Nblal0727) was labeled with |«-2P]-dCTP (GE Healthcare)
by the BcaBEST™ labeling kit (Takara, Tokyo, Japan) and
used for the hybridization probe.

Soft agar assay. NIH3T3 cells were transfected with FLAG-
Nblal10727, FLAG-Nblai2061] or empty vector, and
resuspended in 0.33% agar (wt/vol) in DMEM with 10%
FBS at a density of 500 cells/plate. Cell suspensions were
pourcd on the top of the base layer (0.5% agar (wt/vol) in
fresh medium, and grew in a 5% CO, incubator for 14 days.
Colonies >100 pm were counted under an Olympus micro-
scope.
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Table 1. The comparison of neRAN/Nbla10727/Nbla 1 2061 expression level among three major groups of genomic aberrations
in neuroblastomas.,

ncRAN expression

Genetic group n Mean 2 SD (log2 ratio) p-value
ncRAN-long/Nbla 10727
GGS (silenn n=10 -1.1210.39 p=(1.004
GGP (partial 17g+) n=26 -0.6010 .48 p=0.952
GOW (whole 17+) n=35 -LH120.48 p<(.001
NERAN-shoryNbla 12061
GGS (silent) n=10 -1.60+0.33 p=0.070
GGP (partial 17g+) n=26 -1.2320.59 p=0.163
GGW (whole 17+) n=35 -1.81£0.43 p<.001

n. number of samples: GGS. Genetic group silent (normal 17). GGP. Genetie group partial gainsTosses (17q gaini; GGW | Genetic group
whole gains/osses (17 gain) neRAN expression levels are shown as normalized log2 ratio of microarray data. p-values were calculated

based on statistical t-test,

RNA imterference. Oligonucleotides for knocking down the
neRAN with Sacl and Xhol extension were inserted into
pMuni vector. The oligonucleotides used were: 5-CCC
CATCCTCTAGTAGCCACGGTTTCAAGAGAACCGT
GGCTACTAGAGGATTTTTTGGAAAC-3 and 5'-TCG
AGTTTCCAAAAAATCCTCTAGTAGCCACGGTTCTCT
TGAAACCGTGGCTACTAGAGGATGGGGAGCT-3'. The
plasmids containing the oligonucleotide sequence were
transfected into SH-SYSY cells by using Lipofectamine 2000
reagent (Invitrogen) according to the manufacturer’s protocol,

Staristical analysis. The Student's t-tests were used to explore
possible associations between neRAN expression and other
tactors, such as age. Kaplan-Meier curves were calculated and
survival distributions were compared using the log-rank test.
Univariate and multivariate analyses were made according to
the Cox hazard models. g-value was also calculated because
ncRAN expression was measured with 5340 genes in the
microarray (17). Statistical significance was set at p<0.03.

Results

ldentification of a novel Nblal0727/12061 gene mapped to
chromosome 174251 upregulated in advanced newroblastomas
with gain of chromosome 174. To explore the candidate genes
for therapeutic target against aggressive neuroblastomas, the
genomic and molecular characteristics specific to high-risk
tumors were surveved. We previously conducted array-CGH
analysis with a microarray carrying 2464 BAC clones to
examine genomic aberrations in 236 primary neuroblastomas
and found that the gain of chromosome 17¢ was most strongly
carrelated with the patient’s prognosis (5). The genetic group
of “silent chromosomal aberrations” (GGS) could be defined
as the tumor group without apparent abnormalities in
chromosome 17, and the genetic group of *whole chromosomal
gains and/or losses” (GGW) as that with gain of whale
chromosome 17 (S-year cumulative survival rate in 112
sporadic neuroblastomas: 68 and 80%., respectively, according
to ref. 5). On the other hand. the genetic group of “partial

chromosomal gains and/or losses” (GGP) with gain of chromo-
some 17¢q showed poor prognosis (43%).

According to the different grade of aggressiveness among
the genetic groups. we hypothesized that the GGP tumors
may have higher levels of expression ol the activated 17¢
candidate gene(s) that is (are) involved in defining the grade
of malignancy of neuroblastoma than the GGS or GGW
tumors. We then used our data set of gene expression profile
in 136 neuroblastomas to subtract the genes mapped 1o the
commonly gained region of chromosome 17q and differentially
expressed in the GGP wmors at high levels and the GGS
or GGW twmors at low levels. Consequently, we found two
cDNA clones Nblal0727 and Nblal1206] (Fig. 1A) on our
in-house microarray carrying 5.340 ¢DNAs obtained from
oligo-capping ¢DNA libraries generated from different subsets
of primary neuroblastomas (10,14-16), both of which were
splicing variants of the same gene mapped to chromosome
17q25.1 (Table I and Fig. 1B. expression in GGP more than
that in GGS or GGW). Database searching showed that both
2.087-bp and 2.186-bp insert sequences (Genbank/DDBI
accession numbers: AB447886 and AB447887) did not
exhibit significant similarity to any previously known genes.
As the size of mRNA was ~2.3 kb by Northern blot (Fig.
1C), the clones Nblal0727 and Nblal12061 appeared 1o be
almost full-length ¢cDNAs. Therefore. Nbla 10727712061
appeared to be the gene activated for its expression in
neuroblastomas with partial gain of chromosome 17q. but not
activated in those with diploid or triploid pattern of whole
chromosome 17.

The Nblal0727712061 gene was expressed in multiple
human tissues with preferential expression in heart, kidney.
lung, spleen, mammary gland, prostate and liver, but with Jow
expression in neuronal tissues such as brain and cerebellum.
fetal brain and adrenal gland (Fig. 1D).

High expression of Nblal0727/120061 iy associated with poor
prognosis of newroblastoma. The analysis by semi-quantitative
RT-PCR in a panel of ¢DNAs obtained from 8 fuvorable (stage
I, <l-year-old. single copy of MYCN and high expression
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Figure 1. ncRAN is mapped to the 17q gain region. A, Genomic structure of #cRAN region on chromosome 1725.1. Splicing variants, whose sequences were
contained in ¢cDNAS as neRAN-long/Nbla 10727 and ncRAN-short’Nbla 12061, are schematically shown. These are transcribed from a single gene, neRAN (see
text). B. High expression of ncRAN is associated with high malignant subset of neuroblastoma. Scatter plot of the expression levels of the neRAN-long
Nbial0727 and ncRAN-short/Nbla 12061 in 71 primary neuroblastomas with both accompanying expression and aCGH data. Blue. red. green. and black spots
denote GGS. GGP. GGW and unknown genomic group samples. respectively . As shown in Table |, the expression levels of the ncRAN were significantly
higher in GGP wumors (+17q gain) than in GGS (no 17 gain) or GGW (+ whole 17 gain) tumors (p=0.004 and p<0.001 for ncRAN-long/Nblal0727, and
p=0.070 and p<0 001 for ncRAN-short/Nblal 2061, respectively), whereas their expression levels in GGS and GGW tumors were comparable (p=0.952 for
neRAN long/Nblal0727 . and p=0.163 for neRAN-short/Nblai2061 see also Table 1. suggestung that the acquired allele(s) at 17¢ might be silenced at least
for the #cRAN expression in GGW twmors, and that high expression of neRAN is associated with high malignant subset of neuroblastoma. €, Northern blot
analysis of neRAN. Total RNA (20 pg) prepared from neuroblastoma cell fines, SH-SYSY and KP-N-NS were used. A 2.3-kb band was visible in only
SH-SYSY cells. The ¢DNA insert (NDla10727) was labeled with [a-"P]-dCTP and used for the hybridization probe. D, Semiquantitative RT-PCR of neRAN
in multiple human tissues and neuroblastoma cell lines. Total RNA of 25 adult tissues and two fetal tissues were purchased from Clontech Co. Ltd. The
expression of GAPDH is also shown as a control. E, Semi-quantitative RT-PCR of ncRAN in favorable and unfavorable subsets of primary neuroblastomas.
The mRNA expression patterns for ncRAN and Survivi, a known oncogene identified at 17q, were detected by semi-quantitative RT-PCR procedure i cight

favorable (lanes: 1-8, stage T, with a single copy of MYCN) and eight unfavorable (fanes: 9-16, stage 3 or 4. with MYCN amplitication) neurobliastomas.
I, Semiguantitative RT-PCR of ncRAN in neuroblastonn cell lines. Twenty-one neuroblastoma cell Tines with MYCN amphfication and 4 cell hines with a
single copy of MYCN were used for this study as templates.



INTERNATIONATL JOURNAL OF ONCOLOGY 34

ncRAN-long form / Nbla10727

-

Low (n=15)

Both (n- /()

© o o o
o N o ©

~
et
o

Survival probabiity
jo]
»

Yagh (=35

P=C 000221

o o o©
- N w

0 12 24 36 48 60 72
Months after diagnosis

-

31038, 2009

935

ncRAN-short form / Nbla12061

LOow (nsih)

=
]

o ’

© e in 20y

S oy
a

®

2

=

5 wan L]

(72] 34

12 24 36 48 60 72

Months after diagnosis

Figure 2. The high expression of ncRANNbIa1072712061 mRNA O~ a prognostic imdicator of untavorable neuroblastomas. The Kaplan-Merer survival

curves were drawn from the results of the ¢DNA microarray data of 70 sporadic neuroblastomas (og-rank test. p=0 000221 and p=0.005728_ respectively )

of TrkA) and 8 unfuvorable (stage 3 or 4, >1-year-old. ampli-
ficd MYCN and low cexpression of 7rhA) primary neuro-
blastomas confirmed that this novel gene was expressed at
significantly high levels in the latter compared to the
former (Fig. 1E), such as Swurvivin which we have previously
reported as one of the candidate genes mapped at the region
ol 17q gain (9). Among neuroblastoma cell lines, high or
moderate levels of expression of Nblal0727/12061 was
observed in cell lines with MYCN amplification most of which
had 17q gain, whereas it was relatively low in those with a
single copy of MYCN and without the 17q gain (Fig. 1F).

As shown in Fig. 2, our microarray data of 70 sporadic
neuroblastomas showed that the high levels of Nbla10727/
12061 expression were significantly associated with poor
prognosis (log-rank test, p=0.000221 and p=0.005728,
respectively). The multivariate analysis using Cox proportional
hazard model demonstrated that expression of Nblal0727/
12061 was an independent prognostic factor among age at
diagnosis, discase stage. tumor origin and MYCN expression
(Table 11). Thus. the expression level of Nbla 10727712061 is
a novel prognostic factor of neuroblastoma that is closely
associated with gain of chromosome 174.

NDlal10727/12061 is involved in inducing enhancement of cell
growth in newroblastoma cells and transformation of NIH3T3
cells. To investigate function of Nblal0727/12061, we trans-
fected SH-SYSY neuroblastoma cells with the siRNA, since
SH-SYSY cells have 17q gain in their genome as well as
higher mRNA expression of Nblal0727/12061. As shown in
Fig. 3A, suppression of endogenous levels of Nblal0727/
12067 transcripts significantly inhibited cell growth in SH-
SYSY ncuroblastoma cells as compared with the control
cells. On the other hand. the soft agar colony formation assay
showed that the enforced expression of Nblal0727/12061
significantly enhanced the anchorage-independent growth
of NIH3T3 mouse fibroblast cells (Fig. 3B). These results
suggested that Nblal0727/12061 was a novel candidate gene
of the region of 17 gain with an oncogenic function.

NCRAN-Nblal0727/12061 is a large non-coding RNA. Several
lines of evidence from the gene structure analysis as well as
the comparative genomic analysis described below further
suggested that Nblal0727/12061 is a non protein-coding but
functional RNA. We theretore tentatively named this gene
as ncRAN (non-coding RNA expressed in aggressive neuro-
blastoma).

First. the tull-length ¢DNA sequences of neRAN, which
are suggested to be relevant to both Nblal0727 and Nblal206]
¢DNAS by Northern blot analysis (Fig. 1C). did not contain
any long-cnough open reading frames (>200 bp). Bioinfor-
matic analysis indicated that there were no ESTs longer than
those two ¢DNAs at the genomic locus, and that the CpG
island was located at the 5" region of the cDNA sequences.

Scecond. no protein product was translated both in vivo
and i vitro from the neRAN transcripts (Fig. 4). Though only
the possible open reading frames (>150 bp) within the ncRAN
¢DNA were from n.t. 190 to 354 (55 amino acids) and from
20310 469 (39 amino acids) in Nblal0727, none of the putative
translation start sites contains the Kozak consensus sequence.
In addition. these predicted protein products of 55 and 59
amino acids did not exhibit significant similarity to any other
Kknown protein or protein domain, Furthermore. in vivo
transcription and translation of the tull-length ¢ RAN did not
lead to the synthesis of any pepuide or protein (Fig. 4B).
though endogenously and ectopically expressed ncRAN were
casily detectable at mRNA level (Fig. 4A). Coincident with the
above observation, the ncRAN protein product could not be
detected using [ PS]-methionine-labeling system in vitro
(Fig. 4C).

Third, we performed sequence comparison of the neRAN
eene with genome sequences of other species and found it
has high similarity (>90% identity in nucleotides) with
primates including orangutan, chimpanzee and rhesus. but
not those with mice and rat (Fig. 5). We also scarched for the
possible long open reading frames of n¢RAN homologs in
these highly similar species, resulting in failure. The highly
conserved sequence similarity only with primates may



