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Fig. 2. LMO3 inhibits the transcriptional ability of p53. (A) mRNA levels of p53
target genes following p53 overexpression in p53-deficient H1299 cells, with co-
expression of an increasing amount of LMO3 plasmid. Total RNA was extracted and
subjected to RT-PCR analysis of Noxa, Bax, p21"4f! and Puma; detection of GAPDH
was used as 2 loading control. (B} Luciferase gene reporter assay of p21"*!, Bax and
Mdm2 promoter. regions. H1299 cells were: transiently transfected with the
indicated combination of p53 and increasing LMO3 plasmid. Results are the mean
of three indeperident experiments + standard deviation.

p53-mediated activation of p21WA™!, Bax, and Mdm2 promoter re-
gions was .reduced by co-expression of FLAG-LMO3 when com-
pared to transfection of p53 alone. Therefore, both endogenous
mRNA transcription and activation of p53-responsive promoter
elements were reduced upon co-expression with LMO3. These
findings signify that LMO3 acts as a co-repressor of p53, suppress-
ing p53-mediated transcriptional regulation.

Promoter recruitment of p53 is affected by LMO3

We attempted to clarify the mechanism by which LMO3 re-
presses p53-mediated gene activation. For this, we employed ChiP
assays to characterize the recruitment of p53 onto p53-response
elements in the p21, Bax and Puma promoters. Both p53 and
LMO3 proteins could be expressed in H1299 cells, detected by wes-
tern blot (Fig. 3A). This experimental system revealed that specific
recruitment of exogenously expressed p53 onto the promoters of
p21, Bax, and Puma genes in the presence or absence of HA-
LMO3 (Fig. 3B). The specificity of the anti-p53 antibody to precip-
itate p53 bound chromatin is shown by the lack of PCR product in
the absence of p53, LMO3 only transfection, and ChiP with normal
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mouse IgG. The effect of LMO3 on p53 recruitment to these regions
appears to be promoter specific, as a clear increase in recruitment
of p53 to the p21 promoter was observed when LMO3 was present
in cells. A similar tendency at Bax and Puma promoters was ob-
served to a lesser extent.

Discussion

LMO3 can act as an oncogene by promoting cell survival when
highly and abnormally expressed in neuroblastoma [14)}. Further-
more, we report here that LMO3 inhibits p53, one of the key mol-
ecules in protection against cancer. This oncogenic action of LMO3
is comparable to the activity of other LIM-only protein family
members against tumor suppressor proteins [19]. Additionally,
the compensatory roles of LMO1 and LMO3 in development [6]
suggest common mechanisms of activity between LIM-only pro-
teins. Yet the timing of expression levels and topography result
in subtly distinct outcomes. Taken together with our previous
studies, recent results are consistent with the notion that LIM-only
proteins are regulatory proteins which have essential functions in
transcriptional regulation, while they can be potent oncogenes un-
der conditions of abnormal expression.

We demonstrated that' LMO3 represses p53-mediated activa-
tion and transcription of apoptosis-related genes. The foss of p53
activation provides tumor cells with several selective advantages,
such as an increased.tolerance to growth arrest and apoptosis-
inducing protective mechanisms, in addition to genetic instability
[3,5]. This indicates that p53 is either inactivated or repressed by
LMO3, even though p53 still retains nuclear localization and
DNA-binding capability. Additionally, activation of the DNA-dam-
age response by CDDP treatment demonstrated a functioning p53
pathway in SH-SY5Y cells including the transcriptional activation
of p21 (Supplementary Fig. 1). Interestingly, p53 recruitment to
the p21Y¥A*! promoter was increased by LMO3 expression. How-
ever, in all p53-activated genes studied;, LMO3 could repress their
transcription by p53. Thus, LMO3 expression can influence p53
recruitment in a promoter selective manner but this may not be
the main mechanism of repression.

As no enzymatic activity has been reported for LMO3, we pro-
pose that de-regulation of LMO3 expression leads to abnormal
complex formation because of inappropriate LMO3 interactions.
Our ChIP assay suggests that LMO3 does not suppress p53-medi-
ated gene activation by interfering with DNA-binding. Therefore,
another repression mechanism must exist. Accumulating evidence
has demonstrated that post-translational modification of histones
correlate with gene transcriptional regulation. Generally, Histone
acetylation is associated with gene activation [20]. Physical and
functional. interactions of histone-acetyltransferases with p53,
such as CBP and p300, demonstrate targeted acetylation.of his-
tones at promoter regions [21-23]. ChIP assays may indicate mod-
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Fig. 3. Recruitment of p53 to promoters of apoptosis-related genes. (A) Immunoblotting showing expression of p53 and HA-LMO3 in p53-deficient H1299 cell line. (B)
Chromatin immunoprecipitation with anti-p53 antibody or control mouse IgG in H1299 cells transfected with the indicated combinations of p53 and HA-LMO3 expression

plasmids.
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ification of histone acetylation by overexpression of LMO3 in the
chromatin of p53-target genes. Future studies should examine
the potential protein-protein interactions and the nature of LIM-
only protein complexes involved in epigenetic modifications of
chromatin. '

The discrepancy between increased p53 recruitment and
repression of gene activation could be explained by the following
mechanisms. p53 receives a complex assortment of post-transla-
tional modifications including phosphorylation, ubiquitination,
sumoylation, methylation and acetylation. These modifications af-
fect many aspects of p53 status and activity, such as protein stabil-
ity, DNA-binding activity, promoter selection and target-gene
activation and/or repression. Regarding the repression of p53-med-
iated transcription by LMO3, we could not find any reduction in
protein stability (data not shown) and DNA-binding activity of
p53 to the p21, bax, and puma promoters. This suggests that
LMO3 regulation of p53 may affect the association with its co-acti-
vators and repressors. It has been proposed that LIM-only proteins
exert their effect by mediating protein-protein interactions and
competing for interacting domains in the assembly of protein com-
plexes [24,25]. Thus, LMO3 may directly compete for recruitment
of negative transcriptional regulators to the p53 DNA-binding
complex and promoter regions. Alternatively, LMO3 could recruit
post-translational modifiers of p53 affecting transcriptional activa-
tion via an.indirect mechanism. One other possibility, although not
yet established for LIM-only proteins, is that binding by LMO3 af-
fects the protein folding of p53, allowing recruitment to its re-
sponse element yet interferes with assembly of the transcription
machinery.

We expected that alterations in LMO3 transcriptional com-
plexes have an inappropriate regulatory effect on downstream tar-
gets. Indeed, this is supported by our findings that the interaction
of LMO3 with p53 represses p53-mediated transcription. This
seems to be a common theme among LIM-only proteins. For exam-
ple, LMO4 inhibits the transcriptional activity of BRCA1, a major
tumor suppressor in breast cancers [10,19]. Intriguingly, Simonis
et al. [26] found that LMO3 is activated by chromosomal transloca-
tions of the T-cell receptor beta locus associated with T-cell lym-
phomas. In view of this study, the activities and molecular
pathways of LMO3 activity identified here and in our previous re-
port may be applicable to T-ALL. For future studies of LMO3, the
regulation of gene expression itself needs to be clearly defined.

Long term survival, especially for those over 18 months of age
for children with advanced neurcblastoma is currently unsatisfac-
tory. Regardless of a myriad of treatments, recovery rates are poor.
Present treatment regimes include surgery, radiation therapy, che-
motherapy, retinoic acid and immunotherapy with anti-GD2
monoclonal antibody. Currently, in high risk groups (around half
of all patients) overall survival is less than 40% [2]. There is an ur-
gent necessity for specific therapies that can selectively eliminate
cancer cells while limiting damage to normal cells and tissues. In
particular, identification of novel targets and pathways through
studies of: abnormal gene expression, mutations, and genetic
abnormalities in the various stages of neuroblastoma is crucial.
Inhibition of LMO3 may be useful in treatment of presently diffi-
cult to treat. neuroblastomas. The potential for interference of
LIM-only protein multi-complexes and subsequent inhibition of
normal and tumorigenic roles has been demonstrated using vector
mediated expression of an anti-LMO2 single chain Fv antibody
fragment [27,28]. Recent advances which will allow for individual
gene profiling of tumors and the ability to design specific inhibitors
may lead to a personalized treatment regime based on expression
of individual oncogenes. Therefore, specific targeting of LMO3 in
highly expressing tumors may simultaneously permit activation
of the p53 pathway and inhibit LMO3-mediated pro-survival
mechanisms,
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Abstract

Purpose: Reliable prognostic stratification remains a challenge for cancer patients, especially for dis-
eases with variable clinical course such as neuroblastoma. Although numerous studies have shown that
outcome might be predicted using gene expression signatures, independent cross-platform validation is
often lacking.

Experimental Design: Using eight independent studies comprising 933 neuroblastoma patients, a
prognostic gene expression classifier was developed, trained, tested, and validated. The classifier was es-
tablished based on reanalysis of four published studies with updated clinical information, reannotation
of the probe sequences, common risk definition for training cases, and a single method for gene selection
(prediction analysis of microarray) and dassification (correlation analysis).

Results: Based on 250 training samples from four published microarray data sets, a correlation signa-
ture was built using 42 robust prognostic genes. The resulting classifier was validated on 351 patients from
four independent and unpublished data sets and on 129 remaining test samples from the published studies.
Patients with divergent outcome in the total cohort, as well as in the different risk groups, were accurately
classified (log-rank P < 0.001 for overall and progression-free survival in the four independent data sets).
Moreover, the 42-gene classifier was shown to be an independent predictor for survival (odds ratio, >5).

Conclusion: The strength of this 42-gene classifier is its small number of genes and its cross-platform
validity in which it outperforms other published prognostic signatures. The robustness and accuracy of
the classifier enables prospective assessment of neuroblastoma patient outcome. Maost importantly, this
gene selection procedure might be an example for development and validation of robust gene expression

signatures in other cancer entities. Clin Cancer Res; 16(5); 1532-41. ©2010 AACR.

One of the main challenges in clinical cancer research
remains accurate prediction of outcome, enabling better
choice of risk-related therapy. This is particularly true
for neuroblastoma, a pediatric tumor of the sympathetic
nervous systein, which is characterized by a remarkably
heterogeneous clinical course. Tumors that are found in
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infants frequently regress spontaneously or show differ-
entiation features on treatment, whereas tumors diagnosed
in children >1 year of age often metastasize, causing accel-
erated cancer-related death despite intensive therapies. Ac-
cordingly, different therapeutic schemes exist ranging from
watch-and-see approaches to multimodal therapies. Four
major risk stratification systems are currently being used
in various parts of the world (Europe, United States, Japan,
and Germany) based on a combination of clinico-
pathologic and genetic parameters, such as age at diagno-
sis, tumor stage, MYCN gene status, histopathologic
classification, ploidy, and chromosome 1p and 11q status
(1-8). Clinical experience within these systems indicates
that the stratification is useful, but misclassifications occur,
resulting in overtreatment or undertreatment. [dentifica-
tion of more specific and sensitive markers for response
to therapy and outcome prediction is clearly required
and is expected to result in better choice of risk-related
therapy.

As differences in outcome are considered to reflect un-
derlying genetic and biological characteristics that have
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their effect on mRNA gene expression profiles, several mi-
croarray expression profiling studies have been undertaken
to predict patient outcome in different cancer entities.

An important limitation of many published gene ex-
pression profiling studies is the lack of statistical power
to identify markers and lack of independent validation.
Typically, around 30,000 to 40,000 transcripts are tested,
generating hundreds of thousands of data points for a rel-
atively small subset of tumors (between 20 and 100).
When such a high number of genes are evaluated as prog-
nostic markers, there is a substantial chance that a random
association between a gene and the prognostic classes is
observed (9, 10). Consequently, many published studies
do not classify patients better than chance due to lack of
internal validation by repeated random sampling of train-
ing sets or external validation on independent samples. As
such, there are a few inherent but often overlooked statis-
tical issues, such as data overfitting, unstable gene lists,
and lack of study power (11).

In this study, we established a prognostic 42-gene clas-
sifier for children with neuroblastoma by reanalysis of
four published gene expression studies from four different
microarray platforms comprising 582 patients in total
(12-15). To facilitate data comparison across different
platforms, probe annotations were updated with respect
to the original publications. When available, dlinical fol-
low-up information was updated. All these aspects critical-
ly contribute to the success of our multigene signature.
Successful validation of the multigene signature in four in-

dependent unpublished data sets shows its robust perfor-
mance and platform independence.

Materials and Methods

Gene expression data sets. Four published studies were
used for selecting the genes and building the prognostic
classifier (phase 1 data sets), and four unpublished data
sets were used as independent validation sets (phase 2
data sets).

The phase 1 data sets were downloaded either from the
National Center for Biotechnology Information Gene Ex-
pression Omnibus (GSE2283 and GSE3960; refs. 14, 15)
or from the European Bioinformatics Institute ArrayEx-
press database (E-TABM-38; ref. 13), or from the authors'
Web site'® (12).

A trained multigene correlation signature was validated
on the four independent phase 2 data sets from which the
42 genes (when present) were extracted and standardized
(per gene, the median value across the samples was sub-
tracted followed by division by the SD of the gene):
(a) hgu95av2 Affymetrix gene expression data from 106
neuroblastoma patients (validation set 1; 40 genes pres-
ent), (b) hgul33plus2 Affymetrix gene expression data
from 53 neuroblastoma patients (validation set 2; 40 genes
present), (c) data set for 91 neuroblastoma patients ob-
tained using an 11K custom Agilent oligonucleotide micro-
array (validation set 3; 41 genes present), and {d) Human
Exon 1.0 ST Affymetrix expression data from 101 neu-
roblastoma patients (validation set 4; 42 genes present;
standardized data of the 42-gene selection as well as clin-
ical data are available in Supplementary Tables S1 and S2;
Fig. 1).

For the remainder of the article, we will label the data
sets according to the first author for the published phase
1 studies [Oberthuer (13}, Wang (15), Berwanger (12),
and Ohira (14)] and as validation sets 1, 2, 3, and 4 for
the unpublished phase 2 studies.

Data preprocessing. To make the data from the different
microarray platforms maximally comparable, annotation
information of the probes was updated using the Match-
Miner tool {16) for the custom-made ¢DNA or oligonucle-
otide arrays {12-14) and using the latest version of the R
packages hgu95av2 and hgul33plus2 for the Affymetrix
array data (15). Probe identification numbers were con-
verted into gene symbols to enable straightforward com-
parison of the gene lists between the different studies.
Throughout the text, the number of unique gene symbols
(represented by one or more array probes) in each study is
indicated.

Updated dinical information with regard to progres-
sion-free survival (PFS) and overall survival (OS) times
was obtained from the authors (14, 15) or was publicly
available (13). For the Berwanger and Ohira studies and
validation set 1, only OS data were available.

1% http://www.imt.uni-marburg.de/microarray/download.html
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Patients were divided in two clearly defined risk groups.
The low-risk subgroup was defined by stage 1, 11, or IVS
without MYCN amplification, and the high-risk subgroup
comprised patients with age of diagnosis >1 y with stage
IV tumors (irrespective of MYCN status} or with stage 11
and II tumors with MYCN amplification. To develop
our classifier, as many patients as possible from the four
phase 1 data sets were divided in the two risk groups with
maximally divergent dinical course (Table 1), that is, low-

risk patients with PFS time (or OS time for Berwanger and
Ohira data sets) of at least 1,000 d and high-risk patients
that died from the disease. The patients that did not be-
long to the above-mentioned low- or high-risk subgroups
were used as independent test set.

Statistical analysis. Identification and validation of prog-
nostic classifiers (for each single phase 1 data set) were
done by prediction analysis of microarray (PAM) classifi-
cation with 10-times repeated 10-fold cross-validation in
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Fig. 1. Outline of the strategy used for prioritization of the 42 prognostic gene list (A} and construction of a 42-gene correlation signature and validation on
independent test samples from phase 1 studies and phase 2 validation data sets (B). m, months.
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Table 1. Published phase 1 studies used for training the classifier, with indication of the number of (train-
ing) samples, median OS or PFS (in months), and estimation of the performance of the study-specific
PAM classifier for prediction of unfavorable outcome (OS)

Berwanger Oberthuer Ohira Wang
No. patients 94 251 136 101
No. low-risk training samples 22 87 43 18
No. high-risk training samples 13 25 20 22
Median OS/PFS (mo) 0S =43 PFS = 55 0S = 46 PFS = 48
Specificity 0.955 0.977 0.814 1,000
Sensitivity 1.000 0.960 0.950 0.773
Negative predictive value 0.929 0.923 0.704 1.000
Positive predictive value 1.000 0.988 0.972 0.783
Accuracy 0.971 0.973 0.857 0.875
Performance (AUC) 0.977 0.969 0.882 0.886

the R statistical language using the Bioconductor package
MCRestimate (Fig. 1A; refs. 13, 17). Forty-two genes were
present in at least two of the four resulting gene lists.

A cross-platform gene signature was built using stan-
dardized expression data of the 42 genes (if present on
the respective arrays, see Supplementary Data 2) from four
published phase 1 studies. The correlation method was
used to build and test a cross-platform prognostic signa-
ture (Fig. 1B). Log-transformed data were merged in one
file (if more than one probe was present for a certain gene,
the probe with the highest expression value was selected),
and for each of the 42 genes, the mean expression value
in low-risk neuroblastoma patients with PFS of at least
1,000 d was subtracted from the mean expression value
in high-risk neuroblastoma patients that died of disease.
For classification, the Pearson's correlation coefficient of
the signature with the standardized expression values of
independent test patients was calculated. Patients with a
correlation coefficient below 0 were predicted to have
good prognosis, whereas the other patients were predicted
to have bad prognosis‘[according to Liu et al. (18)].

Kaplan-Meier survival analysis was done with the R'sur-
vival package (R version 2.6.1). The area under the receiver
operating characteristic curve (AUC) was used as a mea-
sure for the accuracy of the classifiers (ROCR R-package).
Multivariate forward conditional logistic regression analy-
sis was done using SPSS version 16:

Restiits

Gene prioritization for inclusion in a robust prognostic
classifier. A complete 10-times repeated 10-fold cross-val-
idation using the PAM algorithm (13, 19) was done on the
training patients belonging to one of the two clearly de-
fined risk grodps from the four published phase 1 studies
separately to identify robust prognostic markers (Fig. 1).
This process was accompanied by determination of the
classification accuracy, providing a first estimation of the
utility of the expression data to predict outcome (Table 1).

For each data set, we selected the probes that were in-
cluded in at least 65 of the 100 cross-validation gene lists,
as these genes are likely to be the ones with the highest
prognostic value as determined by Oberthuer et al. (13).
The resulting prognostic gene lists from the four studies
showed significant overlap (Table 2; Supplementary Data 1).
Two genes were in common between three lists (i.e, MYCN
and NTRK1), whereas 40 genes were in common between

" two lists. Thirty-two were previously reported in at least 1 of

10 published prognostic gene lists, of which only 10 were
found in 2 or more published prognostic lists (12-14,
20-26). The occurrence of the 42 genes in at least two of
the four lists makes them robust, platform-independent,
prognostic markers.

Classification performance of the 42-gene list. Next, we
investigated whether the 42-gene list is able to predict
prognosis across different data sets. The classification per-
formance was estimated in the different phase 1 data
sets using a complete 10-times repeated 10-fold cross-val-
idation method using all patients from the two clearly de-
fined risk groups. For this analysis, it is important to note
that not all 42 genes are present on all platforms; hence,
the performance test was inherently done with a different
number of genes for the different data sets (Supplement-
ary Data 2). As already indicated, the 10-times repeated
10-fold cross-validation provides a good estimate for the
classification performance using the expression data of the
selected: gene list:

As a reference, the 35-, 330-, 81-, and 82-gene lists ob-
tained through single PAM analysis of each of the four
phase 1 data sets were evaluated in the same way as the
42-gene list. The dlassification performance was also tested
for a subset of 11 genes (from the 42-gene list) that were
present on all four platforms. This analysis showed that all
performance parameters for the 42-gene list are best or sec-
ond best for all studies compared with the other gene lists,
whereby the overall accuracy is highest for the 42-gene list
subset (AUC = 0.935; Supplementary Data 2). This analy-
sis also shows that the performance of a dassifier built for
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a given data set is not always best, which indicates the
power and utility of our meta-analysis for the identifica-
tion of a prognostic gene list by using expression data of
250 training samples (170 low risk and 80 high risk).
When only 11 genes of the 42-gene list were selected that

are present on all four platforms, the overall accuracy
was lower due to loss in sensitivity and positive predictive
value. The 42-gene classifier was also compared with two
published classifiers (13, 27} and showed that the 42-gene
classifier performs best.

Table 2. Genes that are in common between the 42-gene list and the different individual classifier gene
lists (number of common genes in list/total number of genes in list)

Berwanger (10/35) Oberthuer (38/330)

Ohira (12/81) Wang (26/82) published lists

AHCY -
AKR1C1 +
ARHGEF7 +
BIRCS -

CADM1 +
CAMTA2
CDCAS - -
CDKN3 -
CLSTN1

ppC

DPYSL3

ECEL1

EPB41L3

EPHAS +
EPN2

FYN

GNB1

HIVEP2 +
INPP1 +

MAP7 + +
MAPT +
McM2 -
MRPL3 -
MYCN - -
NCAN -
NME1 - -
NRCAM +
NTRK1 +
opct -
PAICS

PLAGL1 +
PMP22

PRKACB

PRKCZ

PTN

PTPRN2

SCG2

SLC25A5 -
SNAPC1
TYMS -
ULK?2 +
wsB1 + +

+ o+ o+ o+ A+ o+ + +

+

A T S

{

+

+ A ]
Bk O ek e D ok b N ek ok et il BN N O D D ek ke ek B Dk OO ek NDNNOO - N N

NOTE: The number of published prognostic gene lists (other than the four reanalyzed studies) in which these genes are found is
indicated in the last column. —, associated with poor outcome; +, associated with favorable outcome.
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Fig. 2. Kaplan-Meier and log-rank analysis of 129 test patients (OS) and 70 test patients (PFS) from the four published phase 1 studies classified using
the prognostic correlation signature. Legend, number of patients in predicted subgroups; between brackets, number of patients with event (relapse,

progression, or death).

Validation of a cross-platform prognostic 42-gene correla-
tion signature for neuroblastoma. A major disadvantage of
the PAM classification method is the need for a training set
of samples that are analyzed on the same gene expression
measurement platform as the one used to evaluate the
test samples. We therefore applied an alternative method
to build a classifier based on the 42-gene list that can be
used for completely independent data sets even on other
platforms.

The prognostic signature is determined using 250 train-
ing samples from the four phase 1 studies. A 42-gene clas-
sification vector was created and tested using the
correlation method (see Materials and Methods; Fig. 1).

First, the correlation signature was tested on the 129 test
samples (patients not belonging to the low- and high-risk
subgroup) from the four phase 1 studies and revealed a very
high predictive power for OS (log-rank P = 2.41E-4) and
PFS (log-rank P = 3.40E-7; Fig. 2).

Next, this correlation signature was evaluated on the
four independent phase 2 data sets (351 patients), where-
by the patients could be clearly separated into groups with
significant differences in OS (log-rank P = 2.17E~23) and
PFS (log-rank P = 2.03E-21; Fig. 3A). Kaplan-Meier anal-
ysis of patients stratified using known risk factors (i.e., age,
stage, and MYCN gene status) showed that the correlation
signature outperforms these risk factors (P < 0.001, except
for MYCN-amplified samples; Supplementary Fig. §2).
This was confirmed using multivariate logistic regression
analysis evaluating age, stage, MYCN status, and the gene
classifier, indicating that the 42-gene signature is an inde-
pendent predictor for PFS and OS in the four phase 2 data
sets as well as in the test samples of the phase 1 data sets
(Table 3). Of note, whereas phase 2 data sets are represen-

tative of the general neuroblastoma population, test sam-
ples from the phase 1 data sets only represent intermediate
risk patients.

As the different validation data sets include patients
stratified using different risk stratification systems (Eu-
rope, United States, and Germany), we defined a com-
mon low- and high-risk group (Supplementary Data 3).
As there was only 1 patient of 50 that died of disease
within the common low-risk group of patients, we did
not do Kaplan-Meier analysis. However, we could show
that this single patient was classified in the high-molec-
ular risk group using our classifier. Most interestingly, the
correlation signature could partition patients within the
common high-risk subgroup into groups with significant
differences in OS and PFS (Fig. 3B) and was an indepen-
dent prognostic marker (odds ratios, >4; Supplementary
Table $4). To exclude that the significant survival differ-
ences in high-risk tumors is solely due to the effect of the
MYCN amplification and related downstream MYCN sig-
naling, we also tested the survival in high-risk tumors
without MYCN amplification and could show that the
classifier also significantly discriminates these patients
with respect to outcome (Fig. 3C; Supplementary Table
$4). In line with this, inspection of the 42-gene list indi-
cated that not all 42-genes are related to MYCN amplifi-
cation (Supplementary Data 4).

Discussion

In this study, we developed and validated a 42-gene
prognostic classifier for children with neuroblastoma
through a reanalysis strategy of published data comple-
mented with gene expression data from 351 patients from
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Fig. 3. Kaplan-Meier and log-rank analysis of the patients from four independent unpublished phase 2 validation data sets classified using the prognostic
correlation signature for all patients togsther {5-y OS of 93.9% [95% confidence interval (95% Ci), 90.2-97.6] for low molecular risk versus 43.1%

(95% Cl, 35.6-52.2) for high molecular risk and 5-y PFS of 91.1% (95% Cl, 86.0-96.6) for low molecular risk versus 30.4% (95% Cl, 22.1-41.8) for high
molecular risk; A}, for the common high-risk subgroup (B), and for the common high-risk subgroup without MYCN amplification (C). Legend, number of
patients in predicted subgroups; between brackets, number of patients with event (relapse, progression, or death).
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Table 3. Multivariate logistic regression analysis (with correlation signature classification, MYCN status,
International Neuroblastoma Staging System stage, and age at diagnosis; A) and sensitivity, specificity,
and accuracy (AUC with 95% Cl) results (follow-up time of at least 36 mo; B) for correlation signature
prediction in the independent test samples from the phase 1 data sets and in the phase 2 validation

Performance, AUC (35% Cl), PFS

data sets
A
0s PFS
P OR (95% CI) P OR (95% CI)
Test samples from Correlation signature 3.16E-2 5.11 3.12E-4 54,00
phase 1 data sets (1.16-22.58) 6.17-472.41)
MYCN ampilification 7.80E-5 21.50 1.26E-1 —
(4.69-98.54)
Stage (IV versus other) 1.80E-1 — 2.65E-1 —_
age (<1 or>ty) 1.52E~1 — 8.65E~1 e
Phase 2 validation Correlation signature 9.07E-7 7.02 1.1E-14 16.45
" data sets (3.23-15.28) (8.09-33.48)
MYCN amplification 4.19E-2 2.23 3.13E-1 —
(1.03-4.84)
Stage (IV versus other) 1.35E-2 2.50 2.16E~1 —
(1.21-5.16)
age (<1 or >1y) 1.45E-4 4.14 1.1E-4 4,18
(1.99-3.66) (2.03-8.64)
B
Test samples from phase 1 data sets Phase 2 validation data sets
Sensitivity OS 17/20 = 0.85 89/102 = 0.87
Specificity OS 41/67 = 0.61 140/195 = 0.72
Performance, AUC (95% Cl), OS 0.731 (0.612-0.850) 0.795 (0.742-0.849)
Sensitivity PFS 16/17 = 0.94 93/110 = 0.85
Specificity PFS 27/35 = 0.77 95/119 = 0.80

0.856 (0.748-0.964)

0.822 (0.764-0.879)

NOTE: —, not analyzed.
Abbreviation: OR, odds ratio.

four unpublished data sets (Fig. 1). To accomplish this,
four published microarray studies comprising >500 neuro-
blastoma patients were reanalyzed generating four new
prognostic gene lists with a high overlap of genes between
them. Comparison of the genes in the classifiers showed
that 42 unique genes were present in at least two of the
four lists. Not surprisingly, this set of 42 predictor genes
contains numerous genes that have been reported in the
context of neuroblastoma (e.g.. MYCN, NTRK1, NME1,
CADM1, FYN, ODC1, and WSBI1). The finding of these
genes in at least two independent studies indicates their
robustness as prognostic markers. Comparison of the per-
formance of the 42-gene list with the lists that were gener-
ated on the individual phase 1 studies and with two
published prognostic gene lists (13, 27) showed that the
classifier based on the 42-gene list has the highest overall
accuracy while using the lowest number of genes. How-

ever, we have to keep in mind that this observed superior-
ity of the 42-gene set might in part be due to the fact that,
for some of the other gene lists, a large proportion of
genes were not present on the platform (Supplementary
Table S3).

The high prognostic classification performance of the
42-gene list is undoubtedly due to our unique reanalysis
approach. First, annotations of the probes on the different
platforms were updated according to the latest genome
build. Second, a uniform risk definition was applied to se-
lect training patients across the different studies. Only pa-
tients with maximally divergent courses were used for
training. Third, the same powerful algorithm with built-
in cross-validation was used for identification of prognos-
tic genes in four major published data sets, enabling the
generation of relatively stable prognostic gene lists with
high overlap.
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This list of 42 prognostic genes was used to build a
cross-platform dlassification signature. As the PAM algo-
rithm is not suitable for cross-platform classification, we
used a more intuitive, alternative method for building a
42-gene classifier. In this study, we generated a prognostic
correlation signature based on expression data of the 42
genes in 250 training samples of the four phase 1 data sets.
The signature was subsequently applied on independent
test samples from the phase 1 data sets and on four inde-
pendent and unpublished phase 2 data sets, generated on
different expression profiling platforms, totaling 480 pa-
tients. The excellent prognostic performance of the 42-
gene list (Table 3) further shows the validity of our
meta-analysis approach and the utility of the recognized
prognostic markers for neuroblastoma. The dlassifier pre-
dicts overall (OS) and PFS for the patients from the four
phase 2 studies as well as for the test patients from the
phase 1 studies (which could not be unequivocally classi-
fied in the low- or high-risk subgroups using known risk
factors) with high sensitivity and specificity (Table 3). Im-
portantly, the classifier was shown to be an independent
predictor for both PFS and OS when stratifying for known
risk factors such as age, stage, and MYCN status. Indeed,
the 42-gene list does not only contain MYCN-regulated
genes and, thus, not only reflects the MYCN copy number
status of the samples. This is further substantiated by the
excellent performance of the classifier in the high-risk neu-
roblastoma patients without MYCN amplification.

Thus far, this is the largest prognostic meta-analysis
study in neuroblastoma, totaling >900 patients, including
351 patients from four independent and unpublished val-
idation data sets. In contrast to other studies on neuroblas-
toma gene expression classifiers (13, 14, 21, 25, 27, 28),
we could show an excellent performance of our classifier
on these four independent data sets involving patients
from different risk protocols from Germany, Europe, and
United States by using a smaller gene set and a more intu-
itive classification method.

This survival classifier will definitely help to identify
patients with increased risk in the current risk groups
and to make a better choice of risk-related therapy. For
example, low-risk patients with high molecular risk
might benefit from more aggressive treatment protocols,
whereas more intensive follow-up and new experimental
therapies might be considered for high-risk patients with
high molecular risk.

In conclusion, we applied a unique meta-analysis strat-
egy for the identification of a robust set of 42 prognostic
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