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Figure 4 EFS, survival, and cumulative incidence of isolated or any CNS relapses in L95-14 study.
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Mixed-lineage-leukemia (MLL) fusion oncogenes are closely
involved in infant acute leukemia, which is frequently accom-
panied by mutations or overexpression of FMS-like receptor
tyrosine kinase 3 (FLT3). Earlier studies have shown that MLL
fusion proteins induced acute leukemia together with another
mutation, such as an FLT3 mutant, in‘mouse models. However,
little. has hitherto. been elucidated - regarding: the. molecular
mechanism of the cooperativity .in. leukemogenesis. Using
murine model systems of the MLL-fusion-mediated leukemo-
genesis leading to oncogenic transformation in vitro and acute
leukemia in vivo, this study characterized the molecular
network  in the cooperative leukemogenesis. This' research
reveaied that MLL fusion proteins cooperated with activation of
Ras .in .vivo, which: was  substitutable  for. Raf in  vitro,
synergistically, but not with activation of signal transducer
and activator of transcription 5. (STAT5), to induce acute
leukemia in vivo as well as oncogenic transformation in vitro.
Furthermore, Hoxa9, one of the MLL-targeted critical molecules,
and activation of Ras in vivo, which was replaceable with Raf in
vitro, were identified as fundamental components sufficient for
mimicking: MLL-fusion-mediated leukemogenesis. These find-
ings suggest that the molecular crosstalk between: aberrant
expression of Hox molecule(s) and activated Raf may have a
key role in the MLL-fusion-mediated-leukemogenesis, and may
thus ' help develop' the novel molecularly targeted therapy
against MLLrelated leukemia.

Leukemia (2009) 23, 2197-2209; doi:10.1038/1e11.2009.177;
published online 27 August 2009

Keywords: MLL; Ras; MAP kinase; leukemogenesis

Introduction

Multistep oncogenesis has been suggested in malignancy by the
observation of more than two heterogeneous genetic and/or
epigenetic lesions.” In leukemogenesis, recurring chromosomal
translocations are frequently found in hematological malignan-
cies, which sometimes coincide with'subtle but critical genetic
mutations leading to functional aberration.”™ Earlier studies
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showed that many of the translocation target genes are
transcription factors involved in hematopoietic differentiation
and/or self-renewal, whereas coincident mutations often occur
on the genes involved in cell proliferation.* These results lead to
a hypothetical model of leukemogenesis in which these two
kinds of genetic alterations may cooperate to induce acute
leukernia. This concept has been recently exemplified in
experimental models using combinations of fusion genes,
including mixed-lineage leukemia. (MLL, also called ALLT or
HRX) or AMLT fusion genes, and other coincident genetic
mutations.>™

MLL is a proto-oncogene that is rearranged in human acute
leukemia with chromosome 11 band q23 (11g23) transloca-
tion,'* " encoding a histone methyltransferase that assembles in
a chromatin-modifying - supercomplex.'””  Meanwhile, MLL
fusion gene leads to leukemogenesis through several HOX genes
directly transactivated by MLL fusion protein itself.*'"131% jt s
noteworthy that- most - of the genetically engineered mice
carrying the MLL fusion developed-hematological malignancy
after a long latency, suggesting that secondary genotoxic stress is
required to develop overt acute leukemia.'”™'® An earlier study
presented direct evidence that MLL fusion proteins induced
myeloproliferative . disease (MPD) with.a long latency, -and
caused acute leukemia with a short latency together w:th a
coincident mutation of FMS-like tyrosine kinase 3 (FLT3).®

Recent studies: revealed that: genetic  alterations, including
FLT3, NRAS (neurcblastoma: RAS viral (v-ras) oncogene homo-
log)-and KRAS. (v-Ki-ras2' Kirsten rat sarcoma viral oncogene
homolog), are frequently accompanied by 11g23- transloca-
tion.'>*®. FLT3 is a receptor tyrosine kmase involved in
leukemogenesis and normal hematopoiesis.>’ The mutations of
FLT3 are mainly classified into length mutations such as internal
tandem duplication: (ITD) of the juxtamembrane domain, and
point mutations within the activation loop of the second tyrosine
kinase. domain (TKD).”' Interestingly, FLT3-TKD, as well as
overexpression of the wild. type of FLT3, is found to be
frequently associated with infant acute lymphoid leukemia
(ALL), with rearrangements of MLL'*?? Both types of FLT3
mutations result in a constitutive activation of FLT3 kinase
activity, followed by activation of signaling pathways, including
signal transducer and activator of transcription 5 (STAT5) and
Ras/Raf/mitogen-activated . protein - (MAP) kinase. 2324 Both
STAT5S and Ras/Raf/MAP kinase (MAPK) are involved in cellular
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proliferation, survival and differentiation.”>*® Constitutively
active mutants of Ras induce oncogenic transformation through
activation of the MAPK cascade.”® However, little has so far
been elucidated regarding the molecular mechanism of colla-
boration in leukemogenesis.

To further clarify the molecular mechanism of MLL-fusion-
mediated leukemogenesis, we focused on signal transduction
associated with malignant transformation that collaborates with
MLL fusion protein in vitro, and highlighted the contrastive roles
of STAT5 and MAPK in leukemogenesis. Interestingly, compara-
tive analyses suggested synergistic collaboration with activated
Ras in MLL-fusion-mediated leukemogenesis, and also activa-
tion of Raf in malignant transformation in vitro, but not with
STATS activation in vivo and in vitro. Thus, the activation of
Ras/Raf/MAPK cascade may have an important role in multistep
leukemogenesis with 11g23 translocations.

Materials and methods

Construction of the plasmids and retrovirus production
Fra§ments of murine constitutively active mutants of STAT5A
(#2%7 and 1*6%% fused with a FLAG tag at the C-terminus, a
coding region of human NRASS'?Y and MLL-eleven nineteen
leukemia - (ENL) short form® were inserted upstream of the
internal ribosomal entry site (IRES)-enhanced %reen fluorescent
protein (EGFP) cassette of pMYs-IRES-EGFP. 9 Fragments of
coding regions of a wild tglpe of NRAS and NRASY'?Y were
inserted into pMXs-puro.?® A fragment of murine Hoxad*°
(a kind gift from Dr G Sauvageau) was inserted into pMXs-IRES-
EGFP.? A fragment of a dominant negative mutant (dn) of
STAT5A? was inserted upstream of the IRES-Kusabira-Orange
(KOP' cassette of pMXs-IRES-KO, in which the EGFP cassette
in pMXs-IRES-EGFP?® was replaced with the KO cassette of
phKO1-S1 (MBL, Nagoya, - Japan)..- pMXs-neo-MLL-SEPT6,°
pMY-FLT3-ITD-IRES-EGFP,®  pMY-FLT3P®*5V_IRES-EGFP® and
pBabe-puro-ARaf-estrogen receptor (ER)’® were described ear-
lier. Retroviruses were harvested- 48 h-after. transfection with
each retroviral construct into PlatE cells*® in which appropriate
expression of the transgenes was confirmed by western blot
analysis, as described earlier.®

Cells

An MLL-SEPT6-immortalized murinie myelomonocytic cell line,
HF6, was: established. through colony-replating assays using
retroviral transduction with pMXs-neo-MLL-SEPT6 as described
earlier.?. A Hoxa9-immortalized: murine: myelomonocytic cell
line,” A9G, was established through infection-with- retroviruses
harboring Hoxa9. in: pMXS/ARES-EGFP?? as. reported -earlier.??
The HF6,° A9G and murine pro-B Ba/F3%® cells-were cultured in
the presence of interleukin-3-(IL-3) (R&D Systems, Minneapolis,
MN, USA). HF6 cells transduced with. FLT3 mutants were
cultured in the same medium, except for: the absence of IL-3.
The expression levels of FLT3 in these cells were evaluated using
a phycoerythrin (PE)-conjugated anti-CD135: antibody, or-an
anti-mouse immunoglobulin. Gl,x, as the: isotype-matched
control (BD Biosciences, San Diego, CA, USA) using fluores-
cence-activated cell sorting (FACS) Calibur (BD Biosciences) as
described earlier.”

Immunoprecipitation and western blot analysis
Fifty. million parental and additionally transduced HF6 cells, or
10 million parental and transduced Ba/F3 cells, were harvested
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in the lysis buffer, and the lysates were either suspended with
1 x sodium dodecyl sulfate sample buffer after immunopreci-
pitation using polyclonal anti-STAT5A antibody (L-20) (Santa
Cruz Biotechnology, Santa Cruz, CA, USA} or directly mixed
with an equal volume of 2 X sodium dodecyl sulfate sample
buffer and: ‘then boiled, as described- earlier.?® I some
experiments, the parental HF6 cells had been deprived of IL-3
8h before harvest. Western blot analysis of each sample was
performed using the polyclonal anti-STAT5A (L-20), monoclonal
anti-phosphotyrosine (4G10) (Upstate Biotechnology, Lake
Placid, NY, USA), polyclonal anti-extracellular signal-related
kinase (ERK)1/2, monoclonal anti-phospho-ERK1/2 (E10) (Cell
Signaling Technology, Danvers, MA, USA), monoclonal anti-o-
tubulin  (Sigma-Aldrich, St Louis, MO, USA), monoclonal
anti-FLAG (M2), polyclonal anti-ERe (MC-20) and monoclonal
anti-N-Ras (F155) (Santa Cruz Biotechnology) antibodies to
probe membranes, as described earlier.?®

Evaluation of cellular effects by inhibition of signal
transduction in vitro

The response to the drug was evaluated as described earlier.” In
brief, HF6 cells expressing the FLT3 mutants (3 x 10°) were
infected with retroviruses  harboring or ot harboring the
dnSTAT5A in pMXs-IRES-KO in the presence of polybrene, as
described earlier.® Viable. cell. numbers were counted with
standard.: Trypan. blue . staining; and the -expression of  the
dnSTAT5A was monitored by-assessment of KO positivity: using
the FL2 channel on'the FACS Calibur, daily after infection. At
48h after infection, to evaluate the status of phosphorylated
STATS5, half a million_of these cells were fixed with fixation
buffer, permeablized with Perm Buffer Ill and analyzed with an
Alexa: Fluor: 647-conjugated : anti-phospho-STAT5 (Y694) (all
from BD Biosciences) antibody; or the-anti-mouse immunoglo=
bulin' G1,k, as the isotype-matched control antibody, using the
FL4 channel on the FACS Calibur, according to the manufac-
turer’s recommendation. As controls, the parental HF6 cells with
and:without IL-3. stimulation - after deprivation of IL-3.for.8 h
were used. Meanwhile, these HF6 cells:(1:x 10%) were cultured
for-72 h.in: 24-well plates in: the presence of various concentra=
tions of a MAPK kinase (MEK) inhibitor; U0126, or a P13 kinase
inhibitor, ' LY294002 (Calbiochem-Novabiochem, San Diego,
CA, USA) ‘and: each vehicle control (ethanol for U0126. and
dimethyl sulfoxide for LY294002). Viable cell numbers were
counted with standard Trypan blue staining after each treatment,
followed by calculation of the 50% inhibitory’ concentration
(iC50) of each drug  using-a logistic’ regression ‘model. To
evaluate the inhibitory effect of U0126 on ERK1/2, five million
of the cells were treated for 2 h, harvested and analyzed with the
anti-ERK1/2 or the anti phospho-ERK1/2 antibody after western
blotting.

Myeloid transformation assays in vitro

In" a series of transformation assays, the acquisition of IL-3-
independent proliferation” was examined in IL-3-dependent
cells. 'HF6 and Ba/F3 cells were infected with retroviruses
harboring NRAS, NRASS'?V or mock in pMXs-puro; 'ARafER
or mock in pBabe puro; and STAT5A1*6, STATSA#2 or none
(only GFP) in pMYs-IRES-EGFP, respectively, in the presence of
polybrene, as described earlier.® A9G cells were also retrovirally
transduced with NRAS, NRAS®'12Y ARafER or each mock in the
same way. For puromycin selection, the transduced cells were
cultured with 1 pg/ml of puromycin 24-96 h. after infection,
followed by propagation for 5 days in the absence of puromycin.



Next, 1 x 10° puromycin-resistant cells transduced with NRAS,
NRASS'?Y or moack were cultured in 24-well plates in the
absence of 1L-3, whereas those transduced with ARafiER or
mock were cultured under the same condition, except for the
presence of 1um of 4-hydroxy-tamoxifen or a vehicle control
(ethanol). The cells transduced with STAT5A1*6, STAT5#2 or
none were purified on the basis of the expression of GFP using a
FACS Aria (BD Biosciences) 36 h after infection. Immediately,
these purified cells (1 x 10% were cultured in 96-well plates in
the absence of IL-3, to avoid excessive signals caused by
STAT5A#2 or 1#6 in the presence of IL-3, which led to cell death
as described earlier”® Viable cell numbers were counted
periodically after standard Trypan blue staining.

Leukemogenesis assays in vivo

Leukemogenesis assays in vivo using C57BL/6 mice produced
by a combination of two kinds of transgenes were performed
with lethal conditioning using lethally (9.5Gy) irradiated
recipients, or with sublethal conditioning using sublethally
(5.25 Gy) irradiated recipients receiving no radioprotective bone
marrow (BM) cells, as described earlier® (Supplementary Figure 1).
In brief, hematopoietic progenitors were harvested from 6- to
10-week-old Ly-5.1 C57BL/6 mice 4 days after intraperitoneal
administration of 150 mg/kg 5-fluorouracil, and cultured over-
night in alpha minimal essential medium supplemented: with
20% fetal calf serum and 50ng/ml each of mouse stem cell
factor, human 1L-6, human FLT3-ligand (R&D Systems) and
human thrombopoietin (Kirin Brewery; Takasaki,: Japan).. The
prestimulated cells were infected with several combinations of
the retroviruses for 60h in the o minimal ‘essential medium
supplemented with the same fetal calf:serum:-and:cytokines
using RetroNectin (Takara Bio Inc., Otsu, Japan) according to
the manufacturer’s recommendations, followed by intravenous
injection of 10° of the cells into Ly-5.2 mice together with either
a radioprotective dose (2 x 10°) of Ly-5:2 cells under lethal
conditioning or none under sublethal conditioning.  Morbid
mice and their tissue samples were analyzed, and immuno-
phenotyping of BM, splenic and thymic cells was performed
using the FACS Calibur, as described earfier.*® The hemato-
poietic neoplasms were diagnosed mainly on the basis - of
morphology as described earlier.® The probabilities of murine
overall survival were ‘estimated using Kaplan-Meier method
and compared using the log-rank test.” All animal studies were
performed in_accordance with the guidelines. of the Animal
Care . Committees.. of the Institute of Medical Science; the
University of Tokyo and the Mie University.

Southern blot analysis

Genomic DNA was extracted from spleens, digested with Nhel
or BamHl . for. detecting. proviral - integration “and.. clonality,
respectively, and analyzed with - theNeo - or puro- probe
{Supplementary Figure 1) as described earlier.>*

Reverse transcriptase-polymerase chain reaction (PCR)
Total RNA was extracted from: cell lines, spleen or BM; and
reverse transcribed- to. complementary: DNA - as - described
earlier.® The conditions, reagents for reverse traniscriptase-PCR
and the primers specific for fzmicroglobulin (8:MG), Hoxa9
and MLL-SEPT6 have been described earlier,® except that
PCR.amplification for MLL-SEPT6 transcripts was sometinies
run for 35 cycles. To detect the transcript of NRASS™Y,
PCR amplification was run for 21 cycles using the following
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primers: NRAS-S, 5-GTGGTTATAGATGGTGAAACCTGTT-3’
and NRAS-AS, 5'-GACCATAGGTACATCTTCAGAGTCCT-3'.

Results

MLL-SEPT6 cooperates with both types of FLT3
mutations through different modes of signal
transduction

To clarify the molecular mechanism of cooperation between
MLL fusion proteins and FLT3 mutants, signaling pathways of
FLT3-ITD and FLT3-TKD that cooperate with MLL-SEPT6 were
examined usin§ the IL-3-dependent MLL-SEPT6-immortalized
cell line, HF6.” Earlier, STAT5 and MAPK ERK1/2 had been
found to be activated downstream of FLT3 mutants in factor-
dependent cell lines.”*** Therefore, the activation of these
molecules was first examined using parental HF6 and trans-
formed HF6 cells expressing FLT3-ITD (HF6"P) or FLT3V®®Y
(HF6P%35Y) described earlier.® Nearly equal levels of expression
of the FLT3 mutants in the transformed HF6 cells were
confirmed (Figure 1a). A western blot analysis after immuno-
precipitation of the lysates from these cells revealed constitutive
phosphorylation of STAT5A in HE6 cells expressing the FLT3
mutants in the absence of IL-3, but little in the parental HF6 cells
that had been deprived of IL-3 (Figure 1b). In addition, a western
blot analysis of the same lysates also revealed constitutive
phosphorylation of ERK1/2 in those cells expressing the FLT3
mutants, but little in the parental HF6 cells that had been
deprived of IL-3 (Figure 1b).

Next, to determine  whether STAT5 and/or MAPK were
important in the transformation of HF6 cells expressing FLT3
mutants, each signaling pathway was inhibited using dnSTAT5A
or. MEK.inhibitor UD126. After retroviral transduction with the
dnSTATSA, the proliferation of HF6'™ cells expressing dnSTA-
T5A was suppressed more efficiently than that of HF6"**Y cells
expressing dnSTAT5A (Figure 2a). KO-positive cells expressing
dnSTAT5A showed higher levels of phosphorylated STATS than
KO-negative cells (Figure 2b). This finding is consistent with the
earlier report showing that the dnSTAT5A exerts its effect on
endogenous STATSA and 5B with persistent phosphorylation
of the dnSTAT5SA itself.?® In contrast, U0126 retarded. the
proliferation of the HF6"%5Y cells more  effectively than the
HF6'™ cells (Figure “2¢, "each  IC50 is  0.67 £0.35 M for
HF6P®Y' 3nd 6.0940.90 1M for HF6'™ in the absence of
IL-3). Indeed, U0126 inhibited phosphorylation. of ERK1/2 in the
HF6'™ and HF6®**Y cells in a semidose-dependent manner
(Figure  2d}: In addition, another important signaling pathway
downstream of FLT3, through PI3 kinase, was inhibited usiné
LY294002. LY294002 also retarded the growth of the HF6P®*
and HF6'™ cells in a dose-dependent manner, but there was no
remarkable difference between both . types of HF6 cells
(Supglementary Figure..2, each 1C50 is-4.18 +0.55um" for
HF6%*V.and 8.12 +1.54 i for HF6'™ in the‘absence of IL-3).

Taken together,” these ‘results in vitro” suggested - that the
activation of MAPK was more critical for transformation by
FLT3-TKD than by FLT3-ITD in HF6 cells, whereas activation of
STAT5 was more critical for transformation.by FLT3-1TD than by
FLT3-TKD.

Activation of Ras-MAPK cascade enables HF6 cells to
grow without IL-3 through cooperation between Hoxa9
and Raf

We further examined whether direct activation of either STAT5
or MAPK cascade is sufficient to confer factor-independent
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growth on HF6 cells. Although the constitutively active mutants
of STATSA, the relatively stronger mutant STAT5A1*6 and
weaker mutant STATS5A#2, enabled Ba/F3 cells (Ba/F31‘6,
Ba/F3%) to grow without IL-3 as reported (3:—.1rli<er,2:—"27'28 both
failed to confer factor-independent growth on HF6 cells with
limited elongation of survival time without IL-3 (Figures 3a and
). In contrast, the oncogenic NRAS mutant, NRASC”V, which
had been detected in a case of AML with MLL-SEPT6,%° enabled
HF6 cells (HF6G12V) to grow without IL-3, while it conferred no
factor-independent growth on Ba/F3 with limited elongation of
survival time without IL-3 (Figures 3b and c). In addition, Raf-1,
a signal molecule downstream of Ras in Ras-MAPK cascades
associated with malignant transformation, was tested with an
activation-inducible system using ARaf-ER, consisting of the
catalytic domain of human RAF-1 (ARaf) and the hormone-

Unlike transduced Ba/F3 (Ba/F3ARaf'ER) cells, transduced HF6
(HF6*RFER) cells grew without 1L-3 only in the presence of
4-hydroxy-tamoxifen (Figure 3e). In these HF6RIER cqllg
treated with 4-hydroxy-tamoxifen, STAT5A was not found to
be secondarily activated by induction of activation of Raf/MAPK
cascade in the absence of 1L-3, whereas it was found to be
weakly activated by stimulation with IL-3 for 15 min (data not
shown).

Furthermore, we examined whether Hoxa9, which is one of
the well-known target genes of MLL fusion proteins,’®' 1314 i
involved in cooperation between MLL fusion protein and Ras/
Raf/MAPK cascade. In the myeloid transformation assays, the
murine BM progenitors immortalized by Hoxa9 in the presence
of IL-3 (named A9G) proliferated without IL-3 after retroviral
transduction of NRASS'?Y (Figure 3b). In the inducible

binding domain of the ER (Figure 3d), as described earlier.”® transformation system using ARaf€R, transduced A9G
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Figure 1: Characterization. of: signal- transduction.‘in the HF6:'cells transformed: by FMS-like: receptor- tyrosine kinase 3 (FLT3) mutants.
(a) Expression of each FLT3 mutant in HF6 and their transformed cells. The shadow profiles and black lines represent fluorescence-activated cell
sorting (FACS) staining obtained using the antibody specific to FLT3 and its isotype control antibody, respectively. (b) Western blot analyses of
proteins extracted from HF6 and their transformed cells after immunoprecipitation using the anti-signal transducer and activator of transcription 5A
(STAT5A) antibody (upper two panels), and of the whole lysates (lower two panels). The parental HF6 cells had been deprived of interleukin-3
(1L-3) 8 h hefore harvest. The blot of the immunoprecipitated samples was probed with the anti-STAT5A antibody (upper bottom pariel), followed
by reprobe with 4G10 (the‘anti-phosphotyrosine antibody) (upper top'panel). The blot of the whole lysates was probed with the anti-extracellular
signal-related kinase (ERK)1/2 antibody (lower bottom panel), followed by reprobe with the anti-phospho-ERK1/2 antibody (lower top panel).
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Figure 2 Differential effects of inhibition of cellular signal transdiiction on the HF6 cells transformed by FMS-like receptor tyrosine kinase 3
(FLT3) mutants. {a) Effect of the retroviral transduction. with' the dominant negative mutant of signal transducer and activator of transcription 5A
(dnSTAT5A) in pMXs-internal ribosomal entry site (IRES)-Kusabira-Orange (KO} on the transformed-and parental HF6 cells. Viable cell numbers
and KO expression were monitored daily after the transduction, and the averages of ratios of each KO-positive cell number at days 1, 2, 3-and 4 to
that at day 1 are shown with s.d. (bars), (b) Intracellular flow cytometric analyses of phospho-STATS (Y694) on the transformed and parental HF6
cells ransduced with dnSTAT5A in pMXs-IRES-KO. The density plots show expression of each intracellular antigen labeled with the Alexa Fluor
647-conjugated anti-phospho-STAT5 (Y694) (upper eight panels) or its isotype control (lower two panels) antibody versus expression of KO. As
negative controls, nontransduced and mock-transduced HF6 cells were used, respectively (lower two panels using the isotype control antibody).
As references, nontransduced HF6 cells were deprived of interleukin-3 (IL-3) for 8 h: (HF6 (IL-3(=))), or stimulated with 1L-3 for 15 min after the
same deprivation (HF6 (IL-3(+))), and then used (lower two panels using the anti-phospho-STATS. antibody). KO and Alexa Fluor 647 were
detected using the FL2 and FL4 channels of the fluorescence-activated cell sorting (FACS) Calibur, respectively. (c) Effect of the various
concentrations of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, U0126, on the transformed and the parental HF6 cells. The
averages with s.d. (bars) of ratios of viable cell numbers in the presence of each concentration of U0126 to those in the absence of U0126 are
shown. (d) Western blot analyses of the whole lysates extracted from the transformed HF6 cells treated with U0126. Both groups of transformed
HF6 cells were treated with various concentrations (shown above each upper panel) of U0126 for 2 h'and then harvested. Both blots were probed
with the anti-phospho-extraceliular signal-related kinase (ERK)1/2 antibody (each top panel), followed by reprobe with the anti-ERK1/2 antibody
{each bottom panel).
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Figure 3 Transformation of the HF6 and A9G cells induced by direct activation of Ras/Raf/mitogen-activated protein kinase (MAPK) pathway.
(a) Transformation assays of the HF6 and Ba/F3.cells expressing constitutively active forms of signal transducer and activator of transcription 5A
(STATSAY (#2 and 1*6). Green fluorescent protein (GFP) was used as a control. (b) Transformation assays of the HF6, A9G and Ba/F3 cells
expressing wild-type (WT) NRAS or NRASC'2YV(G12V). The averages of the number of viable cells with s.d. (bars) are shown in (a) and (b). (c, d)
Western blot analyses of the whole lysates‘extracted from the transduced cells (see legends to panels (a) and (b)) in the absence of interleukin-3
(IL-3). (c) HF6 and Ba/F3 cells transduced with an inducible form of Raf (ARaf-estrogen receptor (ER)) (d) and their parental cells (c, d). The blot was
probed with the anti-FLAG antibody to detect expression of ectopically expressed STATSA mutants (upper left panel), or probed with the anti-
NRAS antibody (upper right panel), followed by reprobe with the anti-a-tubulin antibody as internal control (lower panels) (c). The blot was also
probed with the anti-ER antibody to detect expression of ARaf-ER (d). (e) Transformation assays of the HF6, A9G and Ba/F3 cells expressing ARaf
ER in the presence of 4-hydroxy-tamoxifen (4-OHT) (+) or vehicle control (). The averages of the number of viable cells with s.d. (bars) are
shown. (f) Analysis of Hoxa9 transcripts in'A9G cells using reverse transcriptase-PCR. Ba/F3 and HF6 cells were used as negative and positive
controls, respectively.

»
Figure 4 Leukemogenesis induced by mixed-lineage-leukemia (MLL)-septin 6 (SEPT6) with NRAS“YY synergistically, but not with signal
transducer and activator of transcription SA (STAT5A)42, in vivo under lethal conditioning. (a) Survival curves of mice transplanted with MLL-
SEPT6 and NRASS'ZY (MS6/G12V; n=6), MS6 and STAT5A#2 (MS6/42; n=6), MS6/GFP (n= 6), neo/G12V (n= 6), neo/#2 (n=3) and neo/GFP
(n=3). (b) Representative macroscopic images of spleens obtained from each group of mice shown in (a). Scale bar 1 cm. (c, d) Representative
histopathological analysis of morbid mice transplanted with M56/#2, MS6/G12V (c, d), neo/G12V, and neo/#2 (d). Bone marrow (BM) cells (c) and
paraffin sections of spleen (d) were stained with Wright-Giemsa and hematoxylin and eosin (H&E), respectively. Original magnification, x 200
(c) and x 40 (d); scale bars, 30 pm (c) and 200 um (d). (e, f) Immunophenotype of BM or splenic {Sp) cells obtained from representative morbid
mice transplanted with MS6/#2 (e, left panels), MS6/G12V (e, right panels), neo/G12V (f, left panels) and neo/#2 (f, right panels). The dot plots
show each surface antigen labeled with a corresponding monoclonal antibody versus expression of GFP. Ly5.1, Gr-1, CD11b, Ter119, and c-Kit
were labeled with phycoerythrin (PE)-conjugated and allophycocyanin (APC)-conjugated monoclonal antibodies, respectively. (g) Southern blot
analysis to detect clonality (left panel) and proviral integration (right panel). Genomic DNA extracted from BM cells obtained from representative
mice transplanted with MS6/G12V (lanes 4, 5, 9 and 10), MS6/GFP (lanes 2, 3, 7 and 8} and neo/GFP (5 months after transplantation; lanes 1 and 6)
was digested with BamH| (lanes 1-5) and Nhel (lanes 6-10), respectively, and hybridized with the Neo probe. Oligoclonal bands of proviral
integration and single hands of the proviral DNA are indicated by arrows and arrowheads, respectively.
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(A9GAR=ER) calls grew without IL-3 only in the presence of
4-hydroxy-tamoxifen (Figure 3e). Expression level of Hoxa9 in
A9G cells was shown in comparison with those in Ba/F3 and
HF6 (negative and positive controls, respectively) cells by
reverse transcriptase-PCR (Figure 3f).
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Taken together, these results in vitro suggested the
essential role of activation of the Ras/Raf/MAPK cascade

together with Hoxa9 upregulated by MLL fusion proteins
in the transformation of the cells expressing MLL fusion
protein.
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MLL fusion proteins and oncogenic NRAS cooperate to
induce acute leukemia, at least partly through aberrant
expression of Hoxa%

The findings on the transformation of HF6 cells in vitro led to the
hypothesis that MLL fusion proteins might cooperate with
activation of Ras to induce AML in vivo. To test this hypothesis,
the oncogenic potential of NRASSY2Y (G12V) or STATSAX2 (#2)
to cooperate with MLL-SEPT6 (MS6) or MLL-ENL short form was
examined in the leukemogenesis assays in vivo (Supplementary
Figure 1). STAT5A1*6 was not used owing to. its too. strong
oncogenic potential'in vivo as reported earlier.’® The transduc-
tion efficiencies of NRASC™2Y, STAT5A#2 ‘and MLL-ENL were
30-50, 20-40 and 5-10%, respectively, as determined by GFP
expression (data not shown).

The mice receiving the BM cells transduced with MLL-SEPT6
and NRASS'V:(MS6/G12V) died with significantly. shorter
latencies (26 +£2.4 days; P<0.05; log-rank test) than the MS6/
GFP mice that died of MPD (137 +9.0 days) as described
earlier,® but, unexpectedly, the neo/G12V mice died as early as
the MS6/G12V mice (31 +.1.4 days) (Figure 4a, Table 1, and
data not shown).. The MS6/#2 mice died with significantly
shorter latencies (82 £ 11  days; P<0.05, log-rank test) than the
MS6/GFP mice, but as early as the neo/#2 mice (80 £ 8.0 days)
(Figure 4a and Table 1). Notably, the phenotypes of the MS6/
G12V mice were very different from those of the neo/G12V
mice and from MPD in the MS6/GFP mice, whereas those of the
MS6/#2 mice were rather similar.to MPD in the MS6/GFP. mice
than those of the neo/#2 mice.

The morbid MS6/G12V. mice showed hepatosplenomegaly
with various ranges of leukocytosis, anemia and thrombocyto-
penia, whereas - the ‘morbid neo/G12V mice: showed  no
hepatomegaly but mild splenomegaly, and severe pancytopenia
(Figure 4b and Table 1). Histopathological analyses of the
morbid MS6/G12V mice showed that immature myelomono-
cytic blasts accounted for more than 30% of BM cells;, and
severely infiltrated the spleen and the liver (Figures 4c and d,
and data not shown). Immunophenotyping analyses of the BM
cells also revealed that a majority of these cells expressed GFP,
which indicated expression-of NRAS®'?Y, with high level of
CD11b, intermediate level of Gr-1 (a myeloid differentiation

Table 1
either NRASS'?Y or STATSA #2

marker also known as Ly-6G) and low level of c-Kit (CD117,
the receptor of stem cell factor) (Figure 4e). In addition, Southern
blot analysis of genomic DNAs derived from the spieens of the
MS6/G12V mice showed oligoclonal bands of proviral integra-
tion (Figure 4g). These results indicated that the MS6/G12V mice
developed AML similar to the mice receiving BM cells trans-
duced with MLL-SEPT6 and FLT3-ITD, as described earlier.’
In contrast, the morbid neo/G12V mice showed extremely
hypocellular marrows and extramedullary hematopoiesis in the
spleen, where a majority of the cells did not express Ly5.1
(Figure 4f), with little expression of Hoxa9 in comparison with
the morbid MS6/G12V mice (Supplementary Figure 3a). Thus,
this finding suggested that, in our leukemogenesis assays under
lethal conditioning, NRAS might develop BM aplasia presum-
ably due to engraftment failure. Meanwhile, the MS6/#2 mice
died of MPD, showing myeloid hyperplasia consisting pre-
dominantly of mature granulocytic elements in the BM cells,
where a very small population (1.0%) expressed STAT5A#2,
with splenomegaly similar to the MS6/GFP mice (Figures 4b—d,
and Table 1). The neo/#2 mice showed neither hepatospleno-
megaly  nor .. hematological - abnormalities in" the peripheral
blood, but relative myeloid hyperplasia in the BM, where only
a small population (9:4%) expressed STAT5A#2. (Figures 4b and
f, data'not shown and Table 1), thus implying that STAT5A#2
might - induce lethal -BM - abnormality owing to paracrine
expression of some cytokines as in the earlier report using
STAT5A1%6.°¢

To generalize leukemogenic cooperation between MLL fusion
proteins and oncogenic NRAS and avoid the early death caused
by transduction of NRASS'?Y, the BM cells transduced with
MLL-ENL and/or oncogenic NRAS were also transplanted into
recipient mice under sublethal conditioning. The MLL-ENL short
form was used for leukemogenesis assays under sublethal
conditioning with oncogenic NRAS (NRASG”V), in which
retroviral vectors were exchanged, so that the expression of
GFP indicated that of MLL-ENL (Supplementary Figure 1). These
leukemogenesis assays under sublethal conditioning confirmed
that the combination of MLL-ENL and NRAS®™Y reproduced
AML, and that MLL-ENL (and puro) induced the phenotype of
MPD (Figures 5a, b and d, and Table 1). Meanwhile, NRASS12Y

Characteristics of the morbid mice transplanted with hematopoietic progenitors transduced with MLL fusion genes or Hoxa9, and/or

Mouse Latency (days)  Liver (g} Spleen (g) Thymus (g} WBC (per p) Hb (g per 100 mil)  Pit (x 10% per pi)

Lethal conditioning
MS6/G12V (0 =6) 26+2.4 1.60£0.35 0314£0.07 0.020+0.012: 74600+ 62900 42110 4.0+39
MS6/#2 (0 =3)* 82+ 11 0.98+0.43 0.32+0.03  0.01910.006 73100 5.3 4.4
MS6/GFP (n =6) 137+£9.0 1.64+0.69 0.26+0.09  0.037£0.005 309000+ 263000 70+6.8 8.057
neo/G12V (n=6) 31+14 1.0440.25 0.25+0.08° 0.030+0.030 4600 % 1800 25103 05404
neo/#2 (n=23)% 80+8.0 0.66+0.16 0.08£0.06 0.011+0.001 9800 18.8 58.2
neo/GFP (n=3) NA 1.3620.11 0.09+0.01 0.051+£0.010 1200014700 147206 81113
A9/G12V (n=4) 28175 1932056 0.4410.16 0.033+0.030 76300%56700 45%27 1.0£0.6
AY/GFP {n =6) NA NT NT NT 21200 + 5400 17.3+2.4 66+4.7
puro/GFP {n=3) NA 1.48+021 0.06£0.01 0.04910.022 12000+ 3400 136115 8119

Sublethal conditioning
MEs/G12V (n1=10) 21+£39 2561045 051+0.10 0.04320.020 164000+ 131000 72425 111245
MEs/puro (1 =15) 89+ 11 1.89£0.58 0.44+0.11 0.043+0.006 99000%53000 74129 9.1+3.1
GFP/G12V (1=5)° 89+10 09801031 0.06£0.03 0.63+0.35 22000+ 1000 136217 97
GFP/puro (n=3) NA NT NT NT NT NT NT

Abbreviations: GFP, gréen fluorescent protein; Hb, hemoglobin; MEs, MLL-ENL short form; NA, not applicable; NT, not tested; PlIt, platelet; WBC,

white blood cell.
Averages with s.d. are shown.
®Blood cell counts of only one morbid mouse. were performed.

One mouse developing acute leukemia and. thymoma was excluded, owing to the remarkably increased number of WBCs and
hepatosplenomegaly. The platelet count of only one morbid mouse was determined.
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Leukemogenesis assays under sublethal conditioning using mixed-lineage-leukemia/eleven nineteen leukemia (MLL-ENL) and

NRASE12Y, (a) Survival curves of mice transplanted with a short form of MLL-ENL (MEs) and NRASS12Y (MEs/G12V) (n=10), MEs/puro (n=5),
GFP/G12V (n=5) and green fluorescent protein (GFP)/puro (n=3). (b) Representative cytospin preparations of bone marrow (BM) cells obtained
from morbid MEs/G12V and MEs/puro mice. The cells were stained with Wright-Giemsa. Original magnification 200 x ; Scale bars 30 um.
(c) Representative histopathologic images of thymus obtained from the GFP/G12V mouse. A paraffin section of the thymus was stained with
hematoxylin and eosin (H&E). Original magnification, x 40; vertical and horizontal scale bars, 1cm and 200um, respectively.
(d) Immunophenotype of BM and thymic (Th) cells obtained from representative morbid MEs/G12V and GFP/G12V mice. The dot plots show
each surface antigen labeled with a corresponding monoclonal antibody versus expression of GFP or CD4. Ly5.1, CD11b, CD4, and c-Kit and CD8

were labeled with phycoerythrin (PE)-conjugated and allophycocyanin (APC)-conjugated monoclonal antibodies, respectively.

(and GFP) led to thymoma, sometimes together with leukocy-
tosis, with a long latency (Figures 5a, c and d, and Table 1). In
addition, to examine the possibility that the phenotypes
associated with STAT5A#2 might change, similar to oncogenic
NRAS, the BM cells transduced with STAT5A#2 (in pMYs-IRES-
EGFP) and/or MLL-SEPT6 (in pMXs-neo) were again transplanted
into recipient mice under sublethal conditioning. Within an
observation period of 160 days, two of three neo/#2 mice under
sublethal conditioning died with longer latencies (134 and 139
days) and showed the same phenotype of myeloid hyperplasia
in the BM, where a small population (15%) expressed
STAT5A#2, although these had different phenotypes of pancy-
topenia and splenomegaly (Supplementary Figure 3b and data
not shown). In contrast, two of three MS6/#2 mice and all of
the three MS6/GFP mice survived and showed no hematologi-
cal abnormalities in the peripheral blood, whereas one of
the MS6/#2 mice died (125 day) but could not be analyzed
because of post-mortem change, within the observation period.

Histopathological analysis of one MS6/#2 mouse, which was
killed 150 days after the transplantation, showed no significant
hepatosplenomegaly but mild myeloid hyperplasia in the BM
(data not shown). Only 30% of the BM cells were positive for
donor-derived Ly-5.1, and 7% of the BM cells were positive for
GFP, indicating expression of STAT5A#2 (Supplementary
Figure 3c), whereas reverse transcriptase-PCR analysis of the
BM cells gave very weak signals of MLL-SEPT6 after 30 cycles
(data not shown), but clearly visible signals after 35 cycles
(Supplementary Figure 3c). Therefore, sublethal conditioning
seemed to be inappropriate for leukemogenesis assays using
oncogenes, such as MLL-SEPT6 and STAT5A#2, which had
relatively weak onco%enic potential in comparison with
MLL-ENL and NRAS®'".

Finally, we examined whether Hoxa9 may be involved in
cooperation between the MLL fusion protein and oncogenic
NRAS in vivo, such as in transformation assays in vitro. The
leukemogenesis assays using the BM cells transduced with
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Hoxa9 and oncogenic NRAS were carried out under lethal
conditioning, because preliminary leukemogenesis assays under
sublethal conditioning were unsuccessful probably because of
engraftment failure (data not shown). The combination of Hoxa9
and NRASS'?Y (A9/G12V) led to death with short latencies
(28+7.5 days) (Figure 6a and Table 1), whereas Hoxa9 (and
GFP) per se induced no lethal disease within 120 days, as
reported earlier.’” The A9/G12V mice showed remarkable
hepatosplenomegaly and had a tendency toward leukocytosis,
anemia and thrombocytopenia (Table 1). Histopathological and
immunophenotyping analyses of the BM cells revealed that the
A9/G12V mice had a few, but prominent, myelomonocytic
blasts (Figure 6b), with high expression of CD11b and Gr-1, and
low level of c-Kit (Figure 6c). A Southern blot analysis of
genomic DNAs derived from the spleens of the A9/G12V mice
gave oligoclonal bands (data not shown). These results indicated
that Hoxa9 cooperated with oncogenic NRAS to rapidly induce
lethal myeloid malignancy that was not identical but similar to
the acute leukemia induced by MLL fusion proteins and
oncogenic NRAS.

Taken together, these results in vivo suggested that MLL fusion
proteins rapidly induce acute leukemia together with activated
NRAS, at least in part through aberrant expression of Hoxa9.

Discussion

The present study provides several evidences that MLL-fusion-
mediated leukemogenesis cooperated synergistically with Ras
activation, but not with STAT5 activation. Although all known
MLL fusion proteins were not tested in this study, we showed
that this synergistic cooperation was not limited to the specific

MLL fusion, using two different well-characterized types of MLL
fusion proteins. In the light of the role of FLT3 mutations in MLL-
fusion-mediated leukemogenesis described earlier,® signaling
pathways downstream of FLT3 mutations were analyzed in the
transfectants of HF6, a cell line expressing MLL-SEPT6. The
immortalized cells, such as HF6 and A9G, used in this study
might have acquired additional mutations. However, the
phenotypes including IL-3 dependency, expression patterns of
lineage markers and growth rates were not changed since their
establishment (data not shown), thus suggesting that at least no
mutations leading to critical transformation had occurred in
these cell lines. Although recent studies have disclosed the
differences in activation of signal molecules, including MAPK
and STAT5, between FLT3-TKD and FLT3-ITD,%*38 our experi-
ments using transduction with FLT3 mutants and inhibition of
the signal molecules first showed a crucial role of activation of
MAPK rather than STATS5 in the factor-independent survival and
proliferation of HF6 cells. Next, the myeloid transformation
assays in vitro revealed that the activation of Raf-1, as well as
oncogenic NRAS, transformed HF6 cells, but that constitutively
active mutants (1*6 and #2) of STAT5A did not. The
leukemogenesis assays in vivo also showed that oncogenic
NRAS rapidly induced acute leukemia together with MLL fusion
proteins, which differed from the original phenotype induced by
each molecule. In contrast, the active STAT5A mutant did not
confer obvious synergistic effects on the MLL-fusion-mediated
leukemogenesis. Thus, these results in vitro and in vivo
suggested that activation of the Ras/Raf/MAPK pathway may
be sufficient for the transformation of HF6 cells and develop-
ment of MLL-fusion-mediated leukemia.

Oncogenic NRAS induced thymoma in the leukemogenesis
assays under sublethal conditioning, which is consistent with the
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Figure 6 Leukemogenesis induced by Hoxa9 and oncogenic neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS) under lethal
conditioning. (a) Survival curves of mice transplanted with Hoxa9 and NRASC'?Y (A9/G1 2V; n=4), A9/green fluorescent protein (GFP) (n= 6) and
puro/GFP (n= 3). (b) Representative cytospin preparations of bone marrow (BM) cells obtained from morbid A9/G12V mice. The cells were stained
with Wright-Giemsa. Original magnification, x 200; scale bar, 30 pm. (c) Immunophenotype of BM cells obtained from representative morbid A9/
G12V mice. The dot plots show each surface antigen labeled with a corresponding monoclonal antibody versus expression of GFP. Ly5.1, Gr-1,
CD11b, and c-Kit were labeled with phycoerythrin (PE)-conjugated and allophycocyanin (APC)-conjugated monoclonal antibodies, respectively.
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development of T-lymphoma by FLT3-TKD in our experimental
system (Ono et al., unpublished data), whereas it led to the
development of BM aplasia in our leukemogenesis assays under
lethal conditioning. This difference in the disease phenotypes
implies that forced expression of oncogenic NRAS in BM
progenitors might be involved in its inhibitory effects on the
engraftment of radioprotective cells as well as the antiprolifera-
tive effect of oncogenic NRAS in the early phase of the
transplantation.®” These disease phenotypes were also different
from the development of MPD in the earlier reports.***° This
discrepancy might be due to the differences in the experimental
systems, such as the retroviral transduction and mice strains.
Meanwhile, the BM progenitors transduced with Hoxa9 and
NRASS'?Y seemed to result in engraftment failure under
sublethal conditioning, but these rapidly developed myeloid
malignancy under lethal conditioning. A recent study using BM
transplantation showed the possibility of drastic fluctuation in
the engraftment of donor cells receiving pathological modifica-
tion under sublethal conditioning;”u hence, our unsuccessful
results under sublethal conditioning might be associated with
some instability of the transplantation.

Our leukemogenesis assays showed a definitively synergistic
cooperation between MLL fusion proteins and oncogenic NRAS
in the acceleration of disease onset and change of the
phenotypes. Interestingly, the synergistic cooperation between
MLL fusion proteins and Ras/RaffMAPK activation closely
correlated with recent clinical studies reporting the frequent
coincidence of MLL fusion genes and mutations of RAS™ or
RAF* It was reported that the additional expression of
oncogenic KRAS induced an acute promyelocytic leukemia-like
disease in transgenic mice expressing promyelocytic leukemia/
retinoic acid receptor-o. with an increased penetrance and
decreased latency, although neither the penetrance nor the
latency was significantly different from those in mice that died of
MPD by expression of oncogenic KRAS alone.”* Other groups
recently rfﬂ)orted that the combination of oncogenic NRAS and
MLL-AF9* or MLL-ENL*® is capable of developing AML, and
that induced repression of oncogenic NRAS on the combination
reverted AML to MPD by the MLL fusion gene (MLL-AF9)
alone.** Although our findings that MLL fusion proteins and onco-
genic NRAS cooperate to induce AML confirmed these notions,
the present study further analyzed the involvement of Hoxa9
and Raf, downstream of the cooperation between MLL fusion
proteins and oncogenic NRAS. The myeloid transformation
assays in vitro showed that the activation of Raf-1, as well as
oncogenic NRAS, transformed A9G, a cell line expressing
Hoxa9. The leukemogenesis assays in vivo also showed that
Hoxa9 and oncogenic NRAS rapidly developed myeloid mali-
gnancy. These results in vitro and in vivo suggested that, as
downstream molecules, Hoxa9 and Raf may have important
roles in the synergistic leukemogenesis by MLL fusion proteins
and oncogenic NRAS.

Our findings suggest a possible model of MLL-fusion-
mediated leukemogenesis that was essentially recapitulated by
Hoxa9 expression and Ras/Raf/MAPK activation (Figure 7). In
the context of secondary genetic alterations, such as FLT3
mutations, this model explains the clinical features of acute
leukemia with 11g23 translocations. First, overexpression, as
well as TKD mutations, of FLT3 frequently detected in the MLL-
rearranged infant acute leukemia may be involved in the
leukemogenesis mainly through activation of Ras/Raf/MAPK,
because several studies reported that the signaling pathway of
wild-type FLT3 is similar to FLT3-TKD rather than FLT3-ITD.***®
Second, besides FLT3, other unknown molecular pathways that
lead to the activation of Ras/Raf/MAPK might also be involved in

Collaborative leukemogenesis by MLL and Ras
R Ono et al
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Figure 7 A model of mixed-lineage-leukemia (MLL)}-medialed
leukemogenesis together with secondary genetic alterations. MLL
fusion protein and secondary genetic alterations cooperate to induce
acute leukemia through synergistic molecular crosstalk between
aberrant expression of Hox genes, including Hoxa9, and the activation
of Ras/Raf/mitogen-activated protein kinase (MAPK). Other signaling
pathways, including signal transducer and activator of transcription 5
(STATS5) activation, only additively affect the leukemogenic potential.

the MLL-rearranged leukemia carrying no known genetic
alterations, as FLT3 alterations are not found very frequently in
most MLL-rearranged leukemia except in infants.***’ Mean-
while, in the context of MLL fusion proteins, we analyzed the
role of the Hoxa9-mediated pathway leading to leukemogen-
esis. Recent studies revealed that one of the Hox-cofactor
molecules, MeisT, is an essential molecule involved in normal
hematopoiesis*® as well as Hoxa9-mediated leukemogenesis.*’
However, our experimental system® using BM cells transduced
with MLL fusion proteins did not detect any significant
upregulation of MeisT in comparison with the mock transduc-
tion as reported earlier,®® in contrast with the findings by
other groups.'* Therefore, we focused on Hoxa9, one of the key
molecules directly upregulated by MLL fusion proteins. Inter-
estingly, a recent study showed that the combination of Hoxa9
and Meis1 cooperated with Trib7, which enhanced the
phosphorylation of ERK, to induce acute leukemia in the BM
transplantation assays.>' Their study is not inconsistent with our
findings; thus, the HOX and Ras/Raf/MAPK axes may have
central roles in the molecular network of MLL-mediated
leukemogenesis, which might be additively affected by other
pathways, such as activation of STAT5 (Figure 7). In addition, at
least, endogenous expression of MeisT in A9G cells is also
considered to be important in this network, but further analysis
will be required to clarify the role of MeisT in the collaboration
between HOX and MAPK axes.

Conclusion

This study suggests that MLL fusion proteins synergistically
cooperate with Ras/Raf/MAPK activation in leukemogenesis, at
least partly through the upregulation of Hoxa9. Future studies
analyzing the molecular crosstalk between Hoxa9 and the
Ras/Raf/MAPK cascade are expected to provide novel
insights into the molecular mechanism of MLL-fusion-mediated
leukemogenesis.
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Abstract We report a rare case of neonatal Beckwith-Wiedemann syndrome (BWS) associated with
alveolar thabdomyosarcoma (RMS). Alveolar RMS was diagnosed on the basis ot excisional biopsy.
Chemotherapy was initiated and tollowed by bone marrow transplantation. The patient, who is now
3 years and 11 months of age, is alive 46 months afier the initial diagnosis, albeit with discase. We could
not detect the PAX3-FKHR or PAX7-FKHR transcripts: however, we could observe hypomethylation of
the differentially methylated region of the long QT intronic transeript 1. Thus, neonatal alveolar RMS

with BWS may result from an alternate molecular pathway.
@ 2009 Elsevier Inc. All rights reserved.

Beckwith-Wiedemann syndrome (BWS) [1] is a con-
genital overgrowth syndrome with 3 principal clinical
features (omphalocele, macroglossia, and gigantism);
BWS is also associated with various malignant tumors
such as Wilms® tumor, hepatoblastoma, and rhabdomyo-
sarcoma (RMS).

Only 10% of RMS cases are reported in the first year of
life, and cases of neonatal RMS manifesting as a primary
skin lesion are extremely rare |2 |. Here, we report the case of
a neonate suffering from BWS associated with RMS that
manifested as a primary skin lesion.

* Corresponding author. Tel.: +81 279 52 3551: fax: 18] 279 52 2045.
E-mail address: koroiwatgeme prel.cunmajp (M. Kuroiwa).

0022-3468/8 — see front matter © 2009 Elsevier Inc. All rights reserved.
doi: 10.10167) jpedsurg. 2008.12.010

1. Case report

A l-day-old newborn was referred to our hospital for the
treatment of an omphalocele. The patient exhibited the
clinical features of BWS (facial nevus flammeus, macro-
glossia, and gigantism). The omphalocele was treated
successfully. However, at 15 days of age, small reddish
nodules were observed on the extremities and chest of the
patient. Subsequently, a number of small nodules appeared
on the head, trunk, and buttock, indicative of the condition
referred to as “blueberry muffin baby™ (Fig. 1). Biopsy of the
tumor revealed that it was arranged in the form of solid nests
ol undifferentiated cells, whereas the results of immunohis-
tochemical studics on the tumor cells were positive for
desmin, myogenin, myoDI, and myoglobin (Fig. 2). We
diagnosed this condition as a case of alveolar RMS.
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Fig. 1 Multiple cutancous and subcutancous lesions (a condition
termed as blueberry muttin baby) in the patient at 28 days ot age.

However, there was no evidence of a primary lesion in the
magnetic resonance imaging scans. Chemotherapy. compris-
ing vincristine, actinomycin D, and cyclophosphamide
(VAC), was initiated. The multiple skin tumors disappeared
afler 5 courses of VAC, which was followed by 4 courses of
modified ifosfamide-cisplatin-etoposide therapy and a bone
marrow transplantation procedure.

Fluorescence in situ hybridization studies did not reveal any
specific chromosomal translocations, and we could not detect
PAX3-FKHR or PAX7-FKHR transcripts. However, Southern
blotting analysis of the blood and tumor tissues demonstrated
the demethylation of the differentially methylated regions in
the long QT intronic transeript 1 (DMR-LIT1), a process that
leads to the biallelic expression of the KCNQ/! overlapping
transcript 1 (KCNQI1OTI: the paternally expressed antisense
transcript located in the KCNQI gene at 11pl5).

The findings from imaging studies conducted at
14 months of age revealed that the RMS was in complete
remission. However, RMS recurrence along with lung
melastasis was confirmed 2 months later. The patient was
administered VAC and campothecin (CPT-11) for 12 months,
which resulted in disappearance of the skin lesions. The
patient underwent 6 months of follow-up (up to an age of
2 vears and 9 months), afler which RMS recurred again.
However, the disease progression was controlled by admin-
istration of VAC and CPT-11. Rhabdomyosarcoma in the
patient, who is now 3 years and 11 months of age, is now in

remission, with no evidence of the diseasc in the results from
imaging studies.

2. Discussion

Beckwith-Wiedemann syndrome is a genetically hetero-
gencous disorder, and its occurrence is known to be related to
genetic abnormalities that affect insulin-like growth factor 2,
H19, cyclin-dependent kinase inhibitor 1C, and KCNQI1OT1
[ 3]. In particular, uniparental paternal disomy at chromosome
11p15 wasobserved in up to 20% of BWS patients; imprinting
defects at KCNQIOTI, in up to 50% patients [4.5]: and
mutation in cyclin-dependent kinase inhibitor 1 C, in up to 5%
patients; and hypermethylation in H19, in up to 7% patients.

Beckwith-Wiedemann syndrome has also been known to
increase the risk of malignancies; although the actual risk of
malignancy in cases of BWS is estimated to be 7.5%, it
increases (o 10% in cases of coexisting hemihypertrophy [6].
The most common malignancy associated with BWS is
Wilms' tumor, followed by adrenal cortical carcinoma and
hepatoblastoma | 7). However, neonatal RMS associated with
BWS is extremely rare [2].

To our knowledge, only 9 cases of RMS associated with
BWS, including our case, have been reported [2.7.8-11]. The
RMS subtype was alveolar in 5 patients, embryonal in 3, and
unknown in 1. Of the 5 patients with alveolar RMS, 3 had
multiple skin lesions (Table 1). In the genetic analyses of the
cases of alveolar RMS, neither P4X3-FKHR nor P4X7-
FKHR transcripts were reported to be present: however,
hypomethylation of DMR-LITI, indicating biallelic expres-
sion of KCNQ1OTI, was observed. Alveolar RMS has a poor
prognosis because there was only 1 disease-free survivor.

On the other hand, 19 cases of neonatal alveolar RMS
without BWS have been reported [12-19]. The patients were
predominantly female infants, and the most common sites
were the extremities. There were 11 cases (59%) of skin
lesions, and brain meltastasis was observed in 5 (45%) of
these 11 patients. In the molecular analysis of samples {rom 7
patients, the PAX3-FKIHR transcripts were observed in only 3
cases (43%) (Table 2). These data suggest that neonatal
alveolar RMS has a tendency to develop as multiple skin
lesions associated with brain metastasis and that common
translocations are not observed frequently in this condition.
The overall survival rate was 26%, and only 3 patients
(15.8%) were discase-fice. In particular, neonates with skin
lesions had a poorer prognosis than those without lesions.
Therefore, we should consider the possibility of malignant
neoplastic disease when diagnosing the neonatal skin lesions
that present as a plaque-like or nodular lesion with slow but
progressive growth [13-15].

This report is the first o demonstrate an association
between BWS and primary cutancous alveolar RMS in a
neonate. Furthermore, this case is of interest not only for the
unique clinical presentation but also for the absence of the
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Fig. 2
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Pathological features of the tumor. The tumor cells were undifferentiated with very little eytoplasm (A, hematoxylin and cosin:

original magnification *200). Immunohistochemical studies revealed that the tumor cells were positive for desmin (B, original magnification
»200), myogenin (C, original magnification »200), and myoglobin (in the focal areas: D, original magnification »200).

fusion transcripts. The absence of these common (ransloca-
tions in spite of the presence of the DMR-LITI demecthyla-
tion, which is indicative of biallelic expression of
KCNQIOTI, indicates that the antisense (ranscript on
I1plS may be involved in an alternate pathway that leads
to the development of alveolar RMS.
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