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Hepatoblastoma (HBL) is the most common malignant liver tumor in children. Since tumor
suppressor p53 is rarely mutated in HBL, it remains unknown whether p53 could contribute to the
hepatocarcinogenesis. In the present study, we have found for the first time that, like neuroblastoma
(NBL), wild-type p53 was abnormally accumulated in the cytoplasm of the human HBL-derived
Huh6 cells. In accordance with this notion, immunohistochemical analysis demonstrated that p53
is largely expressed in cytoplasm of human primary HBLs. In response to the oxidative stress,
Huh6 cells underwent apoptotic cell death in association with the nuclear translocation of p53 and
the transactivation of its target gene implicated in apoptotic cell death. siRNA-mediated knockdown
of the endogenous p53 conferred the resistance of Huh6 cells to oxidative stress. Intriguingly,
histone deacetylase inhibitor (nicotinamide) treatment strongly inhibited the oxidative stress-induced
nuclear translocation of p53 as well as the p53-dependent apoptosis in Huh6 cells. In contrast to
the previous observations, the cytoplasmic anchor protein for p53 termed Parc had undetectable
effect on the cytoplasmic retention of p53. Collectively, our present results suggest that the abnormal
cytoplasmic localization of p53 might contribute at least in part to the development of HBL.

Introduction

Hepatoblastoma (HBL) is one of the most frequent
malignant liver tumors of childhood. Indeed, its incidence
is higher than that of hepatocellular carcinoma (HCC) in
children. HBL arises from the hepatic precursor cells and
displays a morphological similarity to the immature
hepatocytes of the developing liver. In a sharp contrast to
HCC, which is associated with hepatitis virus infection
(Llovet et al. 2003), it has been shown that the incidence
of HBL is highly elevated in patients with familial
adenomatous polyposis (FAP), which carry germ-line
mutations in the APC (adenomatous polyposis coli) tumor
suppressor gene (Hughes & Michels 1992; Nagase &
Nakamura 1993). APC protein forms a cytoplasmic mul-
tiprotein complex involved in the Wnt signaling pathway,
which regulates the stability of B-catenin (Henderson &
Fagotto 2002). Although APC is rarely mutated in sporadic
HBL, accumulating evidence demonstrated that the
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frequent mutations or deletions of B-catenin at hot-
spot regions within the exon 3 encoding its degradation
targeting box are detectable in HBL, suggesting that
the abnormal nuclear accumulation of the stabilized
B-catenin which collaborates with Tcf/Lef complex plays
a central role in the genesis of HBL (Koch et al. 1999).
Consistent with this notion, Takayasu ef al. (2001) revealed
that B-catenin mutation is significantly correlated with
the up-regulation of its target genes, including cyclin D1
and fibronectin. However, Harada et al. (2002, 2004)
described that f-catenin mutation alone is not sufficient
for the hepatocarcinogenesis, indicating that the additional
mutations or epigenetic changes might be required for
the genesis of HBL.The detailed molecular mechanism(s)
behind the pathogenesis and development of HBL remains
unknown.

The p53 tumor suppressor is a nuclear transcription
factor, which has an ability to transactivate various p53-
target genes implicated in the regulation of G1 cell cycle
arrest and/or apoptosis such as p21™¥*"', MDM2, Bax
and NOXA (Prives & Hall 1999; Sionov & Haupt 1999;
Vousden & Lu 2002). The importance of p53 in the
tumorigenesis has been emphasized by the observations
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Figure 1 Cytoplasmic localization of p53 in HBL cells. (A) Immunohistochemical analysis. Sections (4 pm thick) of two primary
hepatoblastoma tissues (case 1 and 2) were stained with the anti-p53 antibody. Note the positive signals in the cytoplasm of muost tumor
cells. (B) p53 is abundanty expressed in cytoplasm of Huh6 cells. Huh6 and HepG2 cells were biochemically fractionated into cytoplasmic
(C) and nuclear (N) fractions as described under Experimental procedures. Equal amounts of cytoplasmic and nuclear extracts were
subjected to Western blotting with the anti-p53 or with the anti-phosphorylated form of p53 at Ser-15. 0-tubulin and Lamin B were
used for the cytoplasmic and nuclear markers, respectively. (C) Leptomycin B has undetectable effect on the subcellular localization of
p53. Huh6 cells were treated with or without 20 ng/mL of Leptomycin B (LMB). Six hours after the treatment, cells were fractionated
into cytoplasmic (C) and nuclear (N) fractions, and subjected to Western blotting with the indicated antibodies.

showing that p53 mutation is detected in more than half
of all human tumors (Hollstein ef al. 1991; Vogelstein
et al. 2000). The tumor-suppressive activity of p53 is
dependent on its sequence-specific transactivation func-
tion. Indeed, the vast majority of p53 mutations are found
within its central sequence-specific DNA-binding domain.
Under normal conditions, p53 is a short-lived protein
whose expression levels are kept extremely low. MDM2
acts as an E3 ubiquitin protein ligase for p53, and promotes
its ubiquitination followed by degradation by 26S protea-
some (Haupt etal. 1997; Honda ef al. 1997; Kubbutat
et al. 1997). Recently, it has been demonstrated that, like
MDM?2, Pirh2 and COP1 target p53 for degradation
by 26S proteasome in an ubiquitin-dependent manner
(Leng et al. 2003; Dornan et al. 2004). In response to
genotoxic stresses, p53 is induced to be accumulated in
cell nucleus through its phosphorylation at multiple sites,
including Ser-15, Ser-20 and Ser-46, and exerts its pro-
apoptotic activity (Sionov & Haupt 1999; Vousden & Lu
2002). In addition to the NH,-terminal phosphorylation
of p53, p300/CBP (CREB-binding protein) with the
histone acetyltransferase (HAT) activity binds to the
NH,~terminal region of p53, mediates the acetylation
of its COOH-terminal region and thereby enhances its
activity (Gu & Roeder 1997). Thus, the post-translational
modifications of p53 enhance its transcriptional as well
as pro-apoptotic ability.

Genes to Cells (2007) 12, 461-471

In contrast to other human tumors, p53 is infrequently
mutated in certain human tumors such as neuroblastoma
(NBL) and HBL (Vogan ef al. 1993; Chen ef al. 1995;
Ohnishi et al. 1996; Kusafuka et al. 1997), indicating that
p53 plays no role in the genesis and development of these
tumors. However, this viewpoint has been challenged
by the observations that the wild-type p53 is abnormally
accumulated in the cytoplasm of NBLs (Moll et al.
1995). These findings strongly suggest that the nuclear
exclusion of wild-type p53 might represent one non-
mutational mechanism of p53 inactivation. In addition
to NBL, wild-type p53 is abnormally sequestered in the
cytoplasm in certain human tumors, including breast and
colon cancers (Moll ef al. 1992; Bosari et al. 1995). Although
the detailed molecular mechanism(s) of the cytoplasmic
accumulation of wild-type p53 remains unclear, Nikolacv
et al. (2003) described that Parc (p53-associated parkin-like
cytoplasmic protein) interacts with p53 in cytoplasm and
inhibits its nuclear translocation.

In the present study, we have found that wild~type p53
is abundantly expressed in human primary HBLs and
HBL-derived Huh6 cells. In response to oxidative stress,
p53 was induced to be translocated into cell nucleus of
Huh6 cells,and Huh6 cells underwent apoptotic cell death.
Furthermore, nicotinamide treatment abolished the
oxidative stress-induced nuclear translocation of p53,
thereby inhibiting the p53-dependent apoptotic cell death.

© 2007 The Authors
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Figure 2 Effect of H,O, treatment on Huh6 and HepG2 cell lines. (A, B) MTT cell survival assays. Huh6 (filled boxes) and HepG2
cells (open boxes) were exposed to H,O, at the indicated concentrations for 6 h. After the treatment with H,O,, their cell viability was
assessed by MTT assays (A). Similarly, Huh6 and HepG2 cells were treated with 1 mm of H,O, for the indicated time periods, and their
cell viability was examined by MTT assays (B). (C, D) Western blot analysis. HepG2 (C) and Huh6 cells (D) were treated with 1 mm of
H,0, for the indicated periods of time. Thereafter, whole cell lysates were prepared, and subjected to Western blotting with the anti-p33
(1st panel) or with anti-phospho-p53 at Ser-15 (2nd panel). Expression of actin was used to control equal protein loading (3rd panel).
Alternatively, total RNA was extracted from cells treated with H,O,, and analyzed by RT-PCR for the expression of NOXA (4th panel).

GAPDH was used to normalize (S5th panel).

Results
Cytoplasmic expression of p53 in human HBLs

As previously described (Vogan et al. 1993; Moll ef al.
1995), p53 is rarely mutated in human primary NBLs,
and predominantly expressed in cytoplasm. Similar to
NBLs, it has been shown that p53 is infrequently mutated
in human primary HBLs (Chen ef al. 1995; Ohnishi ef al.
1996); however, its subcellular localization remains unclear.
Then, we sought to examine the subcellular localization
of p53 in surgically resected specimens of primary HBLs
by immunohistochemistry. As shown in Fig. 1A, p533
immunoreactivity was detectable largely in cytoplasm of
tumor cells, suggesting that, like NBLs, p53 might lack
its intact function due to its abnormal cytoplasmic local-
ization in HBLs. To further confirm these observations,
we examined the subcellular distribution of p53 in HBL~
derived Huh6 (Doi 1976) and HCC-derived HepG2
cells (Aden et al. 1979). As described (Bressac et al. 1990;
Hsu ef al. 1993), HepG2 cells carry wild-type p53. Our
sequence analysis revealed that p533 expressed in Huh6
cells has a wild-type structure (data not shown). Huh6 and
HepG2 cells were biochemically fractionated into cyto-
plasmic and nuclear fractions, and subjected to Western
blotting with the anti-p53 antibody. 0-tubulin and Lamin

© 2007 The Authors

B were used as cytoplasmic and nuclear markers, respec-
tively. Under our experimental conditions, E-cadherin,
which is one of the membrane marker, was detected in the
cytoplasmic fraction (data not shown). As shown in Fig, 1B,
p53 was undetectable in each fraction of HepG2 cells,
whereas p53 was largely expressed in cytoplasm of Huh6
cells, which was consistent with our immunohistochemical
analysis of primary HBLs. It is worth noting that p53 is
constitutively phosphorylated at Ser-15 in Huh6 cells in
the absence of DNA damage. To rule out a possibility
that the subcellular localization of p53 could be regulated
by active nuclear export in Huh6 cells, Huh6 cells were
treated with the nuclear export inhibitor leptomycin B
(LMB).As shown in Fig. 1C,LMB had undetectable effect
on the subcellular distribution of p53 in Huh6 cells.

Induction of apoptosis by oxidative stress in HBL-
derived and HCC-derived cell lines

As described (Lluis et al. 2005), oxidative stress induced
apoptotic cell death in hepatocytes. To examine a possible
effect of the oxidative stress on Huh6 and HepG2 cells,
these cells were treated with H,O,, and their cell viability
was assessed by MTT cell survival assay. As shown in
Fig. 2 A,B, Huh6 and HepG2 cells underwent apoptosis
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Figure 3 siRNA-mediated knockdown of p53 in Huh6 cells.
Huh6 cells were stably transfected with the empty plasmid (V1-
V3) or with the expression plasmid encoding siRNA against p53
(P1-P13), and cultured in the presence of G418 (at a final
concentration of 400 pg/mL) for 2 weeks. Whole cell lysates
prepared from the indicated cell clones and the parental Huho cells
(Control) were analyzed by Western blotting for the expression
levels of the endogenous p53 and actin.

in response to H,O, in a dose-dependent and a time-
dependent manner. Since p53 plays a central role in the
DNA damage-induced apoptosis (Prives & Hall 1999;
Sionov & Haupt 1999), we examined the changes in
endogenous p53 protein levels following treatment with
H,O.,. As shown in Fig. 2C, p53 was expressed at low
levels in HepG2 cells without H,O,. Following exposure
to H,O,,p33 was induced to be accumulated in association
with a remarkable increase in the amounts of p53 phos-
phorylated at Ser-15. RT-PCR analysis revealed that the
transcription levels of pro-apoptotic NOXA, which is
one of the p53-target genes, are elevated in response to
H,O, treatment. In contrast, the amounts of total p53
remained almost constant and p53 was constitutively
phosphorylated at Ser-15 in Huh6 cells regardless of H,O,
treatment (Fig. 2D). Under our experimental conditions,
however, the expression levels of NOXA were increased
in Huh6 cells exposed to H,O,, suggesting that p53 might
contribute to the oxidative stress-mediated apoptotic cell
death in Huh6 cells.

p53 plays a critical role in the H,O,~mediated
apoptosis in Huh6 cells

To examine whether p53 could play an important role in
the regulation of H,O,-dependent apoptosis in Huh6
cells, Huh6 cells were stably transtected with the expression
plasmid encoding siRINA against p53 or with its control
plasmid. Two weeks after the selection with G418 (at a
final concentration of 400 pg/mL), we finally established
several p53-knockdown cell clones as well as control cell
clones (Fig. 3). We then investigated their sensitivity to
H,O, by TUNEL staining. Five hours after the treatment
with H,O, at a final concentration of 1 mm,V-2,V-3,
P-9 and P-10 cells were subjected to TUNEL staining to
identify the apoptotic cells. Cell nuclei were stained with
DAPI. As shown in Fig. 4, exposure of V-2 and V-3 cells
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to H,O, resulted in a significant increase in a number of
TUNEL-positive cells, whereas two to threefold decrease
in a number of cells with apoptotic nuclei was observed
in P-9 and P-10 cells in response to H,O,. Similar results
were also obtained in the other cell clones (data not shown).
These results strongly suggest that p53 contributes at
least in part to the H,O,-mediated apoptotic cell death
in Huh6 cells.

H,0,-mediated nuclear translocation of p53

It is well documented that p53 is induced to be accumulated
in cell nucleus in response to various DNA damaging
agents, including cisplatin (CDDP) (Fritsche ef al. 1993).
In accordance with this notion, CDDP treatment stimulated
the nuclear accumnulation of p53 in Huho cells in a time-
dependent manrer, whereas the amounts of cytoplasmic
p53 remained unchanged regardless of CDDP treatment
(Fig. 5A). Additionally, Huh6 cells underwent apoptotic
cell death in response to CDDP (Fig. 5B). Intriguingly,
there existed an inverse relationship between the amounts
of cytoplasmic and nuclear p53 in response to H,O,
(Fig. 5C). Indirect immunofluorescent staining indicated
that p53 is largely expressed in cytoplasm of Huh6 cells,
whereas p53 accumulates in cell nucleus in response to
H,O, (Fig. 5D).Thus, it is likely that the H,O,~mediated
nuclear translocation of p53 might be one of the molecular
mechanisms underlying the H,O,-dependent apoptosis
in Huh6 cells.

Parc has an undetectable effect on the cytoplasmic
retention of p53

The nuclear localization of p53 is critical for its transcrip-
tional activity as well as apoptosis-inducing function.
Recendy, Nikolaev ef al. (2003) have found that a Parkin-
like ubiquitin ligase termed Parc acts as cytoplasmic
anchor protein to block nuclear localization of p33. To
ask whether Parc could be involved in the cytoplasinic
retention of p53 in Huho cells, we examined the interaction
between p53 and Parc by immunoprecipitation experi-
ments. Whole cell lysates prepared from Huho6 cells were
immunoprecipitated with normal mouse serum (NMS)
or with the anti-p53 antibody, and the immunoprecipitates
were analyzed by Western blotting with the anti-Parc
antibody. Consistent with the previous results (Nikolaev
et al. 2003), the anti-p53 immunoprecipitates contained
the endogenous Parc (Fig. 6A).We then examined a possible
effect of Parc on the subcellular distribution of p53.
For this purpose, Huh6 cells were transiently transfected
with siRINA against Parc or with the control siRINA.
Twenty~four hours after transfection, total RNA and
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