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The smallest commonly deleted region encompassed —involved." Of note, two samples (TP166, TP34) har-
1.8 Mbp (chrl12:14746099-16521376) and contained 16 bored breakpoints directly upstream of the promiscuous
genes. This suggests that besides haploinsufficiency of  fusion partner ETV6, which is also heterozygously
CDKN1b, another tumor suppressor gene may be  deleted in these samples. This could be an indicator that

Table 2. Homozygous deletions: a list of all homozygous deletions detected in our data set and the genes affected.

TP168 8p23.2 4917841-4975677 No gene
TP25 20p12.1 14985065-15034862 MACROD2 (NM_080676.5) MACRO domain containing 2 isoform 1
TP34 $pl1.23 36923786-38959748 PLEKHA2 (NM_021623.1) Pleckstrin homology domain containing family A
HTR44 (NM_153692.2) HtrA serine peptidase 4
Spll2l 40000344-40066118 No gene
9pl2 42937610-43863673 No gene
9q31.1 102041415-102711737 BC038565
22ql1L.1 15962234-16119107 ILITR (NM_014339) Interleukin 17 receptor precursor
CECR6 (NM_03189%0.2) Cat eye syndrome chromosome region candidate 6
CECR5 (NM_033070.2) Cat eye syndrome chromosome region candidate 5
CECRI (NM_177405.1) Cat eye syndrome critical region protein 1
TP35 6q12 67068322-67105350 No gene, CAP
TP4 3pl3 71276619-71682261 FOXPI NM_032682.4 Forkhead box Pl isoform 1

Table 3. Regions of acquired uniparental disomy or allelic imbalance.

22691152 76598059 55.91

TPI66 17q11.1-q253 2
TP168 O 12q2133-q2433 2 91163204 132387995 41.22
2l 5q23.1-q23.2 2 115257555 123818130 8.56
17q11.2-q253 2 27219405 78595059 51.38
P28 4q133-024 2 70683042 102463716 : N
17q21.2-25.3 2 36854548 78595059 4171
TP s P10 ~ variable 30639901 105716979 6608
™37 2p25.1-22.3 2 7952368 32254818 2430
3p25.3-21.31 2 10996002 45379802 3438
3¢23-25.1 2 141171610 151356745 1019
3q28-29 2 191479491 197803570 632
13q31.3-33.1 2 90823104 102071466 1.25
20p13-12.3 2 169537 7213069 "
20p11.1-q13.33 2 26170699 60036558 3387
22q12.3-1331 2 35263007 43891222 8.63
P41 8p233-p12 2* 180568 36965267 36.78
11p15.4-q25 2 3568345 13437775 130.87
13q11-q34 2 18350972 114092950 9.7
17p133-pl1.2 2 18901 21459693 21.44
17024.3-25.3 2 68346414 78598059 1025
22q11.22-123 2 19767537 30681028 10.91
TP43 5q11.2-q13.2 2 57251185 71082801 13.83
P57 5q13.1-q14.2 2 67311044 82317258 15.01
16p13.2-p123 2 6822406 16884402 8.06
18422.3-q23 2 70382731 75795156 541
TP651 2p2l 2 42208606 46496503 429
20q11.21q11.23 3 30400408 35663935 5.26
20q13.12 3ord 43326890 45079291 175
20q1331-q13:32 3ord 54307144 56564113 2.26
20q13.33 3ord 59395065 62111653 272

Alist of all yegions of acquired UPD (i.e. loss of heterozygosity despite a genomic copy number of o) detected by molecula allelokaryotyping with 250K SNP anavs in
our TPLL samples. *occurned in a sample with tetraploidy.
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ETVe may be the target of these two deletions. As
reported for other hematologic malignancies, the pres-
ence of fusions involving the ETVe gene is often associ-
ated with a deledon or lack of expression of the other
ETVé allele.”

A common heterozygous deletion on chromosome 13

occurred in six samples (33%) measuring 1.5 Mbp
(chr13: 48879065-50392988). This region is commonly
deleted in chronic lymphocytic leukemia and contains
two microRNA (miR-15a and miR-16-1),” which regulate
a significant number of cancer-related genes.”
Chromosome 17 often has genomic alterations in can-
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Figure 3. Validation of copy humber analysis and acquired UPD. (A) Copy number results obtained by SNP arrays were validated by per-
forming quantitative real-time PCR on genomic DNA of samples containing putative deletions of the FOXP1 gene. Chromosome views
of chromosome 3 are displayed. In sample TP04, FOXP1 was putatively homozygously deleted (left image, FOXP1 locus = copy number
0, adjacent regions = copy number: two), while in sample TP41, FOXP1 was deleted heterozygously in a tetraploid setting (right image,
FOXP1 locus = copy number: two, adjacent regions = copy number: four). Quantitative real-time PCR in the corresponding T-PLL sam-
ples and their matched normal DNA confirmed the copy number states estimated by the allelokaryotyping software. (B) Acquired UPD
detected by SNP arrays was validated using sample TP28 on chromosome 17. The chromosome view of chromosome 17 in sample
TP28 is depicted. Acquired UPD is present on chromosome 17¢q, as visualized by the divergence of the estimated allele specific copy
number (red and green lines in the lower panel of the image), indicating the duplication of one allele and concomitant loss of the other
allele and loss of heterozygosity, as evidenced by the abrupt absence of heterozygous SNP calls (vertical green bars directly below the
cytoband image). Chromatographs of sequenced SNPs within the acquired UPD region and the adjacent heterozygous region in T-PLL
DNA (TP28) and matched normal DNA (paired normal DNA) show that SNPs were homozygous in the T-PLL sample in the acquired UPD
region and heterozygous in the matched normal DNA. In the adjacent region, which did not display acquired UPD, the sequenced SNPs
were heterozygous in both T-PLL and matched normal samples. Quantitative real-time PCR confirmed a copy humber state of two in all
regions sequenced in each of the samples.
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cer. In total, chromosome 17 was affected by deletion,
amplification or acquired UPD in 12 samples. Regions
of chromosome 17p were heterozygously deleted in
seven cases and affected by an acquired UPD in sample
TP41, which featured tetrasomy of most of its chromo-
somes but showed a copy number of two with deletion
of one allele on chromosome 17p. Therefore, eight sam-
ples (449) showed loss of heterozygosity of various
lengths on chromosome 17p and in five of these sam-
ples, the tumor suppressor p53 was contained in the
affected regions.

Chromosome 17q was affected by heterozygous
deletions in five samples (TP22, TP34, TP35, TP4 and
TP799) and acquired UPD in four samples (TP21, TP28,
TP166 and TP41) and therefore exhibited loss of het-
erozygosity in nine cases (50%). The smallest common-
ly deleted region spanned 4.87 Mbp (chrl7: 73729578-
78599918) and contained potential target genes such as
baculoviral IAP repear comaining protein 5 (BIRCS) and sup-
pressor of cytokine signaling 3 (SOCS3). Of special interest
is the recurrent acquired UPD or allelic imbalance in this
region in four samples. In total, 30 regions of acquired
UPD were detected in all samples (Table 3); among
these, the acquired UPD observed on chromosome 17q
was the only recurring acquired UPD lesion.

Of note, the starting point of acquired UPD of one
sample (TP28) lies in the 17¢21.2 region which contains
the sigial trausducer and activator of transcription genes
STAT5 A/B and STAT3, which are key factors in malig-
nant transformation.”

Like chromosome 17, chromosome 22 was also com-
monly affected by loss of heterozygosity either by het-
erozygous deletion or acquired UPD. Seven T-PLL sam-
ples had heterozygous deletions of chromosome 22,
with the smallest common lesion measuring 7.4 Mbp
(chr.22: 22180211-29584212); two further samples
(TP37 and TP41) displayed acquired UPD in the region,
so that nine samples (50%) displayed loss of heterozy-
gosity on chromosome 22, making this another interest-
ing site for screening for mutated tumor suppressor
genes.

Validation of copy number changes
and acquired uniparental disomy

Copy number changes, loss of heterozygosity and
acquired UPD detected by high density SNP arrays and
molecular allelokaryotyping® have been validated
extensively by alternative methods in previous stud-
ies.”"' In the current study, we confirmed copy number
results by quantitative real-time PCR on the genomic
DNA of the putatively deleted region and the adjacent
region to the lesion in patients and matched normal
samples in accordance to a method specifically designed
to analyze genomic DNA by real-time PCR.* We con-
firmed a homozygous deletion of the FOXP/ gene on
chromosome 3p in sample TP4 and a heterozygous
deletion of this gene in sample TP41 (Figure 3A).
Acquired UPD was confirmed on chromosome 17 in
sample TP28 by sequencing SNPs in the region display-
ing acquired UPD as compared to the adjacent het-
erozygous region on the same chromosome (Figure 3B).

Discussion

In this study, we aimed to utilize the increased inter-
rogational power of high density SNP arrays and molec-
ular allelokaryotyping™ to refine the understanding of
known genomic lesions and discover new ones present
in the malignant cells of patients with T-PLL. With high
quality genomic DNA from 18 T-PLL patients analyzed
by 250K SNP arrays, this study currently represents the
most detailed genomic examination of this hematologic
malignancy.

In a first step of analysis, we sought to re-evaluate
established molecular hallmarks of T-PLL. By doing
this, we demonstrated that the well-known disrup-
tions of chromosome 14, inv(14)(q11¢34) or t(14;14)
(q11;q32),""*" are often unbalanced, indicating excess
copies of the involved chromosome 14 fragments.

We refined knowledge of the breakpoints leading to
characteristic abnormalities on chromosome 8" at a
submicroscopic level and showed that they were often
of a highly complex nature. Although a common break-
point was not identified for all these cases, certain genes
were recurrently and directly involved in breakpoints in
several samples. PLEKHA2 is an adaptor protein with a
pleckstrin homology domain involved in signaling after
activation of lymphocytes.” Nibrii isofor 2 (NBN), the
Nifiegen Breakage Syndrome protein is an important mem-
ber of the DNA breakage recognition and repair complex
consisting of Mret4, Rad50, Nbst and ATAT" and was
disrupted in one of the few samples that did not exhibit
an ATA deletion (TP25). Nephroblastoma overexpressed
precursor (NOV) is a critical regulator of human
hematopoiesis™ and ATYST listone acetyltransferase mono-
avtic (MYST3) is a histone acetyltransferase commonly
involved in translocations in acute myeloid leukemia.*
All these genes are, therefore, interesting targets for fur-
ther analysis in the respective samples.

Deletion and mutation of the AT gene is so far the
only target gene identified in the commonly deleted
region on chromosome 11 in T-PLL and other hemato-
logic malignancies.””" The presence of a second tumor
suppressor has been hypothesized in this region.™
Indeed, several other small circumscribed lesions similar
to the focal ATAI deletions were found on chromosome
11. The micro RNA fisa-mir-34b and hsa-mir 34¢c were
involved in heterozygous deletions in a total of eight
samples. Hsa-mir-34b and lisa-mir 34¢ are induced by p353
and are important regulators in p33-dependent path-
ways" and may represent interesting targets, as reduced
expression of miR-34s has been found in several
tumors.””* Furthermore, the oncogenes ETS/ and FLI/
were encompassed in small confined deletions in two
samples. Disruption of both of these genes has been
determined to be an initiating event in malignant trans-
formation of hematologic diseases and solid tumors.™*

In the subsequent search for new common genomic
lesions in T-PLL, the FOXP/ gene was detected in a small
homozygous deletion in one sample and was heterozy-
gously deleted in two other samples. FOXP1 is a mem-
ber of the FOX family of transcription factors and is
involved in the development of the heart, lungs and lym-
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phocytes.” Deletion and loss of expression in breast can-
cer confers a worse prognosis® and this gene is targeted
by recurrent chromosome translocations in mucosal-
associated lymphoid tissue (MALT) lymphoma.* We
confirmed the deletion of this gene by quantitative real-
time PCR. Although screening for mutations of this gene
in samples containing heterozygous deletions showed no
alterations in this respect, the FOXP1 gene could also be
involved in a fusion gene, as recently detected in acute
lymphoblastic leukemia.” The underlying mechanism
for accumulated gene fusions in T-PLL could be increased
aberrant V(D)] recombination due to mutation of the
ATAT gene.” The concept of perturbed V(D)] recombina-
tion has recently also been shown to be responsible for
common deletions of the Jkaros gene in Philadelphia
chromosome-positive acute lymphoblastc leukemia.™
Newly detected common lesions with recurrence in six
or more samples were found on chromosomes 5p, 12p,
13q, 17 and 22. Loss of heterozygosity, either by het-
erozygous deletion or acquired UPD, in nine of 18 sam-
ples on both chromosome 17 and chromosome 22 sug-
gests common lesions specific to T-PLL. Loss of chromo-
some 17p is a common phenomenon in chronic lympho-
cytic leukemia; it is known to confer a worse prognosis
and bad response to chemotherapy, possibly through dis-
ruption of the 753 pathway.” However, loss of heterozy-
gosity of chromosome 17q at such high frequency has
not been reported for leukemic diseases. This finding
was further corroborated by the observation of a com-
mon region of acquired UPD in four of our samples on
chromosome 17¢. UPD can either arise through several
mechanisms at the level of the gametes such as trisomy

rescue, compensatory UPD or gametic complementation
or can develop dué to a somatic recombinational event.*
The UPD regions detected in our experiments are most
probably acquired isodisomy that evolved due to somat-
ic recombination events shown in our validation of
acquired UPD, which demonstrated that loss of het-
erozygosity was only detectable in the tumor sample but
not in the matched control. While acquired UPD has pre-
viously been described as a new genomic lesion in T-
PLL," this is the first study to report a recurting (n=4)
acquired UPD lesion on chromosome 17¢.

In conclusion, the use of high density SNP arrays to
genotype T-PLL has refined our knowledge of established
genomic alterations and revealed numerous new candi-
date lesions by directly pinpointing affected genes for
ongoing functional studies to elucidate the pathogenesis
of T-PLL.
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1. Introduction

Microarray technology' has been applied to predict
prognosis of cancer patients by comparing gene
expression profiles in cancer tissue samples, and its
predictive power has been demonstrated for many
types of cancers.”” The prognosis prediction systems
based on microarrays have been expected to be new
cfficient bio-markers that enable personalized cancer
medicine.® We consider, in this paper, two problems
in expanding the use of microarray-based prediction
systems in real clinical scenes, namely, observation
cost and reliability.’

To reduce the observation cost without losing
reliability, there have been several efforts to design
diagnosis systems involving small numbers of
specially  selected genes. Recently, specialized
diagnostic microarrays harboring small numbers of
genes, to say tens or hundreds genes, are developed
based on a supervised analysis with a dataset taken by
a full microarray system involving thousands or tens of
thousands of genes.**’ Measurement cost per patient
becomes smaller by reducing the number of genes that
is involved in such a system. If number of spots on a
chip is fixed, more spots corresponding to a single
gene can be included in a chip, which enables more
reliable measurement by averaging multiple spots
of same genes, and/or more efficient measurement
by diagnosing multiple patients simultaneously in
a single chip.® Manufacturing cost of a chip can be
reduced by designing mini-chip harboring small
number of spots.®

To achieve a reliable predictor, a well-known
trade-off problem exists even if the above-mentioned
issue of observation cost is omitted; we should
select as large a number of informative genes and
as small a number of non-informative genes as
possible. We often need a certain number of genes
to gain prediction accuracy, partly because multiple
informative genes tend to provide different kinds of
information which are complementary to each other
for the prediction, and partly because, even when a
set of multiple genes provides identical information,
observation noise can be reduced by averaging them.
On the other hand, since the prediction error increases
when non-informative genes are included, we need to
reduce the number of non-informative genes, putting
the observation cost aside. These two demands are a
trade-off because the process of determining whether

cach gene is informative or non-informative itself is
not always rcliable enough, due to non-negligible
noisc and a limited number of observations.

In summary, our goal can be stated as to achicve a
reliable predictor based on as few genes as possible,
which is accomplished in a supervised analysis with
the following three processes:

a gene sclection process,
a supervised learning process that constructs
predictors based on a labeled set of expression
data of the selected genes, and

e anassessment process for the constructed candidate
predictors.

There have been many options proposed for
the first two processes, and comparisons of their
combinations were made from the viewpoint of
prediction error rates on test datasets, namely
generalization performances.'®!" In the present study,
we use the following two procedures that were applied
in the previous study.”?

e Weighted voting (WV) classifier’ with gene
selection based on absolute t-score (T-WV)

e Linear-kernel support vector machine (SVM)™
with recursive eclimination of genes that have
the smallest contribution to current classification
performance (R-SVM)."3

These procedures construct multiple candidate
predictors with various numbers of genes included
in the predictors. Since their prediction performances
for independent test datasets depend on the number of
genes, their assessment is crucial.

In the assessment process, the prediction
performance of each candidate predictor is estimated
based on the training data, and good estimation is
obtained by reducing the estimation bias and the
variance. Since the true performance on independent
data in the future is unknown, we should select the
best predictor with less bias and smaller variance
of the estimated performance. In general, the
bias-variance trade-off problem is inherent to all
statistical models used for prediction, especially
in the classification framework.'“!” For prognosis
prediction by microarray, several past studies focused
on reducing the estimation biases of the prediction
error rates in determining the best model'™° because
inclusion of biases could lead to over-estimation of
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the classification performance of the proposed system.
The cross-validation (CV) technique is used widely
for predicting true classification error rate in samples
that are not included in either the training or the test
sample sets. Among the CV methods, the leave-one-
out cross-validation technique (LOQO) is often used
because of its small bias."”® These studies, however,
paid little attention to the variances of estimated
classification error rates.

The estimated variances in the assessment process
are important for practical applications. Even if a
classifier has a sufficiently low error rate accompanied
instead by large variance in prediction, it suffers from
a high risk of having a large actual error rate when
applied to unknown test samples.” The LOO criterion
sometimes selects a classifier involving a very small
number of genes, or even a single gene. Although the
single-gene classifier fits the “as few genes as possible’
criterion, classifiers involving redundant genes tend
to exhibit lower noise and provide better prognosis.’
Several recent methods consider the estimated error
rate variances,” €t

> and unsupervised methods*** also
minimize the variance of the model by focusing on the
stability of the signatures instead of on the supervised
class labels. However, there has been no discussion
from the viewpoint of mini-chip design, namely, to
explore a reliable predictor based on as few genes as
possible.

In the present study, we consider both the bias and
the variance of performance estimationso astoachieve
a reliable predictor. We applied a bootstrap sampling
method to estimate the distribution of possible error
rates, with bias and variance, and propose a min-max
criterion to obtain a stable classifier. We conducted
a simulation study and found that the min-max
criterion tends to sclect better candidate predictors
than the LOO criterion, especially when the number
of samples is small. We then compared two supervised
analysis procedures, T-WV and R-SVM, and showed
that T-WV achieves reliable predictors with a small
number of genes, indicating that T-WV with the min-
max criterion is desirable for our purpose of obtaining
a reliable predictor with as few genes as possible.

2. Methods

2.1. Notations
Letxr= 0 xl.") be a vector of the M-dimensional
gene expression profile of the i-th sample, and y,

a binary class label y € {-1,1} representing the
binary status of the i-th sample, for example, tumor or
non-tumor. The numbers of samples in the negative
(v, = —1) and positive (v, = 1) classes are denoted
as n and n, respectively. Suppose that we have a
dataset D = {d |i = 1, ..., N} including N samples,
where d = (x, ) is a pair of input (expression) and
output (class label) of the i-th sample. By applying a
supervised machine learning method to the dataset D,
we construct a discriminant function A(x | D) such that
we predict a label P(x”) for a new input x’ by

(1 if Ax'|D)20
y(”_{—l it Ae|Dy<o. O

2.2. T-WV method

The WV method is a typical supervised machine
learning method that employs the top & significant
genes. Since the significance of the j-th gene is
defined according to the following t-score, the entire
procedure is referred to as the T-WV method,

t, =_)ﬂv'_:’£'z___, )
JU/n +1/n, S,

where X, and X, arc the average expression levels
of the j-th gene over the training samples labeled 1
and —1, respectively, and .S'/.2 is the pooled within-class
variance of the j-th gene,

= 32 = A2
sz_=2i:y.'=-1(xy ik D Gy 20 Q)

n,+n,—2

The genes are ranked according to the absolute
value of [7|, and the top-ranked & genes are selected
as significant genes so that the set of these genes is
denoted as C,. The discriminant function obtained by
the T-WV method is then constructed as

1 s
h(x| D)=~ Y, t(x,~%)), (4)

JeCy

where x; = le"’ x; is the average expression level of
the j-th gene'in the training samples.

In the discriminant function 4, the difference
between the j-th gene expression and its average is
weighted by its significance, i.e. the t-score. Note that
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the function /2, depends on the number £ of significant
genes, and thus we need to specify & appropriately.

2.3. R-SVM method

R-SVM isanothertypical supervised machine learning
method, which was developed to select important
genes for SVM classification.”” An R code package
is publicly available at http://www.hsph.harvard.edu/
bioinfocore/R-SVM.html. The discriminant function
of a lincar SVM is defined as

N
h(X'|D)=(w-x")+b= ay,(x;-x)+b, (5)

i=1

where x'is a new input expression vector and x; is the
i-th sample expression vector in the training dataset.
o, and b are parameters to be determined so that training
data points with different class labels are classified
with the largest margin. x-x’= X7 x x’, denotes the
inner product. Each element of w, w, is defined as

w; = Za}yixij’ (6)

i=1

the absolute value |w| of which represents the
significance weight of the jth gene in the current
discriminant function.

As in the T-WV method, the classification
performance of SVM also depends on gene subset
selection. R-SVM applies a recursive feature
elimination (RFE) procedure.”’” In RFE, less
significant genes in the current discriminant function
are recursively eliminated, and the next discriminant
function is constructed based on the new, smaller set
of genes. Consequently, a sequence of discriminant
functions with decreasing numbers of genes is
constructed. Thus, the prediction performance of each
discriminant function 4, depends on the number & of
significant genes, which causes the same problem as
in T-WV, i.e. setting an appropriate number 4. In the
following section, we describe a common way to set
the number of genes in both T-WV and R-SVM.

2.4. LOO model selection

T-WV and R-SVM, both produce many candidate
classifiers, from which we should select the best one by
an assessment process. Although the true performance
of a classifier is measured as classification accuracy

on an unknown dataset given in the future, we should
instead estimate the performance using the dataset
obtained in the assessment process. Note that we
refer to each candidate in the assessment process as a
model, to clarify that we are assessing all procedures
used to construct a classifier rather than assessing
solely the classifier. In T-WV and R-SVM, a model is
characterized by the number of significant genes that
it includes.

The LOO procedure has been widely used to
estimate, or predict, the future performance of a
classifier. In LOO, a classifier / is built using cach
leave-one-out dataset D7, i = 1, ..., N; that is, the i-th
sample d, is excluded in the training procedure from
the dataset D, and becomes a validation sample. The
classification performance of / is assessed using the
validation sample. After the assessments ford,, ..., d,,
the LOO error rate of the classifier A, Gl Oo(h | D), is
calculated as the averaged error rate

1 & .
Gioo(h| D)= ﬁzl(y,-h(x,- | D) <0), (7)
i=1

where /(R) denotes the indicator function that takes
a value of one if condition R holds, and is otherwise
zero. When we select the number £ of significant
genes by

o= argim'n GLoo (A, | D), (8)

this model selection is said to be based on the LOO
criterion.

2.5. Resampling bootstrap method

It is known that the error rates used to estimate
the LOO procedure are nearly unbiased. Molinaro
et al'™® compared estimated generalization error rates
between different resampling methods and showed
that LOO had the smallest bias for a simulation dataset
and a real microarray dataset. However, LOO has a
tendency to include large variance, despite its small
bias,” because classifiers constructed based on the
leave-one-out datasets, D7, are quite similar to each
other, whereas the data points used for validation vary
widely. The large variance of the error rate estimation
leads to a high risk of selecting a classifier whose
‘true’ performance is poor, and this risk becomes
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higher as the number of candidates becomes larger.
When we assess the performance of many candidate
classifiers with large variances, some of the candidates
often exhibit remarkably low errors, even if their true
performance is poor. This is the same problem as
overfitting, which was originally found in parametric
learning especially when there are many parameters
to be learnt. Therefore, it is important to reduce the
estimation variance to obtain a robust classificr.

We applied a bootstrap method to simulate
possible variation of the given dataset and to obtain
the distribution of LOO error rates over the range
of that variation. We generated bootstrap datasets
{D* | b =1, ..., B}, in which each bootstrap dataset
is defined as

D" ={d* =(x",y")|r=1. ., N-1}, = (9

where d”’ is randomly sampled with replacements
from the LOO dataset D" The single validation sample
d, is evaluated by the classifiers that were trained by
different datasets D*, leading to a set of LOO error rates:
Gioo(B | D), Gioo (M2 D™ )y is Gioo (B | DY )

b=1,..., B,is given by Eq. (4) after replacing the
dataset D with the bootstrap dataset D*. This set of
LOO error rates is considered to be a distribution of
G and provides a guideline to determine the number

LOO

of genes used in the T-WV classifier.

2.6. Min-max model selection

Using the simulated distribution of LOO error rates,
{Goo(h" | D™)},.,, we defined a risk score called
a min-max criterion,

Gooor (1, | D) =Per95({G,oo (B" | D™)}r, ),  (10)

where ‘Per95’ denotes the 95th percentile of the set of
values. Based on this risk score, an appropriate model
(i.e. the number of genes, k) is selected as

W =argmin{Gyoo (| D)}. (1)
k

We considered the 95th percentile with the number
of bootstrap B = 100 as the representative of possible
high error rates for each model with different numbers

of genes. The 95th percentile is a robust criterion to
estimate the risk of selecting a bad model against
the possibly asymmetric nature of the error rate
distribution.

Our approach is referred to as the “min-max”
selection criterion because we minimized the risk of
sclecting a model for which the expected prediction
error rate was almost the maximum in the distribution
of possibilities. This min-max model selection is
likely to refuse classifiers for which the estimated
error rates are distributed with a large variance, even
if LOO shows the lowest error rate from a single
dataset. Therefore, the min-max criterion reduces the
instability stemming from the variation of possible
future datasets that could be simulated by random
sampling from a large pool of samples.

In other words, the min-max criterion assumes an
underlying game between an analyzer and nature.
A dataset is given by nature, and a model is selected
by an analyzer. For the analyzer to achieve stability,
one good idea is to minimize the risk (Eq. (11)),
which stems from the possibility that nature could
provide a bad situation (and hence the classifier has
been over-trained) (Eq. 10).

The number 95 of the percentile and number of
bootstrap B = 100 were determined arbitrarily by
considering trade-offs between computation time,
estimation variance of the percentile point, and
appropriateness as a representative of high error rates:

e The computation time is proportional to the number
of bootstrappings.

e Estimation variance is a monotonic function of
both the percentile number and the number of
bootstrappings. Namely, the variance becomes
large as the percentile number diverges from 50
and as the number of bootstrappings is small.

e The criterion should evaluate possible high error
rates even when the distribution of bootstrap
samples is asymmetric,

We did not select the 50th percentile, i.e. the
median, because of the third reason above; we
attempted to obtain a safe classifier rather than to
show good average performance. Although the 99th
percentile could be another representative of possible
high error rates, we rejected it, because it relies on
1% of bootstrap samples, and will therefore lead to
high variance especially with small B. The estimation
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variance of each percentile of the bootstrap error rate
can be evaluated in terms of the standard deviation
of the corresponding order statistic if the distribution
of crror rates is known. Table 1 shows the standard
deviations (SDs) of several percentiles when the
distribution of error rates is a standard normal
distribution. These SDs are proportional to the SD of
the distribution of error rates, implying that the SDs
of the percentiles can represent their variation well
even for non-normal distributions.

3. Results

3.1. Results for real datasets
We evaluated our method using four published real
gene expression profile datasets:

e Breast cancer
van’t Veer etal® obtained gene expression
microarray data for approximately 5,000 genes for
78 + 19 breast cancer tissue samples. The samples
were classified into favorable and unfavorable
samples: patients with recurrence-free survival
in five years and those with recurrence in five
years, respectively. The authors trained supervised
classifiers using 78 samples (34 favorable and
44 unfavorable samples), which we call the
training dataset, and tested using 19 independent
samples (7 favorable and 12 unfavorable samples),
which we call the test dataset. The same group also
providedalargerdatasetconsistingof295samples.”
Among the 295 samples, 32 samples were also
included in the former dataset' and 10 samples
were censored in five years; hence, we used the
remaining 253 (192 favorable and 61 unfavorable)
samples for the second test dataset.
e (Colon cancer

The colon cancer dataset’ contains microarray
expression data for 2,000 genes for 62 colon tissues.

Table 1. Estimated standard deviations of bootstrap
percentiles. Bold type marks the setting which we used in
the current study.

B =100 B=500  B=1000
99th 0315 0171 0.120
95th 0.216 0.095 0.067
90th 0.172 0.077 0.054

50th 0.125 0.056 0.040

Among the 62 tissue samples, 40 and 22 were
labeled as “tumor” and “normal,” respectively,
and these were used as the labels to be predicted.

e Neuroblastoma (NBL)
The NBL dataset® consists of microarray
expression data for 5,180 genes for 136 patients.
Among the 136 samples, 25 and 102 were labeled
as ‘“favorable” and ‘“unfavorable” patients,
respectively, according to their status at 24 months
after diagnosis, and these were used as the labels
to be predicted. The remaining nine samples of
unknown status at 24 months after diagnosis were
omitted.

e Breast cancer Affymetrix (Affymetrix)
Wang et al*! analyzed 286 breast cancer patients
with an Affymetrix chip harboring 22,283 genes.
Among the 286 patients, 183 and 93 were labeled
as favorable and unfavorable, respectively, and
these were used as the labels to be predicted. We
omitted 10 samples which were censored in five
years. Although this dataset concerned breast
cancer, we did not consider relationship between
this set and the breast cancer datasets at the top of
this list because these two datasets were assembled
by entirely different systems and hence had fairly
different characters in distribution. Considering
different systems of microarrays together may be
an important issue, but is beyond the scope of the
current study.

For each of the above four datasets, we trained
T-WV and R-SVM classifiers with various numbers
of genes using the training samples, and assessed
their classification errors in terms of LOO, 3-, 5- and
10-fold-CV, and min-max criteria. In the case of
the breast cancer dataset with large numbers of test
samples,** we also assessed their classification errors
in the test datasets.

Figure 1 shows the results for the breast cancer
dataset. The results with the T-WV classifier (left
panel), indicated characteristic behaviors of the
three criteria to assess the classification error rate,
LOO (dashed line), 3-fold-CV (dotted lin¢), and the
proposed min-max criterion (solid line at the top of
the blue arca). The 90% interval of LOO error rates
(blue area), which was estimated by the resampling
bootstrap method, describes the estimation variance
of error rates. The LOO error rate profile showed the
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Breast cancer: cross—validation error profile of T-WV

Breast cancer: cross—validation error profile of R-SVM
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Figure 1. Estimated classification errors in the breast cancer dataset. The left and right panels show the results obtained with the T-WV and R-SVM methods,
respectively. The vertical and horizontal axes denote classification error rates estimated by various criteria and the number of genes included in each
classifier, respectively. The 90% interval of resampling bootstrap of the estimated classification errors at each number of genes is denoted by blue areas.
The classification errors estimated by the three criteria, min-max criterion (solid line on the top of blue area), LOO error rate (dashed line), and 3-fold-CV
error rate (dotted line), are plotted against different numbers of genes. Vertical lines indicate the numbers of genes selected by the three criteria.

lowest value with a small number of genes, k = 1, so
that k£ = 1 was selected as the best number of genes
by the LOO criterion. On the other hand, the 90%
interval of the bootstrap distribution at k= 1 exhibited
a large width in the error rate, and the 95th percentile
error rate was above the chance level 0.5, suggesting
large risk of the & = 1 classifier falling into a poor
predictor around the chance level. Also, the LOO
error rate at k = 1 was below both the 5th percentile
and the 3-fold-CV error rate, indicating that the low
LOO error rate at k = 1 could have been obtained by
chance. The 3-fold-CV showed a smoother profile
than those obtained by the LOO, and stayed in the
midst of the 90% interval. The 3-fold-CV criterion
selected a classifier with &£ =5 where the 90% interval
was narrower than that at £ = 1. We also calculated
5- and 10-fold-CVs and observed similar curves
to that of the 3-fold-CV. The proposed min-max
criterion, i.e. the 95th percentile, selected a larger
number of genes, & = 590. The LOO and 3-fold-CV
error rates at k = 590 were higher than those at k= 1
and k = 5; however, we expected that the classifier
of k£ = 590 would have a lower risk of being a poor
predictor than those at k=1 and k = 5.

In the right panel of Figure 1, a similar comparison
is shown between LOO, 3-fold-CV, and the min-max

criteria with the R-SVM classifier. The LOO criterion
showed an instability similar to that of T-WV, so
that the lowest LOO error rate at &k = 376 seems to
have been obtained by chance. All criteria selected
larger numbers of genes than in the cases of T-WV
classifiers.

In Table 2, test error rates of the selected
predictors were assessed using two test datasets
with 19 and 253 samples, where five criteria (LOO,
min-max, and 3-, 5- and 10-fold-CVs) with two
classifiers (T-WV and R-SVM) are compared. The
min-max criterion outperformed the other criteria,
LOO and k-fold-CVs, on both test sets. The LOO
exhibited poor performance with 19 test samples
and worse with 253 test samples whose test error
rate was around the chance level. Intuitively, this
result pointed out a defect of the LOO criterion in
terms of the risk of taking a poor classifier, which has
already been suggested by the 90% interval shown
in Figure 1. The 3-, 5- and 10-fold-CVs achieved
better performance in test error rates than LOO, but
worse than the min-max criterion. T-WV tended to
exhibit lower error rates than R-SVM with smaller
numbers of genes, although we cannot conclude the
general superiority of T-WYV based on this single
example.
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Table 2. Selected numbers of genes and corresponding test error rates in the breast cancer dataset with LOO, min-max,
and k-fold CVs assessed by two test datasets with 19 and 253 test samples.

T-WV R-SVM

#Genes  Test19  Test253 #Genes Test19  Test 253
Loo 1 0.2105 0.4862 376 04737 04664
min-max 590 0.1578 0.2925 4,833 0.4211 0.3992
3-fold 5 0.3158 0.3992 4,833 0.4211 0.3992
5-fold 2 0.2632 0.4071 626 0.6316 0.5217
10-fold 1 0.2105 376

Test error rates on 253 samples were significantly
worse than the error rates on 19 samples, possibly for
the following reasons:

e The 19 samples were by themseclves casily
classified.

e The number of samples (19) was too small to

reproduce the error rate with low variance.

The test data of 253 samples were gathered from

different populations from those for the training

data of 78 samples and the other test data of

19 samples.

e The microarray measurement system differed
between the two sets of data.

The considerations above will be important when
designing mini-chips based on training datasets.
Although the last reason, difference in microarray
systems, may not be very serious in the case of this

Colon: cross-validation error profile of T-WV
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breast cancer dataset, it would be serious in the case
designing a mini-chip, because differences between
systems will probably be inevitable due to the
reduction of system size from a full-size chip to a
mini-chip.

We compared three criteria, LOO, min-max,
and 3-fold-CV, with the two classifiers T-WV
and R-SVM on the other three datasets (NBL,
colon cancer and breast cancer Affymetrix) in
Figures 2, 3 and 4, respectively. From the total
comparisons over Figures 1-4, we observed the
following tendencies:

e Although the error rates estimated by LOO
fluctuate as the number of genes increases, they
stay mostly within the 90% interval. This suggests
that the LOO estimation of the tuned number of
genes includes a large variance and the character

Colon: cross—-validation error profile of R-SVM
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Figure 2. Estimated classification errors in the colon cancer dataset. See Figure 1 legend for details.
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NBL: cross—validation error profile of T-WV

NBL: cross—validation error profile of R-SVM
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Figure 3. Estimated classification errors in the NBL dataset. See Figure 1 legend for details.

Figure 4. Estimated classification errors in the Affymetrix dataset. See Figure 1

of the variance is well captured by the estimated
90% interval.

In contrast to the fluctuating profile of LOO error
rates, the profiles of the 3-fold-CV and the 95th
percentile (G ) exhibit smoother curves. This
suggests a more stable character for the 3-fold-CV
and the min-max criterion than the LOO criterion.
With T-WYV, the 90% confidence interval was
likely to be wide when the number of genes was
small, & <10, indicating that prediction based
on too few genes is risky; we occasionally get a
model with poor performance. The 95th percentile

Affymetrix: cross—validation error profile of T-WV

is likely to show a higher error rate for a smaller
numberof genes, e.g. k£ < 10, than for a large number
of genes. Thus, the min-max criterion based on the
95th percentile can avoid risky prediction so that a
smaller error rate is achieved on average.

The 3-fold-CV profile stayed almost in the middle
of the 90% interval and showed a similar curve to
the 95th percentile. However, there was difference
between the 3-fold-CV and the 95th percentile in
the range of 90% interval, which was prominent
in T-WV with small numbers of genes, & < 10.
The 3-fold-CV and the min-max criterion lead

Affymetrix: cross-validation error profile of R-SVM
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to different numbers of genes being selected;
relatively large numbers of genes are selected
by the min-max criterion in comparison to the
3-fold-CV.

e In the case of T-WV, the 90% interval was likely to
be narrow for datasets with large sample sizes. The
numbers of training samples were 78, 62, 127 and
276, and the widths of the 90% interval were about
0.15, 0.15, 0.1 and 0.07, for breast cancer, colon,
NBL and Affymetrix datasets, respectively.

e In the case of R-SVM, LOO profiles fluctuated
more than those of the min-max criterion, as well
as with T-WV, suggesting that the min-max is a
better model selection criterion than the LOO
criterion.

e Whereas the best performance was comparable
between R-SVM and T-WYV, a larger number of
genes was required to achieve the best performance
by R-SVM than by T-WV. Thus, T-WV employing
a relatively small number of genes is more
suitable for practical clinical applications, which
is consistent with a previous finding."

e The confidence intervals for R-SVM were likely
to be narrower than those for T-WV, implying that
SVM, as a large margin classifier, is more stable
against observation noise than T-WV. Even though
we are not interested here in classifiers with a large
number of genes, say & > 1,000, this finding may
be important for applications other than mini-chip
construction.

e The Affymetrix data set was unbalanced, with the
numbers of favorable and unfavorable samples
being 183 and 93, respectively. This suggests that
the error rate would become 0.34 if every label
prediction is called favorable, which actually
occurred for R-SVM with & < 10. Therefore, the
narrow confidence interval in such a case did not
correspond with stable prediction.

The experiments showed that a reduction of risk is
achieved by the proposed min-max criterion, and this
was particularly convincing in the breast cancer dataset.

3.2. Simulation study on synthetic

datasets

In the previous section, we tested our new criterion
on four real datasets; however, the ground truth was
unknown and the number of samples was limited in
many cases, which prevented us from obtaining strong

evidence for the superiority of the min-max criterion.
We conducted a simulation study based on artificial
datasets to prepare a sufficient number of test samples,
which will be more realistic in future clinical studies.

We randomly generated expression profiles
for 2,000 genes, where 30 out of the 2,000 were
differentially expressed (DE) between two classes
of samples and the others were not (non-DE). For
non-DE genes, expression levels were generated
from a normal distribution with mean zero, N(0,1),
and for DE genes, the expression levels of samples
with positive and negative class labels were generated
from N, 1) and N(—p, 1), respectively, where we
set 1t = 0.5 for all DE genes. By this process, we
generated synthetic datasets of 20 to 150 samples
for training, and 1,000 samples for testing, where the
numbers of samples with the two class labels were set
to be equal.

The proposed simulation scheme is illustrated
in Figure 5. For each training dataset, the candidate
classifiers involving various numbers of genes were
trained and assessed, and the best numbers of genes
were selected by the LOO and the min-max criteria,
where the number B of the bootstrap in the min-max
procedure was set at 100. The performance of the
finally selected classifier was then assessed by a test
dataset with 1,000 samples. We repeated this process
with a randomly generated training dataset and
assessed the corresponding test error rates by using
a test dataset of 1,000 samples. The distributions of
the test error rates were compared between different
conditions.

We designed the above setting to clarify how well
the min-max criterion improves the model sclection.

Simulation scheme

Test dataset

1,000 samples

Training dataset

20-150 samples

Classifier | Weighted voting

LOO model selection

BOOT
E‘

Min-max model selection

Figure 5. Setting of the simulation experiment.
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The number of test datasets was sct sufficiently
large, and is commonly used in various settings of
the other features to reduce the variance of error rates
that stems from random sampling of the test dataset.
The number of DE genes (30) and the strength of
differential expression (¢ = 0.5) were determined to
examine typical situations that arise in realistic cases.
We omitted other realistic features of datasets that may
arise such as variation in the number of DE genes,
strength £, and the proportion of numbers of positive
and negative samples, because they had shown no
significant effect in our preliminary experiments. We
also omitted correlations of gene expression patterns

between DE genes because such correlations would
not affect either T-WV or R-SVM.,

Figure 6 shows the distributions of test error rates
of the T-WV classifiers selected by LOO and min-
max, with 20, 50, 100 and 150 training samples. We
found that there were certain levels of variance for
both criteria, and the variance was larger for smaller
numbers of samples. LOO sometimes showed
much worse results than min-max, as indicated by
the points in the bottom-right area of each panel in
Figure 6. Note that the number of test samples, 1,000,
was so large that there was no significant increase
in sampling variance. Table 3 shows the means and
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Figure 6. Distribution of test error rates of T-WV. The vertical and horizontal axes denote the test error rates of classifiers selected by the min-max and
LOO criteria, respectively. The results from 100 trials of random sampling of 20, 50, 100 and 150 samples are shown in the four panels.
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Table 3. Test error rate of simulation dataset.

Number of training samplres Selection grfi’tgriog; B - Mean o Standard deviation
20 LOO 0.241 0.077 W
min-max 0.210 0.064
50 LOO 0.042 0.024
min-max 0.026 0.012
100 LOO 0.015 0.013
min-max 0.006 0.003
150 LOO 0.012 0.010
min-max 0.004 0.002

standard deviations of test error rates of the classifiers
selected by LOO and min-max. Through 20-150
training samples, min-max outperforms LOO in terms
of smaller means and smaller standard deviations of
test error rates.

We counted the number of true DE genes in the
selected genes for each trial and found that the min-
max criterion tended to include many of the 30 true
DE genes, and that the ratio of the true DE genes in the
selected genes became large as the training samples
increased. In contrast, LOO sometimes selected a
very small number of genes, leading to large error
rates. Both criteria occasionally selected more than
30 genes, although this did not cause a large increase
in the error if the selected genes included many of
the true DE genes. As the number of training samples
increased, the means and variances of test error rates
became smaller, which is consistent with the previous
observation. Even when the number of training
samples increased and mean error rates decreased,

however, the test error rates of LOO still showed
larger variance than those of min-max.

We also conducted a similar simulation with
R-SVM: the simulation settings were the same
as those for T-WV except that we performed 50
trials, (half the number used for T-WV), and we
excluded the case of 150 samples because of the
large computational cost of bootstrap simulation
for R-SVM. Figure 7 shows the distributions of test
error rates of R-SVM classifiers selected by LOO
and min-max with 20, 50, and 100 training samples.
A similar tendency to that of T-WV was observed in
the cases of 50 and 100 samples, although in the case
of 20 samples, the error rate was almost the chance
level (0.5) for both the LOO and min-max criteria.

4. Concluding Remarks

In the present study, we investigated model selection
methods with the aim of designing a reliable cancer
prognosis predictor based on gene expression
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Figure 7. Distribution of test error rates of R-SVM. The vertical and horizontal axes denote the test error rates of classifiers selected by the min-max and
LOO criteria, respectively. The results from 50 trials of random sampling of 20, 50 and 100 samples are shown in the three panels.
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microarrays involving as small a number of genes as
possible. We assessed possible variation in prediction
error rate of cach microarray-based predictor by
simulating a distribution of classification error rates
via a resampling bootstrap method. Accordingly,
we proposed a novel min-max criterion to select a
predictor from multiple candidates. In numerical
comparisons that used real and synthetic datasets, we
showed that the conventional LOO estimation of their
cerror rates resulted in large variances; consequently,
the LOO criterion had a large risk of choosing
inappropriate classifiers that would exhibit extremely
poor prediction performance. In contrast, we showed
the stability of the min-max criterion relative to
well-established statistical criteria including the LOO.
We also compared two different supervised analysis
procedures, T-WV and R-SVM, and found that, in
general, T-WV performed the best when it involved a
small or moderate number of genes in contrast to that
R-SVM performed the best when it involved almost
all genes, although the mean and variance of the best
possible performances were not always significantly
different between those achieved with T-WV and
R-SVM. Thus, overall, we concluded to recommend
T-WV with the min-max criterion, which satisfied
our demand; the most reliable predictor involving as
small a number of genes.

It should be important to note that, we proposed
our procedure to select a set of genes for designing
a good predictor of cancer prognosis, rather than for
determining a set of genes which have statistically
significant relationship to the prognosis; these purposes
are different from each other in general. In other
words, the ‘robust’ model selection is meant to lower
the risk to select an extremely poor predictor, rather
than to select a stable set of genes. In fact, different
research groups reported prognosis prediction systems
with different sets of genes based on different sets
of microarray data for the same type of cancer.® The
microarray-based predictors for breast cancer, were
designed with 70 and 76 genes by two different research
groups,™! respectively, and these gene sets had only
three genes in common. Namely, the selected sets of
genes were not stable at all, however, the 70 gene-
based diagnosis system of breast cancer have been
verified by increasingly large number of new patients
and authorized by Food and Drug Administration in
USA.¢ In our own numerical experiments, we also

observed that number of common genes tended to
be small between any gene sets that were selected
based on different datasets generated by resampling
bootstrap (data not shown), although we achieved
good predictors in vast amount of the cases as we had
shown. Thus, it should be emphasized that such an
instable selection of gene subsets did not necessarily
cause a poor predictor as long as the predictor was
selected by a robust model selection method.

Once a prediction system based on a small number
of genes is developed, the system can be transfered
not only to mini-chip microarrays but also to other
casy accessible devises such as quantitative real-time
polymerase-chain-reaction (RT-PCR) analysis,*? which
would be tractable if only tens of genes were targeted.
Robust model selection methods, like the proposed
one, will be needed especially when we consider such
a transfer work between different measurement devises
because large bias is often expected between different
devises. In general, when a procedure is designed to be
robust against measurement variance, such a method
is also robust against an unknown bias which would
appear like in the above transfer; thus, our min-max
criterion will be used for this purpose.

In order to design a practical tool for real scenes in
clinical cancer therapy, new demands in informatics
canalwaysarise. As we had seen in this study, although
past efforts in informatics tended to pursue good
performances in average, minimizing risk to catch
poor predictor against possible variability in cancer
diagnosis systems becomes a next issue. There are few
methods to directly seek such risk minimization as
long as we know. Reducing cost by selecting relevant
genes based on high-dimensional gene expression
profile is a relatively well-investigated field of
research. However, the combination of the cost and
reliability is not investigated well. Thus, there must
be room to develop a novel supervised classification
method that satisfies these demands for designing
mini-chip systems, and future studies in cancer
informatics should proceed to such directions.
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Figure S1. Distributions of test errors and numbers of selected true DE genes for various numbers of selected genes for T-WV classifiers based on
20 artificial samples. Each point denotes one of 100 trials in each setting. Horizontal axes denote the number of genes selected by either LOO or min-max
criterion. The vertical axes in the top two panels and the bottom two panels denote the test error estimated by 1000 test samples and the number of true
DE genes in the selected set of genes, respectively.
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