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Netrin-1 acts as a survival factor
for aggressive neuroblastoma
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Neuroblastoma (NB}, the most frequent solid tumor of early childhood, is diagnosed as a
disseminated disease in >60% of cases, and several lines of evidence support the resistance to
apoptosis as a prerequisite for NB progression. We show that autocrine production of netrin-1,
a multifunctional laminin-related molecule, conveys a selective advantage in tumor growth
and dissemination in aggressive NB, as it blocks the proapoptotic activity of the UNCSH
netrin-1 dependence receptors. We show that such netrin-1 up-regulation is a potential
marker for poor prognosis in stage 45 and, more generally, in NB stage 4 diagnosed infants.
Moreover, we propose that interference with the netrin-1 autocrine loop in malignant neuro~
blasts could represent an alternative therapeutic strategy, as disruption of this loop triggers in

vitro NB cell death and inhibits NB metastasis in avian and mouse models.

Dependence receptors now number more than a
dozen, including deleted in colorectal cancer
(DCC) (1), UNC5H (2), Patched (3), some inte-
grins (4), neogenin (3, p75NtR (6), RET (7),
ALK (8), and TrkC (9). Although they have no
structural homology (other than possibly in a do-
main referred to as the DART [dependence-asso-
ciated recepror wansmembrane] domain) (10),
they all share the functional property of inducing
cell death when disengaged from their trophic li-
gands, whereas the presence of their trophic li-
gands blocks this proapoptotic activiey. Such
receptors thus create cellular states of dependence
on their respective ligands (11, 12).

The prototype dependence receptors are the
newrin-1 receptors. Nerrin-1, a diffusible lam-
inin-related protein, has been shown to play a
major role in the control of neuronal navigation
during the development of the nervous system
by interacting with its main receptors, DCC (13,
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14, 15) and UNCS5H (16, 17). However, DCC
and UNCSH (i.e., UNC5HI, UNC5H2,
UNC5H3, and UNC5H4) have been shown to
belong to the dependence receptor family (1, 2).
This dependence effect upon netrin-1 has been
suggested to act as a mechanism for eliminating
tumor cells that would develop in settings of li-
gand unavailability (for reviews see references 18,
19). Along this line, disruption of the proapop-
totic signaling of these netrin-1 receptors in the
gastroineestinal tracts of mice, by netrin-1 overex-
pression or by inactivation of UNC5H3, is asso-
ciated with intestinal tunor progression (20, 21).

Thus, loss of the dependence receptors’ pro-
apoptotic activity represents a selective advan-
tage for tumor cells. In this respect, DCC was
proposed in the early 19905 to function as a tu-
mor suppressor gene, whose expression is lost in
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the vast majority of human cancers (22, 23). This hypothesis
also fits with the observation that UNCS5H genes are down-
regulated in most colorectal tumors, hence suggesting that loss
of UNCS5H genes represents a selective advanuge for tumor
development (21, 24, 25). We have analyzed expression of ne-
trin-1 and its receptors in neuroblastoma (NB), the most fre-
quent extracranial solid tumor of early childhood. The aggressive
and metastatic stage 4 NB displays three distinct clinical patterns
at presentation and dissemination sites based on patients’ ages.
Indeed, neonates and infants (<1 vr of age) with stage 45 and
stage 4 without 4S features have an overall good prognosis,
whereas stage 4 in children (>1 yr of age) shows a poor prog-
nosis. We describe in this paper that, rather than the loss of
netrin-1 recepror expression, a large fraction of aggressive NBs
has evolved to select a gain of ligand expression that apparently
represents a similar selective growth advantage. We therefore
propose to use disruption of this selective advantage as an anti-
cancer strategy in NB.

RESULTS

Netrin-1 is up~regulated in a large fraction

of aggressive NB

We focused on stage 4 NB with a specific interest inn compar-~
ing netrin-1 and its receptors’ expression levels between the
three distinct clinical patterns of stage 4, based on disease dis-
tribution and age of the patients (26). On the one hand, there
are the neonates and infants (<1 yr of age) with stage 4S (2-5%
of all NB) and the similarly young stage 4 without 43 features,
hereafter termed [1yr7] stage 4, who make up 10% of the NB
population. On the other hand. there are the stage 4 children
(>1 yr of age), comprising 45% of all NBs, who will hereafter
be termed [1yr *] stage 4. These three clinical aspects of stage
4 NB differ in their respective malignant behaviors and associ-
ated prognoses: good for stage 4S and [lyr 7] stage 4 (5-yr
event-free survival >80%), and dismal for [1yr *] stage 4 (5-yr
event-free survival of ~30%) despite intensive treatment in-
cluding high-dose chemotherapy and hematopoietic stem cell
transplantation (27, 28).

We first analyzed the expression of netrin-1 and its de-
pendence receptors, DCC, UNC3H1, UNC5H2, UNC5H3,
and UNC5H4, by quantitative RT-PCR (Q-RT-PCR) ina
pancl of 102 stage 4 NB tumors including 24 stage 45 and 12
[tyr~] stage 4. As shown in Fig. 1 A, netrin-1 is up-regulated
in [1yr®] stage 4 as compared with both stage 4S5 (P < 0.05)
and [1yr~] stage 4 (P < 0.01). Similar results were obtained
when comparing netrin-1 protein level by immunohisto-
chemistry (Fig. 1 B and quantification in Fig. S1 A). Interest-
ingly, netrin-1 is detected mainly in tumor cells and is barely
detected in stroma cells (Fig. 1 B and Fig. S1 B). Conversely,
netrin-1 dependence receptor expression analysis showed that
DCC was only weakly expressed in the different stage 4 NB
(Fig. St Q) as reported (29), whereas UNC5H1, UNC5H2,
UNCS5H3, and UNC5H4 expression showed no significant dif-
ferences when comparing [1yr~] versus [1yr*] stage 4 (Fig. 1 C).
However, we observed that the different UNC5H receptors
are up-regulated specifically in stage 4S (mean increase in
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UNCS3H expression in stage 4S vs. other stage 4 NBs: 2.98-
fold, P < 0.007), suggesting UNC5H receprors as hallmarks
of stage 4S NB. The UNCSHI and UNC5H4. which show
the highest messenger RNA (nRINA) expression, could also be
seen at the protein level by immunohistochemistry (Fig. 1 D).

In an attempt to correlate netrin-1 up-regulation with the
molecular signature of these tumors, we compared netrin-1
up-regulation and DCC/UNCSHT levels to the profile of
gene expression performed in a small panel of nine stage 4 NBs
(30). We failed to detect any correlation between netrin-1 up-
regulation or DCC/UNCS5H]1 levels with the molecular sig-
nacure of apoptosis or invasion effectors (Fig. S1 D). Considering
patients” outcomes, although 38% of [1yr*] stage 4 NBs have
sclected up-reguladion of netrin-1, this event failed to be sig~
nificantly associated with poor outcome in this aggressive form
of the disease (unpublished data). Moreover no association be-
tween netrin-1 up-regulation and MYCN amplification
(MNA) was detected (unpublished data). Thus, netrin-1 up-
regulation may be considered as an additional component of
the genetic complexity that these twmors display.

Despite a largely favorable prognosis among infants with
stage 4 NB (i.e, stage 4S and [lyr7] stage 4) with no MNA,
many succumb to the disease. Thus, we assessed whether ne-
trin-1 expression may serve as a prognostic marker for the in-
fants with stage 4 NB. As shown in Fig. 1 E, the overall survival
of infants with stage 4S ditfered markedly based on whether
the tumor displayed high levels of netrin-1 expression (netrin-
{ high) or low-level expression (netrin-1 low), with the ne-
trin-1 expression threshold being its median expression value
in the 102 cases. Indeed, although 100% of the infants survived
after 10 yr (including 1 MNA out of 17), when the NB 4S8 was
netrin-1 low, the 5-yr overall survival was only 46% when the
NB 4S was netrin-1 high (P = 0.0109). Furthernore, 43% of
the non-MNA patients with high-level netrin-1 expression
died. More generally, when a similar overall survival analysis
was performed on all infants with stage 4 NB (i.e. stage 4S and
[1yr™] stage 4), a sinilar dichotomy was observed. Indeed, 3~yr
overall survival was found to be 90% for the netrin-1-low infants
vet only 48% for netrin-1-high infants (P = 0.032; Fig. 1 F).
These data suggest that netrin-1 is a potential prognostic marker
for aggressiveness in stage 4 NB diagnosed in infants. Whether
or not it constitutes an independent prognostic marker of stage
4 NB in neonates and infants deserves to be tested in a larger
patient cohort. Nevertheless, these data indicate that a netrin-1
threshold may turn as an alternative determinant for the bio-
logical behavior of stage 4 NB in infants, potentially suggesting
its involvermnent in a cell death process of very early childhood
neuroblasts, reminiscent of that operating during nervous sys-
tem development (31).

Netrin-1 high expression is not only detected in 38% of
[tyr*] stage 4 and in poor outcome [lyr™] stage 4 primary NB
tumors but also in a fraction of NB cell lines mainly derived
from stage 4 tumor material Fig. 2 A and Fig. S2 A). Two
human NB cell lines, IMR32 (netrin-1 high) and CLB-Ge2
(netrin-1 low), were evaluated further. In spite of a marked dif-
ference in netrin-1 and DCC expression, the UNC5H levels
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are similarin IMR 32 and CLB-Ge2 cells: UNC5H 1, UNC5H3, production, we next performed netrin-1 immunohistochemis-
and UNC5H4 show the highest expression (Fig. 2 B). Specifi- try on IMR32 and CLB-Ge2 cells. As shown in Fig. 2D, 2
cally, UNC5H1, UNC5H3, and UNC5H4 proteins could be netrin-1-specific membrane staining was detected in a homo-
detected at the plasma membrane by confocal analysis (Fig. 2C).  geneous pattern in IMR32 cells, whereas no specific staining
To test the hypothesis that the high netrin-1 mRNA levels de- was detected for CLB-Ge2 cells. Confocal analysis further con-
tected in IMR32 cells are associated with an autocrine netrin-1 firmed the presence of netrin-1 at the cell membrane (Fig. 2 E
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Figure 1. Netrin~1 up-regulation is detected in aggressive NB, {A) Netrin-1 mRNA levels in 102 stage 45 {n = 24), [1yr ~} stage 4 (n = 12}, and
[1yr¢] stage 4 {n = 66} NBs measured by Q-RT-PCR. HPRT housekeeping gene was used as a control. Mean netrin-1 mRNA expression value for each sub-
group is indicated by an "m"“value. Mean netrin-1 mRNA levels in stage 45 and [1yr~] stage 4 were, respectively, compared with the mean netrin-1 de-
tected in [1yr+] stage 4. The data were statistically determined using Student's ¢ test compared with levels of [1yr*] stage 4.%, P < 0.05;*", P < 0.01. Each
sample was assessed in two independent experiments. (B) Representative netrin-1 immunochistochemistry on one [Tyr*] stage 4 and one stage 45 tumor.
Insets show contral without primary antibody. Bars, 50 um. T, tumor cells; S, stromal cells. Netrin-1 antibody specificity is further shown in Fig. 2D and
Fig. S1 B. Immunohistochemistry was performed on four [1yr+] stage 4 and four stage 4S tumors. (C) Mean UNC5H mRNA levels in the different stage
4 NBs. Q-RT-PCR using UNCSH1-4-specific primers was performed. Mean UNCSH1-4 mRNA levels in {1yr~} stage 4 and [1yr+] stage 4 were, respectively,
compared with the mean UNC5H1~4 levels detected in stage 4S. Error bars indicate SEM. The data were statistically determined using Student's ¢ test
compared with levels of stage 4S. %, P < 0.05; *, P < 0.01. Samples were analyzed in duplicates for each gene. (D} Representative UNCSH® and UNC5H4
immunohistocheristries on {1yr+] stage 4 and stage 4S tumors. Insets show control without primary antibody. Bars, 50 pm. Immunohistochemistry was
performed on four stage 4 [1yr*] and four stage 45 tumors. (E} Netrin-1 up-regulation is a2 marker of poor prognosis in stage 45 NB. Overall survival in a
panel of 24 infants diagnosed with stage 45 NB with primary tumors showing either netrin-1-low {gray) or netrin-1-high {black) levels, The data was
statistically determined using the Kaplan-Meier method. P-value is indicated. {F) Netrin-1 up-regulation is a marker of poor prognaosis in infants with NB.
Data are presented as in £, with a panel of 30 infants bearing NB.
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very high expression. Mouse cell lines are in italics. Cell lines outlined and highlighted in grey are, respectively, netrin-t-low and netrin-1-high cell lines
further used in the experiments, (B} Netrin-1 receptor expression in IMR32 and CLB-Ge2 cell fines. DCCJUNCSH Q-RT-PCR was performed on netrin-1-
expressing (IMR32) or netrin-1-low (CLB-Ge2} cells using specific primers. Ratio of netrin-1 and netrin-1 receptor expression to the HPRT housekeeping
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and Fig. 52 B). To further analyze whether netrin-1 is secreted
from IMR32 cells, netrin-1 ELISA assay was used to detect ne-
trin-1 in the conditioned mediun. As shown in Fig. 2 F, 11.7
ng/ml newin-1 was recovered from the conditioned medium
of IMR32 cells, whereas no netrin-1 was detected from the
conditioned medium of CLB-Ge?2 cells. Thus, together these
data suggest that the high netrin-1 content observed in aggres-
sive NB could result from an autocrine expression of netrin-1
in NB cells.

As a first approach to apprehend the mechanisms leading to
netrin-1 up-regulation in aggressive NB, we analyzed whether
netrin-1 gene (NTNT) is amplified in IMR32 cells. As shown
in Fig. 2 G, although MYCN was amplified both in IMR32
and CLB-Ge2 cells compared with the NAGK control gene,
the NTNT gene was not found to be amplified in these two cell
lines. We then analyzed whether the increase in netrin-1 ex-
pression could be caused by a differential netrin-1 promoter ac-
tivation. A luciferase reporter gene fused to netrin-1 promoter
(32) was then wransfected into IMR32 or CLB-Ge2 cells, and
luciferase activity was reported to an internal control in each
cell line. As shown in Fig. 2 H, netrin-1 promoter activity was
13.8-fold higher in IMR32 cells than in CLB-Ge2 cells, thus
supporting the view that netrin-1 up-reguladon in NB is re-
lated to a gain in netrin-1 promoter activation.

Netrin-1 up-regulation is a selective advantage

for NB cell survival

To investigate whether the netrin-1 autocrine expression ob-
served in IMR32 cells provides a selective advantage for sur-
vival, as would be expected from the dependence receptor
theory, cell death was analyzed in response to the distuption of
this autocrine loop: As a first approach; netrin=1 was down-reg-
ulated by RNA interference. As shown in Fig. 3'A, the addition
ot netrin-1 small intertering RINA iIRNA) to IMR32 cells was
associated with a significant reduction in nétrin=1 mRINA. This
mRNA reduction was associated with a decrease of netrin-1
protein as observed by immunohistochemistry (Fig. 3 B). Al-
though scramble siRINA failed to affect IMR32 cell survival, as
measured by trypan blue exclusion, netrin-1 siRINA treatment
was associated with IMR32 cell death (Fig.' 3 C). In contrast,
CLB-Ge2 cell survival was unaffected after netrin-1 siRINA
treaunent (Fig. 3 C). To determine whether this increase in cell
death was in part caused by an increase in apoptotic cell death,

caspase-3 activity was measured in response to netrin-1 siRINA
treatment. As shown in Fig. 3 D, although significant apoprotic
cell death was detected upon netrin-1 siRNA - treatment in
IMR32 cells, no such effect was observed in CLB-Ge2 cells.
A similar proapoptotic effect of the netrin-1 siRINA was ob-
served in CLB-VolMo cells, another netrin-1 high cell line
(unpublished data).

Interference with netrin-1 triggers UNC5H-induced
apoptosis in NB cells

As a second approach, we looked for a compound that could
interfere with the netrin-1 ability to block DCC/UNC5H
proapoptotic activity. We recently reported that the fifth fi-
bronectin type I domain of DCC (DCC-5Fbuy; Fig. 4 A),
which is located in the DCC ectodomain, interacts with
netrin-1 and blocks the ability of netrin-1 to trigger multi-
merization of DCC and UNC35H receptors. Because mul-
timerization inhibits DCC or UNC5H-induced cell death
(unpublished data), DCC-5Fbn antagonizes netrin-1 func-
tion, disrupting netrin-1-mediated inhibition of DCC/
UNCS5H proapoptotic activity. Thus, DCC-5Fbn acts as a
trap for netrin-1 survival function. As shown in Fig. 4 (B-D),
the addition of DCC-5Fbn, but not the unrelated protein IL3R,,
triggered IMR32 apoptotic cell death as measured by aypan
blue exclusion (Fig. 4 B), caspase-3 activity assay (Fig. 4 C), and
terminal deoxynucleotidyl transferase—mediated dUTP-bio-
tin nick end labeling (TUNEL) staining (Fig. 4 D). This effect
was specific for netrin-1 inhibition because DCC-5Fbn had
no effect on CLB-Ge?2 cells, and the addition of netrin-1 ulti-
mately reversed the DCC-5Fbn-iniduced IMR32 apoptotic
cell death (Fig. 4, B-D). Siniilar results were obtained with
the CLB=VolMo cells (Fig. S2 D). To determine whether the
ability of DCC-5Fbn to kill NB cells is restricted to estab-
lished NB cell lintes; a surgical biopsy from a tumor with high
netrin={ level (unpublished data} was semidissociated and fur-
ther incubated with DCC-5Fbn. As shown in Fig. 4 E,
DCC-5Fbn triggered cell death as measured by caspase-3
activation, demonstrating that in vitro, disruption of the ne-
trin-1 autocrine loop is associated with NB cell death.

We next investigated whether netrin-1 autocrine expres-
sion in NB cells acts as a general cell survival factor, i.e.,
whether it has a trophic effect similar to that of neurotroph-
ins; or whether it specifically inhibits death induced by

gene is presented. (C} Canfocal analysis of UNCSH1, UNCSH3, and UNCSH4 receptor immunostaining in human IMR32 cells, Left and right correspong to
IMR32Z cells transfected with scramble SiRNA and specific SIRNA UNCSH, respectively. A fluorescence intensity profile carresponding to the white dashed
bar is presented under each panel. Bars, 10 um, (D) Immunostaining on human IMR32 and CLB-Ge2 cell lines using netrin-1 anticody. Bottom insets show
control without primary antibody. Top inset: antibody specificity was tested by adding human recombinant netrin-1, Bars, 50 pm. (£} Confocal analysis of
netrin-1 immunaostaining on IMR32 cells. A fluorescence intensity profile corresponding to the white dashed bar is presented below. Bar, 5 um. (F} Quanti-
fication of netrin-1 protein secreted in IMR32 and CLB-Ge2 cells conditioned medium by sandwich ELISA assay. Quantification in ng/ml was made ac-
cording to a dose curve done with recombinant human netrin-1. Data are means of three independent experiments. £rror bars indicate SEM. *, P < 0.05
using a two-sided Mann-Whitney test compared with level in IMR32 cells. {G) Quantification of NTNT and MYCN genomic DNA compared with control
NAGK genomic DNA by PCR, using genomic DNA specific primers for each gene, in IMR32 and CLB-Ge2 cells. (H) Quantification of NTNT promoter activ-
ity in IMR32 and CLB-Ge2 cells. Bath cell lines were transfected with the vector pGL3-NetP-Luc encoding luciferase under the control of NTNT promotet.
Data presented are normalized on luciferase activity in cells transfected with pGL3 empty vector. Data are means of four independent experiments. Error
bars indicate SEM.*, P < 0.05 using a two-sided Mann-Whitney test compared with levels in IMR32 cells.
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