cases were also confirmed by allele-specific PCR of SNPs
on 9p (table 2). The proportion of 9p UPD-positive com-
ponents estimated both from allele-specitic PCR and from
AsCNAR (see the “Material and Methods” section) shows
a good concordance (table 2). In some cases, 9p UPD-
positive cells account for almost all the JAK2 mutation-
positive population, whereas, in others, they represent
only a small subpopulation of the entire JAK2 mutation-
positive population (fig. 5). AsCNAR analysis also dis-
closed the additional three cases that have 9p gain (9p
trisomy) (fig. 4E). The 9p trisomy is among the most-fre-
quent cytogenetic abnonnalities in MPDs** and is impli-
cated in duplication of the mutated JAK2 allele” but could
not have been discriminated from UPD or “LOH with CN
loss” by use of conventional techniques—tor example, al-
lele-specific PCR to measure relative allele dose. Since the
proportions of the mutated JAK2 allele coincide with two-
thirds of the observed trisomy components in all three
cases, the data suggest that the mutated JAK2 allele is du-
plicated in the 9p trisomy cases (table 2). Of particular
interest is the unexpected finding of the presence of two
discrete populations carrying 9p UPD in three cases, in
which the AsCN graph showed a two-phased dissociation
along the 9p arm (fig. 4F). In the previous observations,
homozygous JAK2 mutations have been reported to be
more common in PV cases (~40%) than in ET cases
(<~10%). With AsCNAR analysis, the difference in the fre-

100% e ErInerege
! O wit/wt
z B ot/wt
809% 5 mt/mt/wt
B nt/mt
60%
40%
20%

0%

Figure 5.

quency of 9p UPD becomes more conspicuous; nearly all
PV cases (11/11) and IMF cases (9/10) with a JAK2 mu-
tation had one or more UPD components or other gains
of 9p material, whereas only 3 of the 11 JAK2 mutation-
positive ET cases carried a 9p UPD component or gain of
9p (P = 1.3 x 10", by Fisher’s exact test).

Discussion

The robustness of the AsSCNAR method lies in its capacity
to measure accurately allele dosage and thereby to detect
LOH even in the presence of significant normal cell com-
ponents, which often occurs in primary tumor samples.
In principle, an accurate LOH determination is accom-
plished only by demonstrating an absolute loss of one
parental allele, not simply by detecting Al with conven-
tional allele-measurement techniques. This is especially
the case for contaminated samples, where it is essentially
impossible to discriminate the origin of the remaining
minor-allele component (i.e., differentiating normal cells
and tumor cells)."” Nevertheless, and paradoxically, it is
these normal cells within the tumor samples that enable
determination of AsCNs in AsCNAR. It computes AsCNs
on the basis of the strength of heterozygous SNP calls
produced from the “contaminated” normal component,
which effectively works as “an internal reference,” pre-
cluding the need for preparing a paired germline reference.

Estimation of tumor populations carrying 9p UPD and the JAK2 mutation in MPD samples. The populations of 9p UPD-

positive components in the 53 MPD cases were estimated by calculation of the mean difference of AsCNs within the UPD regions.
Heterozygous (blue bars) or homozygous (red bars) JAK2 mutations in MPD samples were also estimated by measurement of JAK2 mutated
alleles and UPD alleles, under the assumption that all the UPD alleles have a JAK2 mutation. Measurement of JAK2 mutated alleles was
performed by allele-specific PCR. For three cases having trisomy components (orange bars), the duplicated allele was assumed to have
a JAK2 mutation, which is the consistent interpretation of the observed fraction of trisomy and mutated JAK2 alleles for case PV_02
(table 2). mt = JAK2 mutated allele; wt = wild-type allele.

www.ajhg.org The American Journal of Human Genetics  Volume 81  July 2007 121



The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 6. Effects of the use of the different reference sets on
signal-to-noise (S/N) ratios in CN analysis. The legend is available
in its entirety in the online edition of The American Journal of
Human Genetics.

It far outperforms the SNP call-based LOH-inference
algorithms and other methods and definitively deter-
mines the state of LOH by sensing CN loss of one parental
allele.

In the previously published algorithms, AsCN analysis
was enabled by fitting observed array data to a model con-
structed from a fixed data set from normal samples,'>*!
However, the model that explicitly assumes integer CNs
fails to cope with primary tumor samples that contain
varying degrees of normal cell components (PLASQ)'® (fig.
2). Another algorithim (CARAT) requires a large number
of references to construct a model by which AsCNs are
predicted, but such a model may not necessarily be prop-
erly applied to predict AsCNs for the newly processed sam-
ples, if the experimental condition for those samples is
significantly different from that for the reference samples,
which were used to construct the model (fig. 6 and data
not shown).” Signal ratios between array data from very
different experiments could be strongly biased, to the ex-
tent that they can no more be properly compensated by
conventional regressions. In contrast, AsSCNAR uses just a
small number of references simultaneously processed with
tumor specimens, to minimize difference in experimental
conditions between tumor and references, which act as
excellent controls in calculating AsCNs, although refer-
ences analyzed in short intervals also work satisfactorily
(data not showny).

The CN analysis software for the [llumina array provides
allele frequencies, as well as CNs, by use of a model-based
approach, and, as such, it enables AsCN analysis but seems
to be less sensitive for detection of Als.** ASCNAR can be
easily adapted to other Affymetrix arrays, including 10K
and 500K arrays, and may be potentially applied to Illu-
mina arrays.

The probability of finding at least one concordant SNP
between a tumor sample and a set of anonymous refer-
ences is enough with five references, but use of just one

The figure is available in its entirety in the online
edition of The Americon Journal of Human Genetics.

Figure 7. CN profile obtained with the use of a varying number
of anonymous references. The legend is available in its entirety
in the online edition of The American Joumal of Human Genetics.

reference provides alimost an equivalent AsCN profile to
that obtained with its paired reference (fig. 7). The sen-
sitivity and specificity of LOH detection with this algo-
rithm are excellent, even in the presence of significant
degrees of normal cell components (~70%-80%), which
circumvent the need for purifying the tumor compo-
nents for analysis—for example, by time-consuming
microdissection.

Because the AsCNAR algorithm is quite simple, it re-
quires much less computing power and time (several sec-
onds per sample on average laptop computers) than do
model-based algorithms. For example, with PLASQ, it
takes overnight for model construction and an additional
hour for processing each sample.

The high sensitivity of LOH detection by AsCNAR has
been validated not only by the analysis of ttunor DNA
intentionally mixed with normal DNA but also by the
analysis of primary leukemia samples. It unveiled other-
wise undetected, minor UPD-positive populations within
leukemia samples. Especially, the extremely high fre-
quency of 9p UPD or gains of 9p in particular types of
JAK2 mutation-positive MPDs, as well as multiple UPD-
positive subclones in some cases, demonstrated how
strongly and efficiently a genetic change (point mutation)
works to fix the next alteration (mitotic recombination)
in the tumor population during clonal evolution in hu-
man cancer. Finally, the conspicuous difference in UPD
frequency among different MPD subtypes (PV and IMF vs.
ET) is noteworthy. This is supported by a recent report
that demonstrated the presence of minor subclones car-
rying exclusively the mutated JAK2 allele in all PV sam-
ples, but in none of the ET samples, by examining a large
number of erythroid burst-forming units and Epo-inde-
pendent erythroid colonies for JAK2 mutation.”” OQur ob-
servation also supports their hypothesis that the biological
behavior of these prototypic stem-cell disorders with a
continuous disease spectrum could be determined by the
components with either homozygous or duplicated JAK2
mutations.

In conclusion, the AsCNAR with use of high-density
oligonucleotide microarrays is a robust method of ge-
nomewide analysis of allelic changes in cancer genomes
and provides an invaluable clue to the understanding of
the genetic basis of human cancers. The AsCNAR algo-
rithm is freely available on our CNAG Web site for aca-
demic users.
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Appendix A
AsCNAR

Quadratic Regression

The log, signal-ratio, log, Ry, is regressed by the qua-
dratic terms (the length [L] and the GC content [M] of
the PCR fragment of the ith SNP) as

log, RSy, = ali + 8L+ xM; + oM, + vy + &, ,

where g,is the error term and the coefficients of regressions
«, B, x, 8, and «y are dependent on the reference used and
are determined to minimize the residual sum of squares
(i.e., T,¢7). Note that the sun is taken for those SNPs that
have concordant SNP calls between the tumor and the
reference samples.

We suppose that both allele A DNA and allele B DNA
follow the same PCR kinetics, and allele-specific ratios
R and RyY, respectively, can be regressed by the same
parameters, as

reil

log. Ry} = log. | i — (ol + BL)—(XMF + M-y
and

1ef]

Iongm = longij’ ~iali + BLI—IxMF + M)~y ,

and the corrected total CN ratio is

R for O™ = OFf = AA
!, = | Rish for O™ = O = BB .

J R + R for OF" = O = AB

Averaging over the References of Concordance SNPs

Concordant reference sets Cf and C™™° for each SNP
S for a given set of references, K, are defined as follows:

CF = {reflj O™ = OF" retl € K}

CIRer = frefl|Of™ = OF = AB,refl € K} ,

and the averaged CN ratio, R5,, is provided by

.- 1 N .
gf,&i = TR E R;e}?].l , C;\ * 9

# (:“,\ retl «C¥

where “#” denotes the nunmiber of the elements of the set.
Similarly, AsCN ratios are obtained by

o 1 N
R, == > R

# (‘xi\‘,n(-lem relT DR e
(Cﬁ\"hetew # é) s

- 1 5
Rei = e 2 Ri!
& #C;\,huem N;_J 2

e

Exceptional Handling with Regions of Homozygous
Deletion, High Amplification, and LOH

To prevent SNPs within the regions that show homo-
zygous deletion or high-grade amplification from being
analyzed as “homozygous SNPs,” a homozygous SNP
S; in the tumor sample is redefined as a heterozygous
SNP with Op* = AB, if max(log,R%,log,R5) <0.1 or
min (log, RS, log, RS ) = —0.1, where Rf, and R}, are cal-
culated supposing SNP §, is heterozygous. These cutoft val-
ues (0.1 and —0.1) are determined by receiver operating
characteristic (ROC) curve for detection of gain of the
larger allele and loss of the smaller allele in a sample con-
taining 20% tumor cells (data not shown). In addition,
SNPs within inferred LOH regions are also analyzed as
“heterozygous” SNPs.

Reference Selection

The optimized set of references is selected that mini-
mizes the SD of total CN at the diploid region D,

s og R
SDi(D) = | —HR8= — .
«(D) \'#{ijzeD,C‘}a&d)}~l

To do this, instead of testing all possible 2¥ combinations
of N references, we calculate SD(D) for individual refer-
ences K = {refl}, {ref2}, {ref3}, ..., {refN}, to order the ref-
erences such that SD,(D) < ... =SDUD) =SD, (D) = ... <
SDD), where 1, 2, 3,...,5, s+1,..., N denotes the ordered
references. The optimal set K(Ny) = {1,2,3,... Ny} is de-
termined by choosing N, that satisfies SDy, (D) = ... =
SDnok D) < SDgi s iyt D).

Note that, in principle, a diploid region cannot be un-
equivocally determined without doing single-cell-based
analysis—for example, FISH or cytogenetics. Otherwise, a
diploid region is empirically determined by setting the
CN-minimal regions with no Al as diploid, which provides
correct estimation of the ploidy in most cases {data not
shown).
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The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure C1. Inference of LOH on the basis of heterozygous SNP
calls. The legend is available in its entirety in the online edition
of The American Journal of Human Genetics.

Appendix C
Inference of LOH Based on Heterozygous SNP Calls

For a given contiguous region Q; between the ith and
jth SNPs (i = j) and for the complete set of observed SNP
calls therein, 0(Q;)), consider the log likelihood ratio

PO(Q,) |9, e LOH)
P(O(QL;)!QL/ ¢ LOH) '

Z{y) =In

where the ratio is taken between the conditional proba-
bilities that the current observation, O(;)), is obtained
under the assumption that O(€;;) belongs to LOH or not.
We assume a constant miscall rate (¢ = 0.001) for all SNP
and use the conditional probability that the &th SNP is
heterozygous (/1), depending on the observed k—1th SNP
call, for partially taking the effect of linkage disequilibrium
into account:

/ (Qu) =

hl;[/‘“ - O, + qt1 - O
“,.,[‘;,”“ I~ @)+ g0+ (L g + B — il — O]

where /i, is calculated using the data from the 96 normal
Japanese individuals, whereas O takes either 1 or 0, de-
pending on the kth SNP call, with 1 for a homozygous
call and O for a heterozygous call. For each chromosome,
asetofregions, @, ,(J,.,<I,</],J, =0)(n=123,...), can
be uniquely determined as follows.

Beginning with the SNP at the short arm end (S,), find
the SNP §, that satisfies Z(Q, ;) >0 and Z(Q;) =<0 for
J..i<vi<l, (fig. Cl). Identify the SNP S, such that
2 >0 for I, <vj=]" and Z(Q,,.,) =0, or that §; is
the end of the chromosome (fig. Cl). Then, put J, as
arg max; Z(Q, M, <j=<]J") (fig. Cl). This procedure is
iteratively performed, beginning the next iteration
with the SNT §; . ,, until it reaches to the end of the long
arm, generating a set of nonoverlapping regions,
Qg ey LOH inference is now enabled by
testing each Z(€, ;) against a threshold (25), which is ar-
bitrarily determined from the ROC curve for LOH deter-
mination on a DNA sample from a lung cancer cell line,
NCI-H2171 (fig. Cl). This algorithm is implemented in
our CNAG program, which is available at our Web site,

Appendix E
Algorithm for Detection of Al With or Without LOH

The regions with Al are inferred trom the AsCN data by
use of an HMM, where the real state of Al (a hidden state)
is inferred from the observed states of difference in AsCNs
of the two parental alleles, which are expressed as di-
chotomous values {“preset” or “absent”) according to a
threshold (x). The emission probabilities at the ith SNP
locus {8i) are

P(|log. Ry, —log. Ry,] < u|Sie A) = B
Plog, Ry, —log Ryl > wlSie A) = 1 -8

and

P log. R, —log. RE,| > u|Si € Al) = «
P(}log, RS, —log. RE,| = u|Si e Kf) =]«

{see also the “Material and Methods” section and appen-
dix A for calculation of R%, and RE)).

The parameters (i, «, and B8) are determined by the re-
sults of 10%, 20%, and 30% tumor samples. Sensitivity
and specificity are calculated with varying threshold (),
where sensitivity is defined as the ratio of detected SNPs
of UPD region detected in the 100% tumor sample, spec-
ificity is defined as the ratio of nondetected SNPs in nor-
mal samples, and « and 8 parameters are determined from
mixed tumor-sample data for each threshold value. Sen-
sitivity and specificity are relatively stable and are within
the acceptable range when the threshold is between 0.05
and 0.15 in 20% and 30% tumor samples (fig. E1). We
used 0.12, 0.17, and 0.06 for g, «, and 8, respectively, on
the basis of 20% tumor-sample data.

Considering that UPD is caused by a process similar to
recombination, the Kosambi's map function (1/2)tanh(26)
is used for transition probability, where 8 is the distance
between two SNPs, expressed in ¢M units; for simplicity,
1 ¢M should be 1 Mbp. Thus, the most likely underlying,
hidden, real states of Al are calculated for each SNP ac-
cording to Vitervi's method, by which Al-positive regions
are defined by contiguous SNPs with “present” Al calls
flanked by either chromosomal end or an “absent” Al call.
Next, to determine the LOH status for each Al-positive
region (I'), AsCN states at each SNP locus within T' are

The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure E1. Sensitivity and specificity for determination of Al,
LOH, and UPD. The legend is available in its entirety in the online
edition of The American Joumal of Human Genetics.
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inferred as “reduced (R)” and “not reduced (R)” for the
smaller AsCNs, and “increased (/)" and “not increased (1)”
for the larger AsCNs, using similar HMMs from the “ob-
served CN states” of the smaller and the Jarger AsCNi,
which are expressed as dichotomous values according to
thresholds g, and g, respectively. The emission probabil-
ities of these models are

Pmin(log, R% , log. RE) < ps|Sie Rl = 1 — B
Plmin(log, R , 1og, RE,) = us]Si € R] = Bs
P[min {log, RS, log, R < us|Si € R] =
Plmin (log, RS, 1og. R ) = u|Si e R] = 1 — ay

and

Pimax (log, RS, log, iy > |Sie Il = 1 -8,

Plmax (log, R% , log, Rk < |Si € 1] = B,

K

P[max (log, R% , 1og, RS ) >, |Si e I} = o
Pimax (log, RS log, Rsy < |Siel] = 1 —« .

These parameters (us, o5 B p, oy, and B;) are deter-
mined by evaluating sensitivities and specificities of the
results for 10%, 20%, and 30% tumor samples, where sen-
sitivities and specificities are calculated the same way as
was Al Sensitivity and specificity are relatively stable for
ps between —0.03 and —0.13 and are relatively stable for
. between 0.04 and 0.09 in 20% and 30% tumor samples
(fig. E1l). We employed p, = —0.1, a5 = 0.3, 55 = 0.26,
w = 0.08, a; = 0.27,and g, = 0.31 on the basis of the data
for 20% tumor content.

Web Resources
The URLSs for data presented herein are as follows:

ATCC, http://www.atcc.org/common/cultures/NavByApp.clin

BACPAC Resources Center, http://bacpac.choti.org/

CNAG, http://www.genome.umin.jp/

dChip, http:/fwww.dchip.org/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
almoanih.gov/Omim/ (for JAK2, AML, PV, ET, and IMF)

PLASQ, http://genome.dfci.harvard.edu/ tlaframb/PLASQ/
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With recent advances in high-throughput single nucleotide polymorphism (SNP) typing technologies,
genome-wide association studies have become a realistic approach to identify the causative genes that
are responsible for common diseases of complex genetic traits. In this strategy, a trade-off between the
increased genome coverage and a chance of finding SNPs incidentally showing a large statistics becomes
serious due to extreme multipie-hypothesis testing. We investigated the extent to which this trade-off
limits the genome-wide power with this approach by simulating a large number of case-control panels
based on the empirical data from the HapMap Project. In our simulations, statistical costs of multiple hypo-
thesis testing were evaluated by empirically calculating distributions of the maximum value of the x? stat-
istics for a series of marker sets having increasing numbers of SNPs, which were used to determine a
genome-wide threshold in the following power simulations. With a practical study size, the cost of muitiple
testing largely offsets the potential benefits from increased genome coverage given modest genetic effects
and/or low frequencies of causal alleles. In most realistic scenarios, increasing genome coverage becomes
less influential on the power, while sample size is the predominant determinant of the feasibility of genome-
wide association tests. Increasing genome coverage without corresponding increase in sample size will only
consume resources without little gain in power. For common causal alleles with relatively large effect sizes
[genotype relative risk >1.7], we can expect satisfactory power with currently available large-scale geno-
typing platforms using realistic sample size (~1000 per arm).

INTRODUCTION

only a theoretical perspective a decade ago (1), with the
unprecedented advance in large-scale genotyping technologies

Genome-wide association studies have been proposed as a
strategy to identify genetic factors with small to moderate
genetic effects in the development of human diseases, as typi-
cally assumed for a common disease common variant (CDCV)
model (1). In this strategy. a discase-associated locus is
identified through single nucleotide polymorphisms (SNPs)
that show ‘significantly” different allele frequencies between
affected (cases) and unaffected (controls) individuals, and a
large number of SNPs are tested for association in an
attempt to realistically identify such SNPs (2,3). Although

(4-6), it has now become a realistic approach to exploring the
genetic basis of human disease (7,8). In addition, recent efforts
in the International HapMap Project to understand the genetic
diversity among human populations (9.10) have greatly con-
tributed to clarifying the extent to which the number of
marker SNPs could be reduced to achieve given genome cove-
rage. or how much genome coverage can be obtained with a
given marker SNP set by optimally ‘tagging’ untyped SNPs
based on the linkage disequilibrium (LD) observed in the
human genome (11-16).
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Meanwhile, the major interest of the most researchers, who
plan genetic association studies, would be the practical success
rates in such attempts and their eflicient study designs, rather
than mere genome coverage (17,18), because increase in
genome coverage might not be linearly translated into gain
in power (19,20). In addition, the more SNPs are genotyped
to achieve better genome coverage, the higher hurdle is
imposed for a target allele to be detected.

This dilemma, known as the trade-off between increased
genome coverage and the consequent inflation of null statistics
due to extreme multiple testing, is a unique feature of genetic
association studies, and is best described by considering the
distributions of test statistics for markers truly associated
with a causative allele (‘causal distribution’) and for all
other markers (‘null distribution’) (21). Regardless of the
properties of the causative SNP and whether one or more
tagging strategies are used, the null distribution for a given
marker set depends on its genome coverage in the study popu-
lation. In particular, the null distribution with complete
genome coverage is related to the overall diversity of the
human genome and should substantially shift to the right
(7.8.22). On the other hand, for a given disease model, the
size of the test statistic expected for the causative SNPs is
limited by the number of samples to be analyzed, once they
are directly captured by one or more marker SNPs. After all,
the feasibility of genome-wide association studies, or the
required sample size to obtain realistic power, is determined
by the overall diversity of the human genome, or given
restricted study resources, the diversity of the human
genome determines the property of disease-associated SNPs
that can be detected with this approach.

Our questions are, therefore, how diverse is the human
genome in view of conducting genome-wide association
studies, how much power could be obtained to identify causative
SNPs given that diversity and how the typical study parameters
affects the power in that situation? To answer these questions,
we need to evaluate both null and causal distributions in a quan-
titative manner. Because both distributions mtrmsmally depend
on the LD structure within N (typically >~ 10 *~¢) interrelated
marker SNPs and the particular location of causative SNPs
within the genome, they cannot be calculated in an algebraic
manner, but need to be estimated based on the observed data
of human genome variations (10,21). So we approach these
issues by extensively simulating a large number of case-control
panels under both null and alternative scenarios based on the
data from the International HapMap Consortiums (9.10), and
assess the feasibility and efficient designs of whole genome
association studies by estimating the genome-wide power that
would be obtained using this genetic approach under varying
study conditions.

RESULTS

Estimation of null distributions of the maximum
x2 statistics

In considering the issue of multiple testing in genetic associa-
tion studies, it is convenient to evaluate the maximum value of
the xl statistic [max(x2)] in all the marker SNPs that are truly
unrelated to the causative SNP (21). Different statistics can be
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used (23-20), but the power calculated for this statistic, ie.
the probability of max(x~ ) indicating a true association, will
provide a reasonable bottom line to discuss the feasibility of
typical genetic association studies (21). When all N marker
SNPs are independent, the null distribution for max(xz) is
given as

!

where <1>(x2) is the cumulative density function of the )(2 dis-
tribution (d.f. = 1). However, since SNPs in real marker sets
are variably degenerated due to the presence of LD between
adjacent SNPs, we empirically estimated the distribution of
max(x) for a series of marker sets by simulating 10 000
null case-control panels, where each panel was generated by
randomly resampling phased chromosomes from the
HapMap data sets, and max(x ) was calculated for each case-
control panel. Although the number of resampled chromo-
somes for each case-control panel (i.e. the sample size) does
not significantly affect the distributions (data not shown),
there arises some concern about the possibility of under-
estimating the null distributions due to resampling from very
limited numbers of chromosomes, because the latter procedure
could restrict the freedom of allelic segregation within the
same chromosome. To address this issue, we progressively
divided the whole genome into larger numbers of sub-blocks
consisting of 10000 to 10 SNPs in the HapMap Phase II
set, and 1esampled these sub-blocks to simulate distributions
of max(x"). Reducing the mean block size down to 7.1 kb,
these divisions allow for greater freedom of allelic segre-
gation, but does not &gmﬁcantly afféct the max(x®) distri-
butions until the resampled block size becomes smaller than
the mean LD length (27), indicating that our simulations are
not likely to substantially underestimate the null distributions
(Supplementary Material, Figure S1).

Figure 1| A shows the simulated null distributions in the
CEU panel for varying numbers of randomly selected SNPs
(‘cotrelated’ SNP sets). The number of segregating or poly-
morphic markers contained in each random set is designated
as Ns. The theoretical distribution for the same numbers
(Ns) of ‘independent” SNPs, cpNS(Xl), is also provided
(Fig. 1B). The null distribution increases as the number of ran-
domly selected SNP markers increases. and in a random
IOOOK set containing 681K segregating SNPs, the threshold
X° value that provides a genome-wide P-value of 0.05 or
0.01 becomes as large as 27.6 or 30.5, respectively. On the
other hand, reﬁecting the growing inter-marker LD intensity,
the empmcal dlstubutlons gradually deviate from the theoreti-
cal ones, ‘pNs(x )’s, for increasing Ns within the corresponding
marker sets, underscoring the importance of considering inter-
marker LD to avoid overestimation of the statistical threshold
for multiple testing, especially for higher marker density.

[¢
wN(xz)=d >

Evaluation of the inter-marker LD

The intensity of the inter-marker LD in a given marker set is
more simply evalnated by fitting the simulated distribution to
a theoretical one for independent Nc makers, @Nc(xz) {(see
Methods). Irrespective of marker sets, fitting is finely
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Figure 1. Null distributions of max( xz) and the effective number of independent SNPs (Nc¢) for various marker sets. Distributions of max( xl) for all null SNPs
(null distributions) were simulated for increasing numbers of randomly selected SNP markers in the CEU panel. Ten thousand null panels, each consisting of
1000 cases and 1000 controls. were generated for the indicated marker sets by randomly resampling phased autosomal chromosomes from the HapMap Phase 11
data in CEU (A). Theoretical null distributions corresponding to each SNP set, \p\,(x ). were calculated assuming all Ns segregating SNPs therein are indepen-
dent (B). The effective numbers of hypothetical independent SNPs (Nc¢) were estimated by fitting simulated null distributions to theoretical ones for Nc inde-
pendent SNPs, tp\\(\( ), for the indicated SNP sets. and are plotted against the number of segregating SNPs of the corresponding marker set (Ns) for different

HapMap panels (C).

performed except in the vicinity of the maximal points
(Supplemeutaly Material, Plgllle S2). In particular, the distri-
bution in extreme x~ values is satisfactorily approxunaled to
provide a rough estimate of the nominal P-value for given
genome-wide thresholds as confirmed by the concordance of
the upper p pomt in the simulated distribution with the
upper p/Ne point in the )( distribution (d.f. = 1) (Bonferroni)
(Table 1). In this formulation, it is reasonable to regard Nc
as the number of hypothetical independent SNPs equivalent
to the corresponding marker set, where the null distribution
for a large number of mutually degenerated SNPs is described
by an integer and the mean intensity of the inter-marker LD is
measured through the Ne¢/Ns ratio.

Nc values were calculated for a variety of randomly
selected SNP marker sets and plotted against the number of
segregating SNP markers therein (Fig. 1C). As the Phase II
data contain most of the SNPs in commercially available plat-
forms, including Affymetrix® GeneChip® and Illumina®
HumanHap® arrays (28-30), Nc values were also evaluated
for these platforms (Supplemental Material, Table S1). Note
that the numbers of segregating SNP markers varies among
different HapMap panels. even though the same numbers of
SNPs are randomly selected for each panel (Supplementary
Material, Figure S3). Figure 1C illustrates how the degree of

degeneration within marker SNPs increases in different
HapMap panels as more marker SNPs are selected.
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Table 1. Size of nulil distributions of max( xz') in various marker sets in the CEU panel
Platform Ns Ne Fold degeneration P=0.05 P =001

Nominal P* Actual® Bonferroni® Nominal P* Actual® Bonferroni®
Random 10K 6.8K 6K 1.1 799 x 107 19.94 19.86 137 x 107 23.06 22.95
Random 30K 20.6K 17K 1.2 2.86 x I(J"f 2191 21.85 573 x 1077 25.00 24,95
Random 50K 339K 27K 1.3 1.76 x 107¢ 22.84 22.74 4.01 x 1077 25.69 25.84
Random 125K 85.1K 60K 14 7.39 x 10'f 24.51 2428 1.56 x 1077 27.51 27.39
Random 250K 170.7K 105K 1.6 4,52 x 107;' 2546 25.36 9.04 x 1078 28.57 28.47
Random 300K 340.4K 179K 1.9 2.45 x 1077 26.64 26.39 5.39 x 1078 2957 29.50
Random 1000K 680.7K 290K 2.3 1.48 x 1077 27.62 27.32 341 x 107 30.46 30.44
GeneChip 300K 417.8K 196K 2.1 2.05 x 10‘? 26.99 26.56 494 x 107° 29.74 29.68
GeneChip Nsp230K 219.4K 120K 1.8 3.69 x 1041 25.85 25.62 7.94 x 10~ Ef 28.82 28.73
GeneChip 100K 101.3K 62K 1.6 775 x 1()”: 2442 24 .34 1.38 x 1077 27.75 27.45
HumanHap 300 305.1K 215K 1.4 2,18 x 1077 26.87 26.74 4.06 x 10°% 30.12 29.86
HumanHap 550 513.8K 318K 1.6 1.41 x 1077 27.71 27.50 290 x 107° 30.77 20.62
HapMap Phase 11 2557.4K 603K 4.2 7.09 x 1078 20.04 28.74 1.48 x 107°% 32.08 31.86
ENCODE 7 regions 77K 1.3K 5.8

*Nominal P-value to reach given experiment-wide significance obtained from actual distribution.

The upper 1-P point of the actual null distribution.
“The argument of x~ distribution (d.f.=1) for cumulative density I — P/Nc.

For example, 681K segregating SNPs within a random 1000K
set in the CEU panel are equivalent to independent 290K
SNPs, indicating that in this panel, these SNPs are degenerated
23-fold. On the other hand, the degeneration in 1000K
random markers is reduced to 1.8-fold for the YRI panel, as
expected from the lower inter-marker LD for this panel com-
pared to that of CEU.

The SNPs on the Affymetrix® GeneChip® mapping array
sets are degenerated to the same degree as random SNP sets,
reflecting the fact that the SNPs on GeneChip® platforms
are virtually randomly selected. In contrast, the SNPs on the
Ilumina® HumanHap300 are selected by efficiently tagging
the HapMap Phase I SNPs in CEU, in which 1edundant
SNPs are effectively eliminated (28). As a result, degeneration
in the HumanHap300 is substantially reduced compared to the
corresponding random marker sets, In CEU, Nc for this
305.1K segregating SNP set (215K Nec) exceeds that for
417.8K segregating SNPs on GeneChip® 500K set (196K),
as predicted by the higher genome coverage of the former
set (see Table 1 and Supplementary Material, Figure S4).
The tagging for CEU also increases the Nc in JPT+CHB,
suggesting that tagging in one panel is also effective to a
certain degree for another (31.32). The tagging seems to be
less efficient in YRI, because the Nc value of HumanHap300®
in YRI is less deviated from that of the random marker set
with a corresponding Ns. In HumanHap550®, more tag
SNPs are selected from YRIL which contributes to the relative
increase in Nc for this marker set compared to that for the cor-
responding random marker SNP set.

Estimation of Nc for common SNPs in cemplete
genome coverage

1t is particularly interesting to calculate the Nc values for the
ENCODE regions, in which human variations have been most
densely explored. Currently 10 regions have been extensively
genotyped in the ENCODE Project (http://www.hapmap.org/
downloads/encodel.html.en), of which we used 7 regions

that had been randomly chosen from the genome. A total of

7741, 9832 and 7396 SNPs are segregated in these seven
ENCODE regions, and they are equivalent to 1340

(5.8-fold), 2580 (3.8-fold), and 1460 (5.1-fold) hypothetical
independent SNPs, in the CEU, YRI, and JPT+CHB panels,
respectively. Assuming the entire genome shows the similar
LD intensity to that in the seven ENCODE regions on
average, the Nc values for common SNPs in complete
genome coverage (Ne©) are roughly estimated to be 1971K
(YRI), 1023K (CEU), and 1115K (JPT+CHB) (Table 2),
although the values would be much more inflated if rare poly-
morphisms [minor allele frequency (MAF) <0.01], many of
which could not be found in the HapMap panels, are taken
into consideration. N¢/Nc could also be used as another indi-
cator of genome coverage of a given marker set.

Causal distribution of max(x?)

In view of power estimation, our next interest was the
expected size of causal distributions relative to that of the
inflated null distributions under varying disease/study par-
ameters that affect the former distributions. To illustrate this,
we simulated causal distributions of max(x’) for representa-
tive CEU alleles assumed to be causative (Fig. 2). Two thou-
sand case-control panels were generated for each simulation,
in which phased HapMap SNPs within 500 Kb around the cau-
sative locus were randomly resampled assuming a multiplica-
tive model with varying genotype relative risks (GRRs) and
the ma\(x ) was calculated for the resampled marker SNPs
on GeneChip® 50()K Prevalence of the trait was set to
0.05. While the y* threshold for genome-wide p of 0.05
could inflate from 19.9 for the random 10K set (6K Nc; semi-
solid line) to as high as 29.8 for complete genome coverage
(1023K NcY; dotted lines), these costs of multiple testing
are acceptable when LD capture of the causative SNP by
one or more matkers with high correlation coefficient (#2)
can create large causal distributions with practical sample
sizes (Fig. 2D-F). i.e. when the causal allele is common
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Table 2. The number of corresponding independent markers

ENCODE® Whole genome” All Phase 11°
YRI 2580 1971K 1049K
CEU 1340 1023K 603K
JPT + CHB 1460 115K 632K

*Ne values calculated for combined SNPs from seven regions.
E’Nc of ENCODE regions are extrapolated to the entire genome.
“Nc of all SNPs in the HapMap Phase II.

(MAF > (.2) and has a large GRR (>1.7) (Fig. 2A, D and G).
In contrast, in the case where the causal allele with smaller
MAF value (<0.2) or with a modest to weak GRR (< 1.5)
is to be detected, the trade-off between increased chance to
capture the allele with higher #* using more markers and the
accompanying cost of multiple testing can offset the power
to varying degrees (Fig. 2A—C, G-I). The effect of ‘colla-
borative’ capture, i.e. the probability of detecting an associa-
tion by one of the multiple surrounding marker SNPs other
than the SNPs showing max(;*), creates measurable gain in
causal distributions and overall power, but does not essentially
influence the above observations (Supplementary Material,
Figure S5).

Estimation of genome-wide power

Based on the above consideration, we estimated the genome-
wide power in genetic association studies for common
(MAF = 0.05) causal alleles with weak to moderate genetic
effects. To do this, after assuming all the common SNPs in
the human genome being equally causative, we used two
sets of SNPs, the RefENCOPE gnd the RefPhase U 5Kb geq
(see Methods), as references that are considered as random
sampling from the entire SNPs. For each putative causative
SNP, we simulated case-control panels as described in the pre-
vious section, and calculated the single point power as the pro-
portion of simulated panels whose max(x’) exceeded a
predetermined )(2 threshold corresponding to a genome-wide
P=001 or 0.05 for each marker set. For genome-wide
power, each single point power was averaged for all common
SNPs within the reference set. For the Ref Phase 1 5Kb get gver-
representation of the direct association was adjusted based on
the estimated genome coverage of the Phase II data set (see
Methods). Figure 3 shows the genome-wide Pp\_ver in the
CEU panel that was calculated for the Ref™** ' 3% for mod-
erate to small effect sizes (i.e. GRR = 1.7) assumin}g various
parameter values. The calculation on the RefPNCOPE gt pro-
vides a largely equivalent estimation of the power (Sup-
plementary Material, Figure S6), although the power is
expected to be less reliable for smaller marker sets, reflecting
their poor representation of the genome.

Under strong genetic effects (GRR = 2.0) and large sample
sizes { Z 1500/arm), the power tends to saturate as the number
of randomly selected SNPs increases ( = 250K), because most
of the common SNPs would be already captured by one or
more marker SNPs with enough 1 (Supplementary Material,
Figure S4). and the capture causes large shifts of causal
distributions to the extent that the cost of multiple testing

is trivial (Fig. 2). On the other hand, when causative SNPs
with weak to moderate genetic effects are detected with
insufficient sample numbers, causal distributions cannot
exceed large thresholds resulting from extreme multiple
testing. even though more and more SNPs are captured by
strong LD. With increasing effect size and sample number,
the genome coverage is less influential except for smaller
numbers of marker SNPs (<<250K). The power gain obtained
with increased genome-coverage tends to be offset by the
increased cost of multiple testing. After all, in most scen-
arios, genome coverage is less influential on power when
= 250K random markers or equivalent tag SNPs are used.
In contrast, the effect of sample numbers is predominant.
To detect weak genetic effects (GRR = 1.3). the number of
samples becomes critical. More than 4000 samples per arm
will be required. but the requirement of genome coverage
is not substantially increased when more than 250K
randomly selected SNPs or their equivalents are used
(Fig. 3A). Given a higher genetic effect, this dependence
on sample size is dramatically ameliorated, but the genome
coverage remains less influential.

Power in different HapMap panels and in commercially
available platforms

Power is significantly reduced in YRI compared to CEU and
JPT+CHB for any marker set (Fig. 4A-C). The lower
power in YRI is mainly due to the lower ‘relative’ genome
coverage of the marker set (Ne¢/Nc%), rather than the higher
cost of type I errors in this population.

The Hlumina® HumanHap® series are commercially avail-
able platforms that incorporate the tagging theory, in which
marker SNPs were sclected to efficiently tag the CEU SNPs
in the Phase 1 data set. Tagging seems to be effective. since
HumanHap300® in the Ref™ ! Kb set shows slightly
higher power than the GeneChip® 500K in CEU, although
the power is slightly biased by the higher representation of
the Phase I SNPs in the Ref™™*¢ ! *¥ get (Fig, 4D). Human-
Hap300® shows comparable power to that of GeneChip®
500K, but the power of HumanHap300® is significantly
reduced in YRI. In HumanHap550®, more tag SNPs from
YRI and JPT+CHB were added to HumanHap300®, the
power is more improved in YRI and in JPT+CHB, but the
power is also increased to a lesser degree in CEU reflecting
a transferability of tag SNPs between CEU and JPT+CHB.
The power of various commercially available platforms with
various sample sizes are shown in Figure 4E (adaptive
threshold) and in Supplementary Material, Figure S7 (fixed
threshold). Genome coverage and power of HumanHap550®
in the CEU are comparable to those of the random 1000K
set (Supplementary Material, Figure S4), an equivalent to
Human SNP Array 6.0® that is planned by Affymetrix®
(Fig. 4E). Nevertheless, and in spite of the significant differ-
ence in cost, the gain of power in HumanHap550® is not so
prominent. Also note that the power calculation for Human-
Hap550® could be slightly biased by using the subset of the
Phase II SNPs as a reference.
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Figure 2. Enhancement of causal distributions by various parameters. Combined effects of LD [in max(r q)] and effect size (in GRR) on causal distributions under

constant sample size (1000/arm) and MAF value (0.225) (A-C). LD and szunple size under constant effect size (GRR = 1.5) and MAF value (0.2

25)(D-F). and

MAF and effect size under constant sample size (1000/arm) and LD [max(r ) =1.0] (G-I, are illustrated based on the simulations for six representative CEU
alleles analyzed on GeneChip® 500K [rs9782915 in (A and D); 1s7543006 in (B and E); rs731030 in (C and F); rs6603803 in (G); rs3052 in (H); rs1307490 in
(I)]. Thresholds for genome-wide P-value of 0.05 are indicated for mndom 10K (solid lines). GeneChip 500K (dashed lines), and complete genome coverage
(dotted lines), corresponding to Nc values of 6K, 196K. and 1023K (Nc“ 7). respectively. Effects of collaborative capture by nearby markers are incorporated, but

they are generally small (Supplementary Material. Figure S5).

Power depends on allele frequencies of causative alleles

Power strongly depends on MAF of causative alleles, and
detecting rare causative alleles is very difficult (Fig. 2)
(8.20) for two reasons. First. rare variants are difficult to
capture in high r? values. With currently available platforms
(GeneChip® 500K or HumanHap550®). most S\IPS with
more than 0.10 MAF values are captured in high . which
could be effectively detected in high power given moderate
GRRs ( = 1.5) and sample size ( = 1000/arm) (Fig. 5). In con-
trast. capturing rare causal SNPs (MAF < 0.10) requires many

more marker SNPs or their combinations than capturing
common SNPs at the more cost of multlple hypothesis
testing. Second. even when captured in high 7~ with one or
more marker SNPs, associations with these rare SNPs are
more difficult to detect than those with common SNPs
(Fig.5). In common diseases. the existence of multiple pheno-
copy variants would further compromise detection (multiple
rare variants) (33.34). Thus. regardless of genome coverage.
power is consistently lower for less common SNPs (Fig. 6A
and C). To detect rare causative SNPs. we need not only to
invest in genotyping large numbers of marker SNPs with
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tive threshold for a genome-wide P-value of 0.01 was also indicated by a lower bar within each column.
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Figure 4. Comparison of power in different HapMap panels and in commercially available genotyping platforms. Genome-wide power was calculated for difter-
ent HapMap panels in a variety of marker sets, including indicated numbers of randomly selected SNP markers for GRR=1.5 (A), GRR=1.7 (B). and GRR=1.9
(C). Statistical thresholds were adjusted to provide genome-wide P-values of 0.05. Genome-wide power was also calculated for commercially available geno-
typing platforms in different HapMap panels (D) and varying sample numbers and effect sizes for CEU (E). The examined platforms are GeneChip® 100K

(G100), GeneChip® Nsp’S()[\ (G250), GeneChip®
(R1000) is shown for comparison in E.

low MAF values by any means. but also to increase the sample
size (Fig. 6B and C).

Discussion

Through the current analysis, we empirically determined the
size of test statistics for causal as well as null markers under
varying degrees of genome coverage and realistic study para-
meters, and thereby demonstrated how genome-wide power is
affected by the interplay between genome-coverage and other

® S00K (G500). HumanHap300® (H300) and HumanHapS50® (H550). Power in a random 1000K set

determinants. Here it is appropriate to compare the perform-
ance [power (1 — B) or sensitivity] of the different SNP sets
with their specificity (or | — a) being constant by applying
adaptive thresholds. where a denotes genome-wide type I
error probability. In addition. the power calculated in this
way is directly related to false positive report probability
(FPRP), which is simply expressed as 1/[1+(1 — B)/a],
which is approximately extended to 1/[1+m(1 — B)/a] assum-
ing a total of m independent causative loci having the same
effect size. Note that « is a constant for all SNP sets,



2502 Human Molecular Genetics, 2007, Vol. 16, No. 20

A C
LA Sample size (/arm) 500 1000 1500 2000
0.05 0.50
0.10 CEU, GRR1.5,
<k prevalence 0.05,
o R _R2 multiplicative
o
g GRR 13 1.5 1.9
(o]
E| R4 R3 CEU, 1000/arm, pawer
prevalence 0.05, 0 1
<V multiplicative [ ]
B Available platforms G500K G250K G100K H300 H550
. ! } » 1 : distribution
G: GeneChip ' 3 1 rare dense
H: HumanHap et
| ey

Random markers 10K 30K 50K 125K 250K 500K  1000K

L Ay ‘.ﬂ’""" y ! ¢

Figure 5. Im?“‘ of allele frequencies and genome coverage on genome- mdu power. Reference SNPs randomly selected from the Phase II CEU set
(Ref™5e 11 5Kb) 5re plotted onto a panel according to their MAF and the max(r~ %) within the indicated marker set, and assigned into four categories: sub-common
and weakly plomed SNPs [MAF < 0.10 and max(r’) < 0.3] SNPs (R1), common and weakly proxied SNPs (MAF = 0.10 and max(r 1) <023) SNPs (R2).
common and strongly proxied SNPs [MAF = 0.10 and max(+~ ) = 0.3] (R3), or sub-common and strongly proxied SNPs [MAF < 0.10 and max(r J =0.3]
(R4). (A). Distributions of these SNPs are shown by gray-scaled density for different marker set, where the SNP distribution shifts downward as the genome
coverage improves (B). GeneChip® S00K. 250K (Nspl). 100K. HumanHap300®, and HumanHap550® are designated as GS00K. G25(JI\ G100K, H300K.
and H550K., respectively. On the other hand. neglecting the collaborative capture effect. the power for SNPs with a given MAF and max(r %) value is largely
determined by GRR and sample size. Distributions of the power are color-coded for different parameter sets as indicated (C). Genome-wide power is
roughly estimated by taking the product sum of corresponding cells in both panels.

i.e. 0.05 or 0.01. So from our simulations, readers will easily could be overcome with = 1500 samples per arm for very
evaluate the power and FPRP expected form given SNP set, common SNPs (MAF > 0.20), but for less common SNPs or
sample size and predicted effect size. As long as practical those with a small genetic effect (GRR=1.1-1.2). extremely
power (for example. | — B >a) is obtained. FPRP is expected large numbers of samples will be required (Supplementary
to less than 0.5, which will be satisfactory for initial discovery — Material. Figure S8), which urges moves toward sharing
studies. typing data across multiple groups as exemplified in recent

We estimated genome-wide thresholds based on the simu-  reports that identified predisposing factors with very modest
lations using small numbers of HapMap chromosomes. In  genetic effects for type 2 diabetes (35-37). The diversity of
real studies, the threshold should be determined using their our genome may not allow for detecting very rare causative
own applicable data sets, where diploid, rather than phased. alleles (<<0.01) with even smaller genetic effects (i.c.
chromosomes could be used when enough samples are ana- GRR << 1.1) using this approach (Fig. 6D).

lyzed. A larger number of chromosomes should contain Under these limitations. several issues should be considered
more numbers of rare segregating SNPs, but these rare SNPs  to efliciently exploit study resources and to increase the
would not increase x~ thresholds substantially (22). chance of finding a true association. First. for the increased

In terms of the effective number of independent SNPs (N¢)  genome coverage to be effectively translated into power, it
in various marker sets, the diversity of the human genome is needs to be accompanied by a corresponding increase in
likely to be on the order of 1000K in CEU and the corres- sample size. When sample numbers are small relative to the
pondmg nommdl P-value giving a genome-wide a crror of effect size, the cost of multiple testing largely offsets the
0.05 is 5 x 10" ¥, For moderate GRRs ( = 1.5), this threshold expected increase in the test statistics for causal alleles with
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Figure 6. Effects of allele frequency on simulated power. Distribution of
power on MAF in association studies are shown for varying marker sets
under a constant sample size (1000 /arm) (A), and for varying sample sizes
under a fixed marker set; GeneChip® 250K (B) or a hypothetical complete
marker set (C). CEU was used for simulations with fixed GRR (1.5) and
disease prevalence (0.05). The sample size that is required for detecting a cau-
sative allele with 80% power was calculated for GRRs of 1.2, 1.3, 1.5 and 1.7.
assuming complete genome coverage in a multiplicative model (D). The sig-
nificance threshold for genome-wide P-values of 0.05 is set assuming com-
plete genome coverage (Nc=1023K, solid lines) or independent SOK
markers (single point P-value =1 x 107, Ne=50K. broken lines).

no measurable gain in power, and can even exceed the gain in
causal distributions (Fig. 4). Increasing genome coverage with
insufficient sample sizes would only consume resources with
no substantial benefit in power. In addition, power tends to
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saturate in higher genome coverage and the effect of increas-
ing the number of marker SNPs is less prominent compared to
that of increasing sample sizes. In most simulated situations,
more power is expected by doubling the sample size than by
doubling the number of maker SNPs. For example, our simu-
lations predict that doubling the sample size using GeneChip®
Nsp 250K is almost certainly more efficient than analyzing
half of the samples with both Nsp 250K+Sty 250K (Sup-
plementary Material, Figure S9).

The tagging strategy or statistical imputation is effective for
increasing genome coverage with limited numbers of marker
SNPs (21,38.39). although it does not save the cost of
multiple-hypothesis testing. The efficiency of generating a
tag SNP set with higher genome coverage. however, is
increasingly compromised. The additional gain in power
becomes smaller with increasing genome coverage, while
more and more effort will be required to find additional inde-
pendent tag SNPs. because many SNPs are already captured
by existing tag SNPs. In addition, we simulated power using
*All Phase I’ set. In the sense that all references are captured
through direct association, this marker set provides the ulti-
mate coverage of the genome. Considering that modest
increase of power using ‘All Phase II’ set compared with
random 1000K set (Fig. 3). multimarker tagging presumably
may not push up the power profoundly. Transferability of a
tag SNP set from one population to another is also a
problem. Tag SNPs for CEU are transferable to a certain
degree to JPT+CEU. but they are less effective for YRI.

In any simulated scenarios, detecting SNPs with lower MAF
values (0.05-0.10) is very difficult using whole genome
approaches, which is especially true for SNPs with less than
0.05 MAF values. In this situation, genome coverage to
capture these rare SNPs becomes definitely important, but
the required increase in the sample size is greater for rare
SNPs than for common ones.. Effort to devising SNP sets for
these rare alleles, or exhaustive multimarker tests (21,38). is
not likely to be rewarding unless their genetic effects are sub-
stantially large.

MATERIALS AND METHODS
HapMap data sets

The phased genotyping data of the HapMap Phase II (release
21) were obtained from the International HapMap Project
web site (http://www.hapmap.org/downloads/phasing/2006-07_
Phase 1I/) (10). It includes the data from 60 CEU parents (120
chromosomes). 60 YRI parents (120 chromosomes) and the com-
bined set of 45 JPT and 45 CHB unrelated individuals (180
chromosomes), and is provided in three discrete sets (‘all’, ‘con-
sensus’, and ‘phased’). of which we used the former two sets for
analysis. The “all’ set contains the comprehensive data ofall SNPs
genotyped in each population including non-segregating sites.
and the ‘consensus’ set consists of the intersection of ‘all’ sets
from the three population panels. The ‘all’ sets contain
3755 469. 368 5205 and 3776 850 SNPs for CEU, YRI and
JPT+CHB, respectively, and the ‘consensus’ set includes
3535396 SNPs.
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Marker sets and the references for power calculation

We generated a series of marker sets consisting of 10K, 30K,
50K, 125K, 250K. 500K and 1000K SNPs, by randomly
selecting SNPs from the Phase II ‘all’ sets for each HapMap
panel. The number of segregating SNPs in each set is
denoted as Ns and shown in Table 1for CEU panel. Because
the Phase II ‘all’ set contains most of the SNPs on commer-
cially available platforms, including Affymetrix® GeneChip®
500K (Nsp+Sty), 250K (Nsp), 100K (Hind+Xba), Hlumina®
HumanHap300®, and HumanHap350® (Supplementary
Material, Table S$1), the intersectional SNPs of these platforms
with the Phase II ‘all’ set were incorporated into the analysis
as representative SNPs of each commercial set. Annotation
files for SNPs on GeneChip® series are available from the
Affymetrix® web site (http:// www.affymetrix.com/products/
application/whole_genome.affx). The SNP information of
HumanHap® series was kindly provided by Illumina® Inc.
A subset of the Phase II SNPs, referred to as *RefThese 11 5Kb»
was constructed and used as a reference in the calculation of
genome-wide powers by randomly selecting SNPs from the
‘consensus’ set so that cach SNP is, on average, 5 Kb apart
from the adjacent SNPs. Combined SNPs from the 10

" ENCODE regions, denoted as Ref ENCODE , were used as an
alternative reference set. Only common SNPs (MAF > 0.05)
were included in the power calculations as putative causal
alleles.

Simulation of case-control panels under the null hypothesis
and fitting simulated distributions

Null distributions in genetic association studies are considered
for only vaguely defined ensembles having limited population
sizes, e.g. all adult Japanese eligible for a study. To obtain
asymptotic distributions, we generated 10000 null case-
control panels by randomly resampling phased autosomal
chromosomes from the ‘all’ set of CEU, YRI and
JPT+CHB. Simulations were performed with different
sample munbers, i.e. 500, 750, 1000, 1500, 2000 and 4000
per single arm. For each case-control panel, the maximum
¥ value (max(x *); d.f=1) in the standard allele test was cal-
culated for different marker sets to obtain empirical null distri-
butions of max(x?).

The simulated distributions, d)(xz). were fitted to the null
distribution for hypothetical Nc independent SNPs, one(X)-
by the least squares method as follows:

Ne = arg min | (¢y0F) — (I)()f))zd)(2
N

The Gnu Scientific Library was used to handle these functions.

Simulation of case-control studies and calculation of power

We consider multiplicative disease models showing a preva-
lence e. and assume a single causative allele whose MAF
and GRR are P (>0.05) and v, respectively. Given the pene-
trance for 44, Aa and aa genotypes as fy 4. [ 4., and f,,, respect-
ively, expected genotype frequencies in the case and control

panels are given as,

2 ~
P(AA|case) = Plad
e

2p(l — Pl
e

(= P S
e

P(Ad|case) =

Plad|case) = ~—

P(AAjcontrol) = P;%{ﬁl
oot o
P(Aalcontrol) = 22 = PX1 ~ /) lp)(l Jaa)
e
P(aalcontrol) = Q':!?(l = Jou)
—e

where
e = pfis + 2000 — g + (1 — PV i

St = Y Jaa =V Jua

According to these allele frequencies, we generated 2000
case-control panels under the alternative hypothesis by resam-
pling a predetermined number of phased chromosomes, and
calculated max(xz) of the marker SNPs for each panel,
where the calculations were performed only for those
marker SNPs that are within S00Kb from the putative
causal SNP. The proportion of simulated case-control panels
whose max(xz) exceeded the upper 95 or 99% point of the cor-
responding null distribution for that marker set was defined as
the power. The genome-wide power was computed by aver-
aging each power for all SNPs within the reference set. As
the number of marker SNPs increases, up to as high as
1000K, there is a considerable chance of detecting direct
associations, i.e. the causative SNP is included in the marker
set. Assuming 7500K common SNPs within the human
genome (17), the Phase II data set includes one-fourth
(2167K common SNPs in CEU) of all the common SNPs.
Based on this estimation, we excluded three-fourths of the
direct associations from the calculation of genome-wide
power to avoid overestimating its chance. The adjustment of
direct association, however, has little influence on the
results. This correction was not applied to the power calcu-
lation on the Ref®N“OPE et because it represents the nearly
complete data set for those regions.

Computational resources

All simulations were run on the GXP clustering computer
system in the Department of Information and Communication
Engineering, Graduate School of Information Science, Univer-
sity of Tokyo.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG Online.
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Abstract

Formalin-fixed, paraffin-embedded (FFPE) material tends to
yield degraded DNA and is thus suboptimal for use in many
downstream applications. We describe an integrated analysis
of genotype, loss of heterozygosity (LOH), and copy number for
DNA derived from FFPE tissues using oligonucleotide micro-
arrays containing over 500K single nucleotide polymorphisms.
A prequalifying PCR test predicted the performance of FFPE
DNA on the microarrays better than age of FFPE sample.
Although genotyping efficiency and reliability were reduced for
FFPE DNA when compared with fresh samples, closer
examination revealed methods to improve performance at
the expense of variable reduction in resolution. Important
steps were also identified that enable equivalent copy number
and LOH profiles from paired FFPE and fresh frozen tumor
samples. In conclusion, we have shown that the Mapping 500K
arrays can be used with FFPE-derived samples to produce
genotype, copy number, and LOH predictions, and we provide
guidelines and suggestions for application of these samples to
this integrated system. [Cancer Res 2007;67(6):2544-51]

Introduction

The challenges associated with DNA derived from formalin-fixed,
paraffin-embedded (FFPE) samples have prevented widespread
application of FFPE DNA to many of the technologies available for
high-quality DNA, although some options with lower genomic
coverage are available (1-3). In this study, we show the feasibility
and limitations of a genome-wide assessment of genotype, loss of
heterozygosity (LOH), and copy number using FFPE DNA on the
Affymetrix Mapping 500K array set, which includes the Mapping
250K Nsp Array and the Mapping 250K Sty Array (Santa Clara, CA).
These arrays use a process termed whole-genome sampling
analysis (WGSA; ref. 4), in which genomic DNA is digested and
ligated to adaptors. A subset of digested fragments are then PCR
amplified in a complexity reduction step before hybridization to
the arrays. PCR proved to be the critical step when processing
FFPE samples.

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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We compared several extraction methods to determine which
protocol provides FFPE DNA most suitable for array analysis and
found that a PCR-based assessment of DNA quality predicted the
downstream performance of FFPE DNA samples better than age
of FFPE sample. We identified a necessity for (a) in silico
compensation against fragment size bias and (b) a fragment size
filter during analysis of FFPE samples. We tested our new
guidelines for FFPE DNA qualification and analysis on archival
samples of various tissue types, storage times, and location sources.
Quality of FFPE DNA varied but the methods outlined by this study
enabled prediction of performance. These results show that FFPE
DNA can be suitable for a combined study of genotype, LOH, and
copy number on a whole-genome scale.

Materials and Methods

Sample selection and DNA extraction. Five primary endometrioid
ovarian cancers were selected without screening for the initial portion of
this study. For each sample set, normal lymphocytic DNA, fresh tumor
tissue, and FFPE tissue were analyzed. Samples were collected between 1993
and 1999 as part of a larger study of ovarian cancer in women living in and
around Southampton, United Kingdom (5). At the time of collection, DNA
was extracted from blood samples and fresh tumor biopsies were snap
frozen in liquid nitrogen. A portion of each frozen tumor biopsy was
sectioned to assess the proportion of tumor. For samples 526T and 59T,
microdissection was done (6) to obtain DNA with a >80% tumor
component. DNA was extracted from the fresh frozen tissue using a salt
chloroform method (7).

In 2002, a portion of each frozen tumor biopsy was formalin fixed and
paraffin embedded as described previously (8), with all tumors fixed in 10%
neutral buffered formalin for <24 h at room temperature. At the time of
DNA extraction, the FFPE tumors had been embedded in paraffin blocks for
3 years. Five sections (10 pm) were deparaffinized twice in xylene (5 min)
and rehydrated in 100%, 90%, and 70% ethanol (1 min each). The sections
were stained with hematoxylin (4 min) and washed with water (1 min), acid
alcohol (10 s), water (1 min), Scott’s tap water (1 min), and water (1 min).
The sections were then stained with eosin (3 min), rinsed with water (10 s),
and dehydrated in 70%, 90%, and 100% ethanol (30 s each). Tumor cells
were manually microdissected under a dissecting microscope as described
previously (6) to obtain high-purity (>80%) tumor DNA. The tumor
component for sample 594 was high enough that it was not stained or
microdissected. DNA was extracted from the five endometrioid FFPE
tissues using a modified Qiagen protocol (Valencia, CA; described below).
Following DNA extraction from FFPE tissue, a salt precipitation DNA
cleanup was done as described in the Affymetrix GeneChip Mapping Assay
Mannals.

For the study of independent sample sets, DNA was extracted from
FFPE tissue from 17 breast tumors and 8 colorectal tumors. FFPE blocks
were collected from 11 pathology laboratories and ranged in age from 1 to
17 years. The formalin fixation and paraffin embedding protocols used for
these tissues are not known but are likely to be quite varied. For breast
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tumors, 10 pm sections were deparaffinized, stained with H&E, and
manually microdissected (described above). The colorectal tumors were not
stained or microdissected due to their high tumor component. DNA was
extracted from breast and colorectal tissues (described below), and as
before, a salt precipitation DNA cleanup was done.

The collection and use of tissues for this study were approved by the
appropriate institutional ethics committees.

Trial of DNA extraction methods for FFPE tissue. Five DNA extraction
methods were trialed using whole 20 pm sections from three FFPE blocks.
The methods that were compared were the MagneSil Genomic Fixed
Tissite System (Promega,” Madison, WI), ChargeSwitch gDNA Micro Tissue
kit (Invitrogen,” Carlsbad, CA), PureGene (Gentra Systems,® Minneapolis,
MN), DNeasy Tissue kit (Qiagen”), and a phenol/chloroform extraction.
With the exception of the DNeasy Tissue kit and phenol/chloroform, the
extractions were done according to the manufacturer’s instructions. The
extractions done with the DNeasy Tissue kit and with phenol/chloroform
both were modified to include an initial incubation at 95°C for 15 min
followed by 5 min at room temperature as described previously (9), before
being digested with proteinase K for 3 days at 56°C in a rotating oven with
periodic mixing and fresh enzyme added each 24 h. A salt precipitation was
done on DNA from all five extraction methods.

DNA quality assessment and preparation. The extracted DNA was
quantified using UV spectroscopy at 260 nm. Random amplified
polymorphic DNA-PCR (RAPD-PCR; ref. 10) was done to assess the quality
of DNA and maximum fragment lengths as described previously using 50, 5,
or 0.5 ng DNA (11). Qiagen HotStarTaq was used, with 04 units per
reactions (Qiageng). Products were visualized with ethidium bromide on a
3% gel.

Preparation and application of DNA to the mapping arrays. Matched
fresh and FFPE samples were analyzed on the Affymetrix GeneChip Human
Mapping 10K v2 Xba Array and 50K Xba Array and prepared using the
Mapping 10K v2 Assay kit and the Mapping 100K Assay kit (Affj,vmetrix)10
The only exception to the manufacturer’s protocol was that 10 cycles were
added to the PCR cycling conditions for each FFPE sample.

Matched fresh tumor, FFPE tumor, and normal samples were assayed
using the Mapping 250K Nsp Assay kit and the Mapping 250K Sty Assay
kit'® and hybridized to the 250K arrays. The 500K assay was done according
to the manufacturers protocol, beginning with 250 ng DNA. Ninety
micrograms of PCR product were fragmented and labeled, using additional
PCRs when necessary for FFPE breast and colorectal samples.

Data analysis. Genotype calls were produced using the dynamic model
algorithm (12) by the Affymetrix GeneChip Genotyping Analysis Software
version 40. A stringent P value cutoff threshold of 0.26 was used.
Concordance was determined by calculating the number of: single
nucleotide polymorphisms (SNP) that gave the same call in both fresh
frozen and FFPE DNA from the same tumor and dividing this number by
the total number of SNPs that were called in both samples.

LOH predictions were produced using dChipSNP software (dChip2005_f4
version™; ref. 13). LOH values were inferred using the Hidden Markov Model
and restricting to SNPs on fragment sizes <700 bp.

Copy number estimates for ovarian tumor samples using 500K data were
determined by pairing tumor and matching normal samples in
CNAG_v20."% Nonpaired, nonmatching references were used for copy
number prediction of 10K and 50K data. Log 2 ratios were imported into
Spotfire DecisionSite (Spotfire,”® Somerville, MA) and the Affymetrix
Integrated Genome Browser for visualization and comparison. Copy
number estimates for breast and colon FFPE tumors were done using data
from 48 HapMap samples (available online'®) as a reference.

6 http://wwiv.promega.com

7 http://www.invitrogen.com

8 http:/ fwww.gentracom

° http:/ /www.giagen.com
 hitp:/ fwww.affymetrix.com

! http:/ fwww.dchip.org

2 http:/ /www.genomeumin jp/
3 hitp://www.spotfire.com

Estimated inter-SNP mean and median distances after exclusion of
fragment sizes >700 bp were determined by first calculating the distance
between all SNPs on each chromosome. Distances were then sorted per
chromosome in descending order and the largest distances (representing
centromeres) were removed for each chromosome, except for the
acrocentric chromosomes 13 to 15 and 21 to 22.

Pearson (linear) correlations were calculated in Partek Genomics Suite
(Partek,' St. Louis, MO).

Microsatellite analysis. Nine microsatellite markers were used to assess
LOH at three loci: chromosome 1q (D152816, D1S413, and DI1S1726),
chromosome 7p (D75691, D78670, and D752506), and chromosome 14q
(D1481011, D14S258, and D1451002). Regions were selected where array-
based LOH analysis showed discordant LOH results for fresh and FFPE-
derived DNA. The forward primer was labeled with a 5'-fluorescent dye
(FAM or HEX). The samples were analyzed using a 3130 Genetic Analyzer
(Applied Biosystems,15 Foster City, CA) with POP7 polymer. An assessment
of LOH was done using GeneMapper version 3.7. LOH was scored by
caleulation of the ratio of tumor DNA peaks (T1/T2) compared with that in
the normal DNA to give a relative ratio (T1/T2)/(N1/N2). A ratio of
0 indicates complete allele loss and a ratio of 1 indicates no LOH. A ratio of
<0.5 was scored as indicative of LOH.

Results

DNA extraction from FFPE tissue. Five DNA extraction
methods (phenol/chloroform, Qiagen DNeasy Tissue kit, Invitrogen
ChargeSwitch, Promega MagneSil, and Gentra PureGene) were
tested on consecutive sections from different FFPE ovarian tumor
biopsies. Phenol/chloroform and modified Qiagen protocols (see
Materials and Methods) provided the highest DNA yield as
determined by UV spectroscopy; these yields were 2.2 times more
than the average yield from any of the other three extraction
protocols (Fig. 14). RAPD-PCR, which uses primers of 10 bps to
produce a ladder of amplicons, was also done to assess both
amplification efficiency and maximum product size for each
extraction protocol (11). Compared with DNA extracted from fresh
Iymphocytes, the FFPE-derived DNA from all extraction methods
yielded consistently smaller PCR fragments, with a maximum
reliable size of ~ 800 bp (Fig. 14). Phenol/chloroform and modified
Qiagen extractions produced more intense and consistent PCR
fragments across dilutions, suggesting that products were relatively
free of contaminant inhibitors (Fig. 14). DNA extracted with these
two methods was processed through the PCR step of the Mapping
50K Xba Assay to further assess amplification efficiency. In this
test; the modified Qiagen extraction provided a slightly higher PCR
yield on average than the phenol/chloroform method (214 ug
compared with 192 pg) and was therefore chosen for DNA
extraction from FFPE tissues in this study.

Mapping 500K array performance. Five matched sets; each
containing (a) nontumor, non-FFPE lymphocytic DNA, (b) fresh
frozen ovarian tumor DNA, and (c) FFPE ovarian tumor DNA; were
assessed for performance on the Mapping 500K arrays. All five
FFPE samples had been stored for 3 years and provided average
RAPD-PCR maximum amplicon sizes from 526 to 800 bp. During
the PCR step of the Mapping assay, amplification products from all
five FFPE tumors were concentrated <700 bp, a fragment size range
that was reduced compared with non-FFPE samples (Fig. 1B).
Decreased yield from the Mapping PCRs (Table 1) accompanied the
decrease in amplicon size distributions. FFPE samples produced

1 http://www.partek.com
' http://wwiw.appliedbiosystems.com
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