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Fig. 5. Caspase activity of irradiated MOLT-4 cells in the absence or presence of a caspase inhibitor. Activities of caspases 2, 3, 3/7, 8, and 9 were examined by colorimetric
assay with or without a pretreatment with 100 pM z-VAD-fmk, using fluorogenic substrates for these caspases. Fold increases in caspase activities are shown, compared with
unirradiated control cells. An average of two measurements is used.
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Fig. 6. Release of cytochrome ¢ from mitochondria in irradiated MOLT-4 cells. Mitochondrial cytochrome ¢ was detected by using anti-cytochrome ¢ antibody (clone
7H8.2C12) in fixed and permeabilized MOLT-4 cells. This antibody binds only to mitochondrial cytochrome c, not to cytosolic one. Cells were gated according to forward/side

scatter properties into viable or early phase of cell death, and then analyzed by flow-cytometry. (A) Unirradiated MOLT-4 cells. (B) MOLT-4 cells at 16 h after a 4Gy
irradiation. (C) MOLT-4 cells at 16 h after a 4 Gy irradiation in the presence of 100 uM z-VAD-fmk.
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the cells were pretreated with z-VAD-fmk (Fig. 6C). These results
suggest that the release of cytochrome ¢ might not invariably pre-
cede necrotic cell death in irradiated MOLT-4.

4. Discussion

In the present study, apoptotic cell death was induced by a 4 Gy
irradiation in MOLT-4, a thymus-derived T cell line, and the apop-
tosis was characterized by a decrease in mitochondrial membrane
potential and an increase in intracellular ROS. On the one hand,
when caspase activities were suppressed by the z-VAD-fmk pre-
treatment, irradiated MOLT-4 avoided apoptosis, and died exhibit-
ing necrotic features. We demonstrated for the first time that there
was no increase in intracellular ROS in the process of this necrotic
cell death of MOLT-4. These results indicate that apoptosis, as the
main pathway of radiation-induced cell death in MOLT-4, requires
both elevation of intracellular ROS and activation of a series of
caspases, while the cryptic necrosis program—independent of
ROS generation and caspase activation—becomes active when the
apoptosis pathway is blocked.

In agreement with our observations, this shift from apoptosis to
necrosis has been reported in several cell types when the apoptosis
pathways were blocked by z-VAD-fmk (U-937 cell death induced
by camptothecin [24], mouse thymocyte death induced by dexa-
methasone and etoposide [7], and irradiated MOLT-4 cell death
[8]). Enhanced expression of Bcl-2 also generated a similar shift
from apoptosis to necrosis in HL-60 cells treated with oxidized
low density lipoproteins [25]. In addition, interdigital cells from
mice genetically lacking the caspase activator Apaf-1 underwent
necrosis, not apoptosis, during embryonic development [26].
Therefore, it is plausible to imagine that cell death, including radi-
ation-induced death, can be achieved through multiple molecular
pathways—typically apoptotic or necrotic—depending on cellular
physiological status and available effecter molecules.

Previous studies on radiation-induced apoptosis in MOLT-4
have suggested involvement of individual intracellular events
(mediation by p53, activation of SAPK/JNK pathway, critical roles
for caspase-3, modulation by Bcl-2, and occurrence of ceramide
formation and PARP cleavage [8,21,23,27-29]). Even so, the
sequential process of apoptosis still remains to be clarified. That
is why we analyzed the temporal process of cell death in terms
of mitochondrial membrane potential and intracellular ROS in this
study. Our time-course analyses indicate that excess generation of
ROS precedes the reduction of the membrane potential during
radiation-induced apoptosis in MOLT-4 cells, whereas ROS genera-
tion is bypassed during radiation-induced necrosis. Given the po-
tential implications of our findings, the use of antioxidants is
indeed a promising strategy for prevention of radiation-induced,
and ROS-dependent, cell death upon the development of radiopro-
tective agents for cancer radiotherapy [30]. However, our findings
also imply that antioxidants as radioprotective agents may be less
effective for ROS-independent necrosis. Thus, development of
radioprotective strategies that take into account the molecular
mechanisms of ROS-independent necrosis is also warranted.

The precise mechanisms of necrosis in MOLT-4 cells remain un-
clear. Some previous studies have suggested the involvement of
intracellular ROS generation during caspase-independent necrotic
cell death, e.g., in neutrophil cells [22,31], while our and other
studies have observed unaltered levels of ROS [32,33]. This discrep-
ancy regarding ROS generation in necrotic cell death could be due
to different types of cells or different experimental procedures
used to induce cell death. This would imply that there are multiple
pathways even in caspase-independent necrosis, both ROS-depen-
dent and -independent. In fact, a necrotic-signaling pathway
involving ROS was thought to be death receptor-mediated

[22,34]. That pathway is probably distinct from the necrosis path-
way of irradiated MOLT-4 found in this study, because necrosis in
MOLT-4 was observed with total suppression of caspase-8, an ini-
tiation molecule for the death receptor-mediated pathway.

In addition, several non-caspase proteases, including calpain,
cathepsin, and serine protease Omi/HtrA2, have been reported to
be major factors in the propagation and execution phases of necro-
tic cell death, with or without ROS-generation [32,35-37]. There-
fore, it seems certain that further studies will be needed to
investigate the involvement of these non-caspase proteases in
ROS-independent necrotic cell death.
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Abstract—Gap junctional communication plays an important
role in various models of brain pathology, but the changes of
gap junctions in Parkinsonism are still not understood. In this
study, we show that a major gap junctional protein, con-
nexind3 (Cx43), in astrocytes is enhanced both in a rat Par-
kinson’s disease (PD) model induced with rotenone, a widely
used pesticide that inhibits mitochondrial complex |, and in
vitro in cultured astrocytes stimulated with rotenone. En-
hancement of Cx43 protein levels in rotenone-treated cul-
tured astrocytes occurréd in parallel with an increase in gap
junctional intercellular communication, but was not accom-
panied with an increase in Cx43 mRNA levels. Furthermore,
the rotenone-induced increase of Cx43 protein levels both in
vitro and in vivo was associated with increased levels of
phosphorylated Cx43, which is required for gap junctional
intercellular communication. In our rat PD model, phosphor-
ylated Cx43 was selectively enhanced in the basal ganglia
regions, which contain DA neurons or their terminal areas.
The increase of Cx43 levels was lower in the substantia nigra
pars compacta and the striatum than in the substantia nigra
pars reticulata and the globus pallidus. Our findings indicate
that modulation of Cx43 protein, and consequently gap junc-
tional celiular communication, in astrocytes may play an im-
portant role in PD pathology. © 2009 IBRO. Published by
Elsevier Ltd. All rights reserved.

Key words: gap junction, connexin 43, astrocyte, Parkinson’s
disease, dopaminergic, basal ganglia.

Parkinson’s disease (PD) is an aduit-onset neurodegen-
erative disease that is characterized by a progressive and
fatal loss of dopaminergic (DA) neurons in the substantia
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Abbreviations: Cx43, connexind3; DA, dopaminergic; DMSO, dimethyl
sulfoxide; FRAP, fluorescence recovery after photobleaching; GJIC,
gap junctional intercellular communication; PBST, PBS-0.1% Triton
X-100; PD, Parkinson’s disease; PVDF, polyvinylidene difluoride; RR,
recovery rate; SNc¢, substantia nigra pars compacta; SNr, substantia
nigra pars reticulata; TH, tyrosine hydroxylase.

nigra and striatum. A prototypical mitochondrial complex
inhibitor, 1-methyi-4-pheny!-1,2,3,6-tetrahydropyridine, in-
duces Parkinsonism in humans and other mammals, and
systemic administration of another mitochondrial complex |
inhibitor, rotenone, also causes selective death of DA neu-
rons and Parkinsonism in rodents, accompanied by behav-
ioral and neurochemical changes, DA degeneration, and
the appearance of eosinophilic cytoplasmic inclusions (Be-
tarbet et al., 2000). DA neurons are known to be sensitive
to extracellular ions and chemical transmitters, and extra-
cellular K* and glutamate were shown to play key roles in
DA neuronal cell death in an animal PD model (Obata et
al., 2000; Araki et al., 2001; Ransom et al., 2003). The
reason why DA neurons are particularly vulnerable to com-
plex | inhibition is not fully understood, although their vul-
nerability seems to be important in the development of
Parkinsonism. In addition, accumulating evidence indi-
cates an active role for nonneuronal cells, specifically as-
trocytes, in DA neuronal degeneration (Cardona et al.,
2006; McGeer and ‘McGeer, 2008). Astrocytes.are central
to maintaining the homeostatic regulation of extraceliular
pH, K*, and glutamate levels (Rouach et al., 2000). How-
ever, despite the importance of astrocyte functions, the
role of astrocytes in Parkinsonism remains unknown.

We have previously reported that modulation of gap
junctional interceliular communication (GJIC) and con-
nexind3 (Cx43) affect cell viability or growth, implying that
GJIC may have an important role in maintaining homeosta-
sis in various organs (Hayashi et al., 1997; Ogawa et al.,
2005). It has also been reported that GJIC in astrocytes is
indispensable for the homeostatic regulation of extracellu-
lar pH, K™, and glutamate levels in the CNS (Anderson and
Swanson, 2000; Ransom et al., 2003). Astrocytes are
thought to be coupled by gap junctions, which consist of
Cx43 (Dermietze! et al., 2000; Nagy and Rash, 2003).
Alteration of Cx43 has recently been observed in ischemia,
Alzheimer's disease, and Huntington's disease (Nagy et
al., 1996; Vis et al., 1998; Kielian, 2008), and an increase
or loss of Cx43 and GJIC in astrocytes has been observed
after brain injuries and in pathogenesis associated with
reactive astrocytosis (Meme et al., 2006; Haupt et al,,
2007). However, whether or not altered astrocyte GJIC is
involved in the development of PD remains unanswered.

Therefore, in this study we examined the changes in
astrocyte GJIC and Cx43, as well as the phosphorylation
status of Cx43, in a rat model of PD induced by chronic
exposure to rotenone and in cultured astrocytes stimulated
with rotenone. The former model has been widely used to
investigate the etiology of Parkinsonism (Betarbet et al.,
2000; Alam and Schmidt, 2002); the latter is useful to study

0306-4522/09 $ - see front matter © 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
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the molecular mechanisms of rotenone's effects on Cx43
and GJIC.

EXPERIMENTAL PROCEDURES
Drugs and chemicals

Rotenone and dimethyl sulfoxide (DMSQO) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Rotenone was dissolved in
DMSO (100 mM) and stored at —20 °C.

Rats

The animals were acclimated and maintained at 23 °C under a 12-h
light/dark cycle (lights on 08:00-20:00 h). Rats were housed in
standard laboratory cages and had free access to food and water
throughout the study period. All animal experiments were carried
out in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals, and the
protocols were approved by the Committee for Animal Research
at Hiroshima University. All efforts were put in place to minimize
the number of animals used and their suffering. Lewis rats (200—
250 g each) were purchased from Japan SLC, Inc. (Hamamatsu,
Japan). The rats were randomly divided into a rotenone group
(n=6) and a control group (n=6). The rotenone group subcuta-
neously received rotenone (2.5 mg/kg, diluled in Panacet); the
controls received vehicle (Panacet) only.

Primary astrocyte cultures

Primary astrocytes were prepared from whole brains of neonatal
Wistar rats (1-2 days of age) (Hosoi et al., 2000). In brief, the
brains were digested with 0.05% trypsin~EDTA (Invitrogen, Grand
Island, NY, USA) at 37 °C for 10 min, and then mechanically
dissociated by gentle pipetting and passed through a 70-um-pore
nylon mesh. Cells were plated onto 75 cm? plastic flasks and
grown in DMEM (Invitrogen) supplemented with 10% v/v heat-
inactivated fetal bovine serum (FBS) and 1% penicillin/streptomy-
cin at 37 °C in a humidified 5% CO,-containing atmosphere. The
medium was changed twice a week. When cells reached conflu-
ence, at ~12 days in vitro, they were harvested with trypsin-EDTA
(Invitrogen). Cells were then replated as a secondary culture. The
purity of the primary astrocyte cuitures was assessed by immu-
nocytochemical staining, using an antibody against an astrocyte-
specific marker (GFAP, dilution 1:1000; Sigma-Aldrich). At 30
days in vitro, 99% of the primary-cultured cells were GFAP-posi-
tive. Cultured astrocytes were treated with 0—16 nM rotenone for
48 h.

Fluorescence recovery after photobleaching (FRAP)
assay for GJIC

The procedure used was a modified version of the standard
method for measuring GJIC by quantitative FRAP (Wade et al.,
1986; Trosko et al., 2000). Assays were performed using a Zeiss
LSM 510 laser-scanning confocal microscope (Carl Zeiss interna-
tional, Jena, Germany). After bleaching of randomly selected cells
with a micro-laser beam, the rate of transfer of 5,6-carboxyfluo-
rescein diacetate (Molecular Probes, Inc., Eugene, OR, USA)
from adjacent labeled cells back into bleached cells was calcu-
lated. Recovery of fluorescence was examined after 0.5 min, and
the recovery rate (RR) was calculated as percentage of photo-
bleached fluorescence per min. The RR was adjusted for the loss
of fluorescence measured in unbleached cells, and the resuits are
expressed as the ratio (mean*SE) of RR to that of untreated
control cells.

—242—

Extraction of Cx43 RNA

Cells were grown in 6-cm dishes and prepared as described
previously (Ogawa et al., 2005). In brief, after 48 h of incubation,
the cells were trypsinized and suspended in DMEM medium con-
taining 10% FCS. Total RNA was isolated from the cells using
QlAshredder and RNeasy Mini kits (Qiagen, Inc., Chatsworth, CA,
USA). An initial strand of cDNA was synthesized from 500 ng of
RNA extracts in a volume of 20 ul using AMV reverse transcrip-
tase XL (TaKaRa, Otsu, Japan) priming with random 9-mers at
42 °C for 10 min. The cDNA strand was stored at —20 °C until use.
Expression of rCx43 mRNAs was evaluated by real-time RT PCR
based on TagMan methodology. In brief, PCR was performed in
an ABI PRISM 7900 sequence detector (PerkinEimer/Applied Bio-
systems, Foster City, CA, USA) in a final volume of 20 ul. The
PCR mixture contained 10 mM Tris—HC! buffer, pH 8.3
(PerkinElmer/Applied Biosystems), 50 mM KCI, 1.5 mM MgCl,,
0.2 mM dNTP mixture, 0.5 U of “AmpliTag Gold" (PerkinEimer/
Applied Biosystems), 0.2 uM primers and probe. The primer and
probe sequences for gene amplification were as follows: rCx43;
5-ATCAGCATCCT CTTCAAGTCTGTCT-3 (FP), 5-CAGGGA-
TCTCTCTTGCA-GGTGTA-3 (RP) and 5-CC TGCTCATCCAGT-
GGT-3 (probe). The “TagMan” probe carried a 5-FAM reporter
label and a 3-MGB and nonfluorescence quencher group, synthe-
sized by Applied Biosystems. The determination of rtGAPDH used
the TagMan rodent GAPDH control reagents (Applied Biosys-
tems). The AmpliTaq gold enzyme was activated by heating for 10
min at 95 °C, and all genes were amplified by 50 cycles of heating
for 156 s at 95 °C, followed by 1 min at 60 °C.

Quantification for Cx43 mRNA

For the construction of standard curves of positive controls, the
total RNA of primary astrocytes was reverse-transcribed into
cDNA and serially diluted in water in five or six log steps to afford
fourfold serial dilutions of cDNA from about 100 ng to 100 pg.
These cDNA serial dilutions were prepared once for all examina-
tions performed in this study and stored at —20 °C. The coefficient
of linear regression for each standard curve was calculated, and
then when the cycle threshold (CT) value of a sample was sub-
stituted in the formula for each standard curve, the relative con-
centration of rCx43 or rGAPDH could be calculated. To normalize
for differences in the amount of total RNA added to each reaction
mixture, GAPDH was used as an endogenous RNA control. The
data represent the average expression of target genes, relative to
GAPDH, from three independent cultures.

Immunoblotting

Cells and rat brains were lysed in ice-cold lysis buffer containing
20 mM Tris-buffered saline (TBS), pH 7.5, 1% Triton X-100, 150
mM NaCl, and 1 mM each of EDTA, EGTA, g-glycerophosphate,
Na;VO,, and phenyimethyisulfonyi fluoride, 2.5 mM sodium pyro-
phosphate, 1 pg/ml leupeptin. The lysates were then sonicated.
The samples were diluted 1:4 in water, and their protein concen-
trations were determined using DC protein assay (Bio-Rad Corp.,
Richmond, CA, USA). Samples (10 ug) of protein were dissolved
in Laemmli Sample Buffer, separated on 12.5% acrylamide gel,
and transferred to polyvinylidene difluoride (PVDF) membranes
(Bio-Rad). Then blots were incubated with anti-Cx43 monoclonal
antibody (Chemicon International, Inc., Temecula, CA, USA) over-
night at 4 °C, followed by PBS-0.1% Triton X-100 (PBST) washes
three times for 15 min each. As an internal control to determine
whether equal amounts of protein had been loaded on to the gel,
the PVDF membranes were stripped and reprobed with anti-
a-tubulin (T5168, Sigma-Aldrich). Blots were incubated with
goat-antirabbit antibody-conjugated horseradish peroxidase or
mouse-antimouse antibody—conjugated horseradish peroxidase.
Immunoreactivity was determined by ECL detection using the ECL
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plus (GE Healthcare, Piscataway, NJ. USA) according to the
manufacturer's instruction.

Immunochemical staining

Antibodies against total Cx43 and phosphorylated Cx43 were
used. Celis or brain sections were fixed with 4% paraformalde-
hyde plus 15% sucrose in PBS, pH 7.4, at room temperature for
30 min and then permeabilized with 0.1% Triton X-100 at room
temperature for an additional 30 min. Nonspecific antibody binding
was blocked by incubating cells with 5% bovine serum albumin
(BSA) in PBS for 1 h at room temperature. Slides were incubated
overnight at 4 °C with anti-Cx43 monoclonal antibody (Chemicon)
at 1:500 dilution, anti-phospho-Cx43 polyclonal antibody (Cell
Signaling) at 1:500 dilution, anti-GFAP antibody at 1:1000 dilution
(Sigma-Aldrich), or anti-tyrosine hydroxylase (TH) polyclonal an-
tibody (Chemicon) at 10,000 dilution. Next, the cells were washed
three times with PBST and incubated with Alexa 546—conjugated
goat antimouse antibody and Alexa 488-conjugated goat antirab-
bit antibody (Molecular Probes) at a dilution of 1:500 overnight at
4 °C, in the dark. The slides were then washed three times in
PBST and once in PBS prior to being mounted in ProLong gold
Antifade Reagent (Invitrogen). Finally the cells were examined
using a Zeiss LSM 510 laser-scanning confocal microscope (Carl
Zeiss International). Negative control, mouse or rabbit 1IgG was
substituted for the primary antibodies.

Statistical analysis

Data were analyzed using SPSS software (version 16). The two-
tailed unpaired t-test was used to determine the significance of
mean differences between two groups.

RESULTS

Rotenone enhanced total Cx43 protein level of
cultured astrocytes

Western blotting was carried out to determine whether the
GJIC activity of astrocytes was related to total Cx43 protein
level and/or to the extent of Cx43 phosphorylation. Three
forms of Cx43 immunoreactive protein (Mr 41,000~
43,000) were observed in all samples: A faster migrating
band (non-phosphorylated form, Py) and two slower mi-
grating adjacent bands (two phosphorylated forms, P, and
P.; Fig. 1A). Densitometric analysis showed that rotenone
induced a significant dose- and time-dependent increase
of Py+P, +P, (total Cx43) compared with control cells (Fig.
1A, fold increase) over 648 h (Fig. 1A, lower panel). The
effect of rotenone on Cx43 mRNA levels was also exam-
ined, and Cx43 mRNA levels were found not to be
changed by rotenone treatment (Fig. 2).Next, we exam-
ined Cx43 localization in astrocytes, since phosphorylated
Cx43, P, and P,, are known to localize on the plasma
membrane and gap junctions. The localization and protein
levels of total Cx43 and phosphorylated Cx43 were then
examined by indirect immunofluorescence cytochemistry.
Fig. 1B shows immunostaining for total Cx43 (red) and
phosphorylated Cx43 (green) after 48 h treatment with or
without rotenone (a—d: control, a’~d’: rotenone). In control
cells, total Cx43 immunoreactivity was scattered through-
out the cytosol and on the plasma membrane (Fig. 1Ba),
while rotenone treatment caused an increase in the distri-
bution area and protein level of total Cx43, and the cells
displayed marked linear or intermittent labeling, apparently
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Fig. 1. Effects of rotenone on Cx43 levels. (A) Western blot analysis of
Cx43 protein expression. Astrocytes were cultured with or without rote-
none for 48 h at the indicated concentrations (upper panel) or with 8 nM
rotenone for the indicated times (lower panel). Fold increase after cultur-
ing with rotenone is shown taking the value of untreated astrocyles as
unity. (B) Intracellular localization of total Cx43 and phosphorylated Cx43
with or without 8 nM rotenone treatment for 48 h. Phosphorylated Cx43
was stained green with FITC (a, &), and Cx43 was stained red with Cy3
(b, b’). GFAP was stained blue with Alexa 405 (c, ¢’). The merged image
is yellow at areas of colocalization (d, d'). Images were acquired using
confocal microscopy. Scale bars=100 pm.
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Fig. 2. Real-time RT-PCR analysis of Cx43 mRNA expression. Astro-
cytes were cultured with or without rotenone for 48 h at the indicated
concentrations (A) or with 8 nM rotenone for the indicated times (B).
The value of untreated astrocytes {control) was taken as unity to
calculate the fold increase. Cx43 mRNA levels were normalized by
GAPDH mRNA, whose level did not change during culture with rote-
none (data not shown). Results are means of at least three experi-
ments. Values are mean*SE.

along the plasma membrane between celis (Fig. 1Ba’).
Enhanced total Cx43 foci were co-localized with phosphor-
ylated Cx43 (Fig. 1Bd’) in the rotenone-treated cells.
These results suggest that upregulation and trafficking of
Cx43 protein to the membrane were induced by rotenone.

Rotenone enhanced GJIC through Cx43 in cultured
astrocytes

We next examined the effect of rotenone on GJIC in cul-
tured astrocytes. The GJIC was assessed by the FRAP
technique, in terms of the RR. After photobleaching, se-
quential scans detected the recovery of fluorescence in
the bleached cells as the dye was transferred to photo-
bleached celis through GJIC from surrounding non-
bleached cells. The RR at 48 h of treatment showed a
dose-dependent increase up to 8 nM rotenone, although
this was followed by a slight decrease (Fig. 3A). Further,
time course analysis showed a time-dependent increase in
GJIC after rotenone treatment (Fig. 3B). These results
suggest that rotenone treatment of cultured astrocytes
generated increased protein levels and a broadened mem-
brane distribution of Cx43, which in turn led to enhance-
ment of GJIC.

Total and phosphorylated Cx43 protein levels were
enhanced in astrocytes in the rat PD model

To investigate whether Cx43 levels may be altered in
Parkinsonism, we examined the Cx43 protein level and
immunoreactivity in our rotenone-induced rat PD model. In
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this model, chronic exposure to rotenone remarkably re-
duced TH immunoreactivity in the substantia nigra pars
compacta (SNc), the same area where loss of DA neurons
occurs in human PD (Supplementary Fig. 1). Fig. 6 shows
that Cx43 was found in all regions, though at different
levels, and that the Cx43 protein level was significantly
lower in striatum than in other brain regions (Fig. 4), though
the P, and P, forms of Cx43 were markedly enhanced in
striatum of the treated group. Significant differences of
total Cx43 levels were found in striatum of rotenone-
treated rats at 1, 2, and 4 weeks, as well as in hippocam-
pus of rotenone-treated rats at 1 week. However, no sig-
nificant changes were observed in other regions (Fig. 5A,
B). Next, Cx43 immunohistochemistry was performed on
the SN and striatum and globus pallidus (GP) of vehicle- or
rotenone-treated rats (Fig. 6). In the SN, Cx43 immunore-
activity was enhanced in rotenone-treated rats compared
with that in vehicle-treated rats. Elevation of Cx43 was
more noticeable in substantia nigra pars reticulata (SNr)
than in SNc (Fig. 6A). Increase of Cx43 after rotenone
treatment was more pronounced in GP than striatum
(Fig. 6B).

SNc and striatum in rotenone-treated rats revealed DA
neuronal loss when visualized by TH immunoreactivity
(Fig. 6), consistent with previous observations (Betarbet et
al., 2000). Interestingly, the degree of enhancement of
Cx43 by rotenone was found to be lower in SN¢ and
striatum than in other regions (Fig. 6, Cx43).

x>

25

20

1.5

1.0

0.5

Recovery rate
{fold increass of control)

0.0

@ .ﬁe}s.?gp&mﬂ 1 2 4 8 16 32 64 (AM)

w

2.5

2.0

15

1.0

0.5

Recovery rate
(fold increase of controf)

0.0

Treatment time o [ 12 24 48 (hours)
{8 nM rotenone )}

Fig. 3. Dose and time course analyses of the effect of rotenone on
GJIC in cuitured astracytes. GJIC was assessed by FRAP, in terms of
RR (fold increase of control cells). Results are means of at least three
experiments. (A) Dose dependence (treatment for 48 h). (B) Time
dependence in the case of 8 nM rotenone. Columns show fold in-
crease in RR compared with untreated cells (at 48 h) or compared with
celis treated with 8 nM rotenone at 0 h for A or B, respectively.
Plena<0.001 for A and B.
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Relative expression of total Cx43 protein

Fig. 4. Cx43 levels were compared between different brain regions by
using identical membranes loaded with the homogenates obtained
from the different regions. The graph depicts fold increase of fotal
Cx43 expression relative to the control (thalamus). Values are
mean=SE with n=3.

In addition, although astrocytes were denser in SNr
and GP than in SNc and striatum, the numbers of astro-
cytes in nigrostriatal regions was unchanged with rotenone
treatment (Fig. 6, GFAP).

DISCUSSION

Previous Cx43 electrophoresis studies had found a faster-
migrating form that includes nonphosphorylated €x43 (P,)
and at least two slower-migrating forms, commonly termed
P, and P, (Crow et al., 1990; Musil et al., 1990). Pulse-
chase analysis had indicated that the Cx43 isoforms
progress from P, to P, to P, and that the P, isoform is
associated with gap junctional structures (Musil and Good-
enough, 1991). In our study, rotenone treatment induced
an increase of total Cx43 protein in astrocytes, and the
number of localized foci of total and phosphorylated Cx43
on the plasma membrane was increased. Furthermore,
astrocyte GJIC was intensified with rotenone treatment.
Therefore, since the increase of P, and P, forms of Cx43
was proportional to the increase of total Cx43 protein
levels, our findings indicate that phosphorylation of P, and
P, was enhanced during the induction of total Cx43 protein
by rotenone. Cowan et al. (2003) reported that Cx43 pro-
tein levels decreased in response to rotenone treatment,
but their finding cannot be directly compared with ours,
since they used vascular smooth muscle cells and a far
higher concentration (10 uM) of rotenone.

On the other hand, since Cx43 mRNA levels did not
change, altered protein degradation may be involved in the
rotenone-induced increase of Cx43 protein. Degradation of
Cx43 is thought to be regulated by phosphorylation of Py,
or possibly P, and P, (Rivedal and Opsahl, 2001; Ruch et
al., 2001; Qin et al., 2003). Phosphorylation is implicated in
the regulation of GJIC at several stages of the connexin
“life cycle,” including trafficking, assembly/disassembly,
and gating of gap junction channels (Lampe and Lau,
2004). Our in vivo experiment using rotenone-treated rats
demonstrated for the first time that P, and P, forms of

Cx43 are selectively induced in astrocytes of the basal
ganglia regions, which contain DA neurons or their termi-
nal areas, and that these elevated levels of Cx43 were
sustained during rotenone treatment. This site-specific
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Fig. 5. Cx43 levels in the brain of rotenone-treated rats relative to that
of Panacet (vehicle)-treated rats (control) at 1, 2, and 4 weeks.
(A) Western blotting analysis of Cx43. (B) Column illustrates the
quantifications of Cx43 levels obtained from three independent exper-
iments by measuring the intensity of the Cx43 signal. Values are
mean=SE with n=6. ** P<0.05 for the mean difference from the
corresponding control group.
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Fig. 6. Immunofluorescence staining of (A) SN and (B) ST obtained from Panacet- (vehicle) or rotenone-treated rat brain at 4 weeks. Triple labeling
was used, with TH colored green, Cx43 colored red, and GFAP, an astrocyte marker, colored white. In (B) GP or ST indicates globus pallidus or

striatum, respectively. Scaie bars=50 uM.

susceptibility of astrocytes to Cx43 induction by rotenone
could be of great importance, since the great heterogeneity
of astrocytes among brain sites is a key to understanding
PD pathology (Price et al., 1999; Amadio et al., 2007).
This study has obvious limitations, and some tasks for
future investigation are mentioned below. Although induc-
tion of astrocyte Cx43 by rotenone was observed along
with loss of DA neurons in the SNc and striatum, we failed
to establish a relationship between increase of Cx43 and
extent of DA neuron damage: induced levels of Cx43 were
lower in SNc and striatum than in SNr and GP, though DA
neurons in the SNc and striatum are more vulnerable than
those in SNr and GP (Fearnley and Lees, 1991). Further
study will be necessary to assess the site-specific vulner-
ability of DA neurons in the nigrostriatal area, and the
potential involvement of mechanisms, such as inflamma-
tion, other than GJIC in the seiective death of DA neurons.
Induction of Parkinsonism by rotenone will need to be
examined. For example, the inflammation that is thought to
cause activation of astrocytes, which is in turn associated
with upregulation of Cx43, may involve microglia (Retamal
et al., 2007). In addition, Cx30 and Cx26 are both major
gap junction proteins in astrocytes. We found that Cx26

expression was unaffected by rotenone in vivo and in vitro

(data not shown), but it will also be necessary to examine
changes in Cx30 in the future, perhaps with the use of
Cx.-specific inhibitors or siRNA.

The central question is whether the elevation of astro-
cyte GJIC plays a part in causing the development of PD or
whether it is merely a protective response to rotenone.
Astrocytic syncytia in the normal CNS play important ho-
meostatic roles in the spatial buffering of extracellular po-
tassium ions and water (Jefferys, 1995; Naus et al., 1997;
Wallraff et al., 2006), glutamate and other signaling mole-
cules (Cornell-Bell et al., 1990; Hossain et al., 1994), and
energy sources (Dienel and Cruz, 2003). On the other
hand, abnormal synchronization of the oscillatory activity
of neurons at multiple levels of the basal ganglia~cortical
loop is thought to play a role in this synchronization in
animal models and human PD. This suggests the possi-
bility that enhancement of GJIC affects PD development
(Yamawaki et al., 2008). To examine whether this is so, the
effects of astrocyte GJIC inhibition on DA neurons in PD
models needs to be investigated using an astrocyte-spe-
cific GJIC inhibitor; however, such an inhibitor is not yet
available. Cx. knockout mice might be useful to investigate
the role of gap junctions in PD models. Furthermore, it is of
interest to know why the change of Cx43 occurred in the
hippocampus. Our immunochistological analysis suggested
that the number of astrocytes in striatum and hippocampus
is higher than those in other brain regions. Therefore one
possibility is that this difference in the density of astrocytes
influences the induction of Cx43 protein by rotenone. An-
other possibility is that astrocytes in striatum and hip-

—246—



A. Kawasaki et al. / Neuroscience 160 (2009) 6168 67

pocampus might have different characteristics from those
in other areas (Price et al., 1999; Amadio et al., 2007).

Rufer et al. (1996) reported that immunoreactive Cx43
protein was increased in the striatum in a rat MPTP model,
but they did not find evidence of increased functional cou-
pling. They did not examine cultured astrocytes. The rea-
son for the difference between their results and ours is
unclear, but may be related to the differences between the
rotenone and MPTP models. In summary, rotenone en-
hanced GJIC through induction of phosphorylated Cx43 as
well as total Cx43 in astrocytes, and increased Cx43 in
nigrostriatal astrocytes was also observed in rotenone-
treated rats, accompanied with loss of DA neurons. Given
the potential implications of our findings, the mechanisms
linking enhanced astrocyte GJIC and DA neuron death
urgently need to be examined.
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Abstract

Purpose:  Our previous study showed that radiation exposure reduced the diversity of repertoires of memory thymus-derived
cells (T cells) with cluster of differentiation (CD)- 4 among atomic-bomb (A-bomb) survivors. To evaluate the maintenance
of T-cell memory within A-bomb survivors 60 years after radiation exposure, we examined functionally distinct memory
CD4 T-cell subsets in the peripheral blood lymphocytes of the survivors.

Methods: Three functionally different subsets of memory CD4 T cells were identified by differential CD43 expression levels
and measured using flow cytometry. These subsets consist of functionally mature memory cells, cells weakly responsive to
antigenic simulation, and those cells functionally anergic and prone to spontaneous apoptosis.

Results: The percentages of these subsets within the peripheral blood CD4 T-cell pool all significantly increased with age.
Percentages of functionally weak and anergic subsets were also found to increase with radiation dose, fitting to a log linear
model. Within the memory CD4 T-cell pool, however, there was an inverse association between radiation dose and the
percentage of functionally mature memory cells.

Conclusion: These results suggest that the steady state of T cell memory, which is regulated by cell activation and/or cell

survival processes in subsets, may have been perturbed by prior radiation exposure among A-bomb survivors.

Keywords: A-bomb, CD4, intimunological memory, CD43, flow cytometry, T cell

Introducton

In humans, immunological memory resides in and is
conwrolled by long-lived lymphocytes, with immuno-
logic memory being maintained at an appropriate
level by a constant proliferation of memory thymus-
derived cells (T cells) (Dutton et al. 1998). Once
subjected to antigenic stimulation, memory T cells
tend to divide repeatedly, thus giving rise to greatly
expanded clonal populations which may persist for
very long periods of time (Maini et al. 1999).
Clonally expanded T-cell populations are frequently
observed not only in healthy aged persons (Posnett
et al. 1994, Fitzgerald et al. 1995, Wack et al. 1998)
but also in virally-infected individuals (Eiraku et al.
1998, Silins et al. 1998) and in patents with
autoimmune diseases of various types (Fitzgerald
et al. 1995, Musette et al. 1996, Waase et al. 1996).

In general, the peripheral blood pool of memory T
cells with cluster of differentiation (CD)- 4 appear
not to have been significantly affected by radiation
exposure among atomic-bomb (A-bomb) survivors.
However, there are significant dose-dependent def-

icits in the naive T-cell pools (Kusunoki et al. 1998, .

2002, Yamaoka et al. 2004). Further, clonal popula-"
tions originating from peripheral T cells have been-.

identified in blood samples from some of the A= ° o

bomb survivors primarily by tracking specific T-cell o
receptor (TCR) genes and/or chromosome aberra-
tions in memory T-cell populations (Kusunoki et al. .
1993, Nakano et al. 2004). In this regard, we have
recently reported that the extent of deviation in the
TCR repertoire of memory CD4 T cells significantly
increased as the intensity of radiation exposure
increased (Kusunoki et al. 2003). It seems reason-
able, therefore, to assume that A-bomb radiation
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induced the expansion or shrinkage of particular
memory T-cell clones, concomitant with a reduced
capacity to maintain fully diverse repertoires of
helper T-cell memory.

Previously, we have reported that human memory
CD4 T cells can be discriminated into three
functionally different subsets (M1, M2, and M3)
using the human stem cell-associated (HSCA)- 2
monoclonal antibody (mAb) that recognises a sialic
acid-dependent epitope on the low molecular mass
(~ 115 kDa) glycoform of CD43 (Ohara et al. 2002,
Kyoizumi et al. 2004). The M1 subset consists of
functionally mature cells whose CD43 expression is
relatively high. The M2 subset expresses moderate
levels of CD43, and responds weakly to TCR-
mediated stimuli. The M3 subset exhibits relatively
low levels of CD43 and is anergic to TCR-mediated
stimuli, and prone to spontaneous apoptosis.

In this study, we evaluated the extent to which
T-cell memory function is retained in A-bomb
survivors by examining the relationships between
these memory CD4 T-cell subsets, ageing, and
radiation exposure.

Materials and methods
Blood donors

An A-bomb survivor cohort was randomly selected
from a group of Hiroshima participants in the Adult
Health Study (AHS) at the Radiation Effects
Research Foundation (RERF) (Kodama et al. 1996).

For the present study, blood samples of 1132
survivors were obtained, with informed consent,
from survivors who participated in the AHS between
2004 and 2008. This study protocol has been
approved by the Human Investigation Committee
of RERF. We excluded 216 subjects (19% in total
subjects) who had been diagnosed with cancer from
the current study. Cancer prevalence by dose
category was 16% at <0.005 Gy, 21% at 0.005-
0.5 Gy, 30% at 0.5-1.0 Gy, and 35% at >1.0 Gy,
and tended to be higher in survivors exposed to
higher doses, in accord with a recent observation in
the AHS population (Kyoizumi et al. 2005). The
age, gender and radiation dose of the remaining 916
survivors whose lymphocyte samples were subjected
to data analysis in our study are listed in Table 1.
Radiation doses are based on the Dosimetry System
2002 (DS02) estimates (Cullings et al. 2006).

Flow cyrometry

Mononuclear cell fractions separated by the Ficoll-
Hypaque gradient technique were analysed by three-
colour flow cytometry using a FACScan flow
cytometer (BD Biosciences, San Jose, CA, USA).
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Table 1. Age, gender, and radiation dose distribution of study
population.

Age (yrs)" category

6069 yrs 70-79 vrs >80 yrs

Dose

(GY) Male Female Male Female Male Female Total
<0.005" 27 25 58 84 17 94 305
0.005-0.5 13 33 54 66 22 107 295
0.5-1.0 19 18 20 33 9 49 148
1.0-4.0 28 25 28 35 14 38 168
Total 87 101 160 218 62 288 916

“Individuals in this dose category were exposed at distances in
excess of 3 km from the hypocenter, and hence received doses that
are substantally equivalent to zero. PAge at the time of the
examinations that were conducted between 2004 and 2008.

Fluorescein isothiocyanate (FITC)-labelled HSCA-2
mAb  was prepared as described previously
(Kyoizumi et al. 2004). PerCP-labelled CD4 mAb
and phycoerythrin (PE)-labelled CD45-related O
(CD45RO) mAb were purchased from BD-
PharMingen (San Diego, CA, USA) and Caltag
Laboratories (Burlingame, CA, USA), respectively.
Three different memory CD4 subsets were defined:
CD45RO™ cells that expressed higher (M1), inter-
mediate (M2), and lower (M3) levels of CD43. For
each donor specimen, the window for the M2 subset
was set in a range where CD43 level was from Y- to
2-fold of the mean CDA43 intensity for CD45R0O ™~
cells, and the windows for the M1 and M3 subsets
were set just to the right and left sides of the
M2 window, respectdvely (Figure 1). Note that
this method of memory CD4 T-cell subset discrimi-
nation was established in a previous study
(Ohara et al. 2002) in which functional and
phenotypical differences among these subsets were
characterised, using a gating procedure (i.e., that
involved internal standardisation of fluorescence
intensities) that avoided the effects of inter-experi-
mental variability. The percentage of cells in the
range of each subset was obtained in a total CD4
T-cell population.

Data analysis

Associations of the percentage of each memory CD4
T-cell subpopulation (percentage) with age at time of
examination (age), gender (gender), and radiation
dose (dose) were analysed using a multiple regression
model (Armitage et al. 2002), The method assumed
that the percentage of each T-cell subpopulation
related to each explanatory variable in a log linear
manner:

log(percentage = o + f, (age — 70)
+ Bagender + 5 does,
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Figure 1. Flow cytomerry patterns of CD4 T cells in the peripheral blood of 79-year-old females whose estimated radiation doses were zero
(upper) and 0.525 Gy (lower). Peripheral blood mononuclear cells (abour 2 x 10%) were stained with FITC-labelled CD43 (HSCA-2) mAb,
PE-labelled CD45R0O mAb, and PerCP-labelled CD4 mAb. CD4 T cells were gated based on side light scartering (SSC) and CD4 intensity
(left) and analysed for their expression of CD43 and CD45RO (right). Percentages of memory CD4 T-cell subsets in a total CD4 T-cell
population of the unexposed were 24.1 for M1, 30.4 for M2, and 4.8 for M3, and those of the exposed were 17.2 for M1, 35.1 for M2, and

10.6 for M3.

where gender is an indicator of female sex, i.e.,
gender = 0 for male and gender = 1 for female, and dose
is radiation dose in grays. The 2 is a constant term, and
B1» B2; and P are regression coefficients for variables to
be estimated. The age term was subtracted by 70 years
so that o corresponds to log-transformed percentage of
CD4 T-cell subset, i.e., the subset percentage is
calculated to be ¢" (=exponential [¢]), for non-
irradiated males at 70 years of age. The % change of
subset percentage was estimated to be 100(e*% —1)
per 10 years increment of age, and IOO(e/"— 1) per
1 Gy radiation dose. This regression analysis in the log
linear manner was applied to evaluate the association
of the percentage of memory subset within the CD4
T-cell population or CD45RO-positive memory CD4
T-cell population with age or radiation dose.

Results

Figure 1 shows the flow cytometry patterns of memory
CD4 T-cell subsets within blood lymphocyte speci-
mens of two age-matched women whose estimated

—~2

o]

exposure doses were zero and 0.525 Gy, respectively.
Crude mean of percentage of each memory T-cell
subset within the CD4 T-cell population was shown
by age category and by dose category in Tables Il and
111, respectively. Table IV shows the association of the
percentage of each memory T-cell subset with age and
radiation dose, in terms of a multiple regression
model. The percentage of memory cells (identfied
and enumerated by CD45RO-positivity) within the
CD4 T-cell population appeared to significantly
increase with age (p <0.0001), and also with radiation
dose (p=0.0060). There was no difference in the
percentage of CD45RO-positive memory cells be-
tween males and females (data not shown). As for
memory T-cell subsets (M1, M2, and M3), the
percentage of each subset in the CD4 T-cell popula-
tion appeared to significantly increase with age
(p <0.0001); but again, these percentages did not
differ between males and females (data not shown).
The percentages of M2 (p=0.0001) and M3
(p=10.0096) subsets were found to significantly
increase with radiation dose.
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Table II. Crude means of the percentages of memory subsets in
the CD4 T-cell populaton by age category.

Age category

60-69 yrs T0-79 yrs 280 yrs
Subset Mean 65.5 yrs 75.7 yrs 84.8 yrs
CD45 RO 48.8 (1.10)" 52.2 (0.85) 58.1(0.87)
(toral memory)
M1 (mature, 17.3 (0.62) 18.7 (0.49) 22.4 (0.56)
fully competent)
M2 (immature, 26.1 (0.57) 27.4 (0.43) 29.3 (0.45)
poorly competent)
M3 (death 5.3 (0.14) 6.1 (0.17) 6.4 (0.14)

prone, anergic)

“Standard error in parentheses.

Table HI. Crude means of the percentages of memory subsets in
the CD4 T-cell population by dose category.

Radiation dose category

<0.005 Gy 0.005-0.5 Gy 0.5-1.0 Gy 1.0-4.0 Gy
Subset Mean 0.0 Gy 0.20 Gy 0.75 Gy 1.74 Gy
CD45 53.3 (0.93)° 53.1 (0.99) 55.0 (1.49) 54.6 (1.13)
RO
M1 19.8 (0.57) 20.1 (0.57)  20.0 (0.88) 19.3 (0.72)
M2 27.4 (0.47) 27.2 (0.51)  29.0 (0.75) 29.0 (0.57)
M3 6.1 (0.18) 5.8 (0.14) 6.0 (0.21) 6.3 (0.20)

“Standard error in parentheses.

Table IV. Association of the percentages of memory subsets in the
CD4 T-cell population with age or dose (multple regression
analysis)®. :

% change of subset percentage per unit
p

Subset Age (10 years)? Dose (1 Gy)©
CD45RO 10.8 4.3
(8.0, 13.5)¢ (1.3,7.3)
£ < 0.0001 »=0.0060
Ml 14.6 1.3
(10.1, 19.1) (—3.7, 6.2)
p < 0.0001 p=0.61
M2 7.3 5.8
(4.7, 10.0) (2.9, 8.7)
p < 0.0001 £=0.0001
M3 10.6 4.9
(7.2, 13.9) (1.2, 8.6)
p < 0.0001 2=0.0096

*Representative memory subset percentage (95% confidence
interval) for non-irradiated males at 70 years of age was calculated
to be 15.3 (13.9, 16.7) for M1, 24.8 (23.6, 26.0) for M2, and 5.1
(3.9, 6.4) for M3. Note that there was no significant difference in
the percentage of total CD45RO-positive memory cells and that of
each memory T-cell subset between males and females. *Effects of
age were estimated for 10 years. “Effects of radiation dose were
estimared for 1 Gy. 995% confidence interval.
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These radiation dose-related changes of memory
T-cell subsets observed within the CD4 T-cell
population may also involve comparable changes
within memory subsets of the CD45RO-positive
CD4 T-cell population (Table V). The percentages
of M1 and M2 subsets in the memory CD4 T-cell
population appeared to significantly increase and
decrease with age (p=0.0085 and p <0.0001),
respectively. In association with radiation dose, there
was a statistically significant decrease in the percen-
tage of M1 subset within the CD45RO-positive
memory CD4 T cell population (p=0.039). The
ratio of the M1 subset to the combined M2 and M3
subsets also significantly decreased with radiation
dose (p=0.043), in contrast to a significant increase
in this ratio with age (p = 0.0030).

Discussion

Our previous study (Ohara et al. 2002) has clearly
shown functional differences among M1, M2, and
M3 memory T-cell subsets: Cells in the M1 subset
have greater capacity to respond to recall antigens
(such as tuberculosis purified protein derivative and
tetanus toxoid) and to secrete interferon-y and IL-4
than cells in either of the other subsets; the M2
subset is comprised of memory-type cells that are less
mature than cells of the M1 subset, in terms of not
only their memory cell function (i.e., recall antgen
reactivity and cytokine-producing ability), but also in
terms of their chromosomes’ telomere length (longer
telomeres); and the M3 subset, in contrast to the M2
subset, consists of cells that are anergic to TCR-
mediated stimuli and prone to apoptosis. Therefore,
an increase in the proportion of these functionally
less competent T-cell subsets (i.e., M2 and M3) may

Table V. Comparable changes of memory subsets within
CD45RO-positive memory CD4 T-cell population with age or
dose (multiple regression analysis).

% change of subset percentage per unit

Subset Age (10 years)® Dose (1 Gy)®
Ml 3.5 —3.0
(0.9, 6.1)° (—5.8, —0.2)
p=0.0085 »=0.039
M2 —3.2 1.5
(—4.6, —1.8) (—0.6,3.0)
? < 0.0001 p=0.059
M3 -0.2 0.6
(—3.4, 3.0) (—2.9,4.1)
p=0.91 p=0.73
Ratio [M1/ 6.1 ~45
(M2 +M3)] (2.1, 9.0) (—8.8, —0.1)
»=0.0030 p»=0.043

“Effects of age were estimated for 10 years. "Effects of radiation
dose were estimated for 1 Gy. “95% confidence interval.
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not be beneficial to the individual in terms of
immunological memory to previously encountered
foreign antigens. Such preferential expansion of M2
and M3 subscts may also imply an insufficient
maturation of antigen-primed CD4 T cells to the
fully memory-competent M1 subset within the
individuals’ immune system. A hypothesis on mem-
ory CD4 T-cell differentiation pathways is depicted
in Figure 2. After antigen exposure, naive T cells
may undergo repeated cycles of cell division and
transformation into the premature memory stage M2
cells. The conversion of M2 cells into the fully
functioning mature memory stage M1 cells also
requires population doublings following antigen
exposure. Replication of M1 cells in response to
recall antigens is largely responsible for the main-
tenance of memory functions. M3 cells, by contrast,
are likely to be cells that are approaching senescence,
and may arise from fully mature M1 cells that have
lost survival signals such as cytokine signalling. We
can also suspect that premature M2 cells are directly
transformed into death-prone M3 cells. Such puta-
tive differentiation pathways may be controlled by
interaction of memory T cells with antigen-present-
ing cells and environmental cytokine conditions.
Such circumstances of memory T cells are very
important to properly maintain immunological
memory. In the CD4 T-cell systems of A-bomb
survivors, there are at least two possibilities that the

Antigen
exposure

Nalve

Antigen
exposure

>

M2

differentiation from M2 to M1 cells may be
insufficient, and that cell transit from M2 and M1
subsets to apoptotic-prone M3 populations may be
enhanced. Effects of radiation on cellular and
molecular mechanisms controlling the memory
T-cell differentiation pathways remain to be investi-
gated. Taken together, our results suggest that
function and maintenance of helper T-cell memory
in the immune system of A-bomb survivors might
have been compromised, after A-bomb irradiation.,
Our previous study has shown that proliferative
responsiveness of memory CD4 T cells to recall
antigens can be enhanced by triggering cell-surface
CD43 molecules with HSCA-2 mAb in vito
(Kyoizumi et al. 2004). That suggests that CD43
molecules play a part in certain of the cell signalling
events involved in memory T-cell activation.
Further, it is likely that CD43 and CD28 mAbs act
synergistically to stimulate CD4 T-cell response to
TCR cross-linking in vitro, indicating the co-
stimulatory function of CD43 in TCR-mediated
activation processes (Kyoizumi et al. 2004). It has
also been suggested in the mouse immune system
that the up-regulation of CD43 expression can have a
negative effect on activaton-induced cell death of T
cells (He and Bevan 1999). A recent study has
indicated that CD43 molecules induce a signalling
cascade that prolongs the duradon of TCR signal-
mediated cell proliferation and cytokine secretion,

Antigen
exposure

M1
{primarily responsible for memory function)

Figure 2. Hypothesised memory CD4 T-cell differentiation pathways for A-bomb survivors. Preferential pathways in the survivors’ immune

systems are drawn with bold lines.

BIGHTS L1/ Y4,

—2563—



ry

Int ] Radiat Biol Downloaded from informahealthcare.com by Research Foundation Libra

For personal use only.

but that prevents TCR signal-mediated anergy
(Fierro et al. 2006). Thus, evidence is accumulating
that there are positive effects of CD43-mediated
signalling on activation and survival of memory T
cells. By contrast, studies that have employed gene
disruption techniques have shown that CD43 has
either a negative regulatory role (Thurman et al.
1998, Tong et al. 2004), or possibly, plays no
significant role in T-cell activation (Carlow et al.
2001). Although the precise mechanism of CD43-
dependent regulation of T-cell activation remains to
be determined, we have clearly demonstrated that
CD43 expression is positively correlated with antigen
responsiveness of memory CD4 T cells (Ohara et al.
2002). It is highly likely that the preferential increase
in select memory subsets that express lower levels of
CD43 (M2 and M3) may be associated with
attenuated immune responses to specific pathogens.
Levels of immunoglobulin G and A to Chlamydia
preumnoniae have recently been found to decrease
significantly with radiation dose among A-bomb
survivors (Hakoda et al. 2006). It would be
intriguing to study associations between antigen-
specific responses to such ubiquitous pathogens and
composition of memory T-cell subsets as defined by
the relative level of CD43 expression among A-bomb
SUrvivors.

The individual’s ability to properly maintain T-cell
memory is known to decline with age (Goronzy and
Weyand 2005, Weng 2006). This ageing-related
immune attenuation is thought to be associated with:
(i) The reduction in the size of naive T-cell pool due
to reduced production of new T cells within the
involuted thymus, and subsequent, but infrequent
entry of antigen-primed cells into the memory T-cell
pool, and (ii) divergent antigen recognition reper-
toire of the memory T-cell pool due to the expansion
or shrinkage of functionally incompetent memory T-
cell populations (Goronzy and Weyand 2005, Weng
2006). Our previous observations of the immune
system of A-bomb survivors are consistent with these
typical features that relate to immunological ageing.
In this regard, the proportion of naive CD4 T cells
was shown to decrease slightly, but significantly, with
radiation dose (Kusunoki et al. 1998, 2002, Yamao-
ka et al. 2004). Also, the extent to which the TCR
repertoire deviated from normal in memory CD4 T
cells significantly increased with radiation dose in
aged survivors (Kusunoki et al. 2003). An age-
dependent increase in the percentage of M1 subset
within the memory CD4 T-cell population may
reflect the frequent expansion of functional memory
T-cell populations in aged individuals. As far as we
have examined for several individuals of the present
study subjects, clonally expanded populations are
largely distributed in M1 subset (Kyoizumi, manu-
script in preparation), suggesting that, in aged
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individuals, only a small population of M1 subset
may contribute to recall antigen responses in vivo.
The observations in the present study can also be
interpreted as an attenuation of helper T-cell
memory possibly resulting from radiation-induced
perturbation of T-cell homeostasis in A-bomb
SUIVIvVors.
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Genomic instability has been suggested as a mechanism by
which exposure to ionizing radiation can lead to cancer in
exposed humans. However, the data from human cells needed to
support or refute this idea are limited. In our previous study on
clonal lymphocyte populations carrying stable-type aberrations
derived from A-bomb survivors, we found no increase in the
frequency of sporadic additional aberrations among the clonal
cell populations compared with the spontaneous frequency in
vivo. That work has been extended by using multicolor FISH
(nFISH) to quantify the various kinds of chromosome
aberrations known to be indicative of genomic instability in
cloned T lymphocytes after they were expanded in culture for 25
population doublings. The blood T cells used were obtained from
each of two high-dose-exposed survivors (>1 Gy) and two
control subjects, and a total of 66 clonal populations (36 from
exposed and 30 from control individuals) were established. For
each clone, 100 metaphases were examined. In the case of
- exposed lymphocytes, a total of 39 additional de novo stable,
exchange-type aberrations [translocation (t) + derivative chro-
mosome (der)] were found among 3600 cells (1.1%); the
corresponding value in the control group was 0.6% (17/3000).
Although the ratio (39/3600) obtained from the exposed cases
was greater than that of the controls (17/3000), the difference
was not statistically significant (P = 0.101). A similar lack of
statistical difference was found for the total of all structural
chromosome alterations including t, der, dicentrics, duplications,
deletions and fragments (P = 0.142). Thus there was no clear
evidence suggesting the presence of chromosome instabilities
among the clonally expanded lymphocytes in vitro from A-bomb

survivors. © 2009 by Radiation Research Society
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INTRODUCTION

Radiation-induced genomic instability has been de-
fined as events that occur in cells many generations after
irradiation and that are distinguishable from the
immediate effects of radiation. In 1992, Kadhim et al
(1) reported elevated frequencies of non-clonal de novo
chromosome aberrations (mainly chromatid-type aber-
rations) in in vitro cultures of mouse hematopoietic stem
cells irradiated in vivo with o particles. A number of
delayed effects after exposure to both high- and low-
LET radiation have since been described. It is now
recognized that instability can be measured using not
only chromosome alterations as a marker but also other
end points such as gene mutations and cell death [see
refs. (2-5) for reviews]. Genomic instability induced by
radiation has been proposed to be an early event
associated with the initiation of carcinogenesis (6). This
model has therefore attracted many investigators inter-
ested in radiation-induced cancer.

While there are many reports describing radiation-
induced genomic instability, only a few studies have been
done with human cells, and the results are not concordant.
Holmberg et al. (7) reported that the clonal descendants of
X-irradiated human T lymphocytes acquired new stable-
type aberrations 16-62 days after in vitro culture. In
studies of people accidentally exposed to “’Cs y rays,
Salomaa et al. (8) observed a significant increase in the
frequency of exchange-type aberrations, including dicen-
trics (dic) in long-term lymphocyte cultures. Hofman-
Huther et al. (9) observed an increased frequency of
unstable-type aberrations (dic) at 8-41 days after the
irradiation of human lymphocytes with X rays or 100
MeV/nucleon carbon ions. Similarly, delayed chromo-
some aberrations were reported in cultured human
fibroblasts (10-13) and in human bone marrow cells
(I14). In contrast, Tawn et al. (15) examined lymphocytes
from radiotherapy patients 6-60 months after their
treatments and found no evidence for extended instabil-
ities. Whitehouse and Tawn (/6) did not detect any
increase in the frequency of delayed chromosome
alterations in the lymphocytes of radiation workers
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