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obacunone, limonin, nobiletin and silymarin, present in
edible plants against AOM-induced colon tumorigenesis is
described above. All these compounds are antioxidants, In
general, plants are complicated mixtures of numerous
chemicals, and interactions with their components may
affect the effectiveness of an antioxidant. The effectiveness
of the tested compounds as in vivo antioxidants has been
reported, but the metabolic pathways and actions of naturally
occurring antioxidative compounds are not clear. Flavonoid
compounds, which are widely distributed in the plant
kingdom and occur in considerable quantities, show a wide
range of pharmacological activities other than their
antioxidative properties. These compounds have been used
to treat various pathological conditions, including allergies,
inflammation and diabetes. There is accumulating
experimental data, including this report, showing their
antitumor activities: their chemopreventive potential,
however, has not been fully proven clinically. Their
behavior and fate should be investigated in vivo. As
reported, commonly consumed foods contain non-nutritive
compounds capable of inhibiting CRC in an animal model.
The diet provides a rich abundance of these compounds,
which have the ability to intervene in all phases of
carcinogenesis. Mechanisms of action include effects on
Phase I and Phase I enzymes activities, interception of DNA
mutating agents and influences on cell proliferation and
oncogene activation. Each of these mechanisms have been
studied in isolation. In order to explain reduced risk for
cancer in populations with a greater reliance on fruits and
vegetables in the daily diet, future research should focus on
potential combinations of foods and the protective
components within them?®.

The association of certain malignancies with chronic
inflammation has been recognized for many years'’. The
link between inflammation and subsequent malignancy in
visceral sites is known. Examples include large bowel
cancer after ulcerative colitis or Crohn’s disease'”’. Central
to the concept of inflammation and cancer is the finding that
chronic irritation of the squamous or glandular epithelium
results in migration of inflammatory cells to the injured site
by a mechanism dependent on neutrophil adhesion
molecules. These cells, stimulated to produce reactive
oxygen species (including superoxide radicals, NO and/or
hydroxy radicals) via a respiratory burst and NADPH
activation, can function as facilitators in the process of
carcinogenesis. There is convincing evidence from animal
model systems that prolonged exposure of cells to these
products of activated oxygen can result in cell injury and
play a role in several stages of carcinogenesis!>>!58159,
Using our own model of colitis-related mouse colon
carcinogenesis!*>!'%% (Fig. 6), several non-nutritive
compounds have been demonstrated to suppress colonic
epithelial malignancies in the inflamed colons of mice'®!,
Recently, upregulation of COX-2, but not COX-1, gene
expression was reported in human colorectal neoplasms®®2,
New drugs, specific for inhibition of COX-2, may provide
effective tumor prevention with reduced side effects!s31%%,

The elevation of COX-2 expression can protect intestinal
epithelial cells from apoptosis'®, Certain COX-2 inhibitors
can induce apoptosis'®® and inhibit tumor angiogenesis!®’.
More recently, synthetic antioxidants have been reported to
reduce COX-2 expression, PG production and proliferation
of CRC cells!®®. This suggests that COX-2 may provide a
new chemopreventive target in colorectal malignancies'®*1%,
if there are natural products from edible plants that are
specific inhibitors of COX-2 expression.

From the evidence mentioned above, our search for
chemopreventives against CRC focuses on several
flavonoids and some other compounds possessing certain
biological activities, including anti-inflammatory and/or
antioxidative properties present in foods. Approximately
2,000 individual members of the flavonoid class have been
described, and flavonoids are consumed in rather large
amounts through dietary vegetables and fruits.

Future Prospects

An important component of the chemopreventive
agent development research is the identification and
characterization of intermediate biomarkers™!7® that may
serve as surrogate end points for cancer incidence reduction
in chemoprevention clinical trials. This type of effort is
critical to the progress of chemoprevention and potential for
cost-effective development of chemopreventive research.

ACFs were first reported in rodents injected with AOM
by Bird in 1987'7! and similar lesions were characterized in
humans in 1991% and 1994'72 by Pretlow; since then, the
AOM-induced ACF model has been the most widely used
animal model system for evaluating natural and synthetic
chemicals’7477, The growth dynamics, morphological and
molecular features of ACFs support the contention that they
are putative preneoplastic lesions. For instance, ACFs have
a hyperproliferative, hyperplastic or dysplastic cryptal cells,
and their sizes increase with time!’>!’4, The nuclear atypia
observed in some ACFs are similar to those seen in the
crypts of adenocarcinomas in the colons!”. Furthermore,
identification of dysplasia and monoclonality strongly links
this lesion to neoplastic progression'”. Recently, two new
types of early lesion that progress into colon neoplasms have
been described in the colon. Yamada er al.'7® identified new
possible precursor lesions, B-catenin accumulated crypts
(BCAC), for colon carcinoma in whole-mount preparations
of the colons of rats exposed to AOM using an
immunohistochemical method. These lesions are different
from ACFs in terms of their morphology and location. In the
lesions, nuclear accumulation of f-catenin is more
prominent than that observed in ACFs'”, Cell proliferation
activity estimated by counting the number of AgNORs/
nucleus in the lesions is also greater than in ACFs!”’. In
addition, Cademi ef al.'®'® identified mucin-depleted foci
(MDF) in unsectioned colon stained with high iron diamine-
alcian blue (HID-AB). These newly described lesions are
not yet well characterized, and we do not know if BCACs
and MDFs are related lesions. It is interesting to note that
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BCAC, like MDF, have a low production of mucins and are
thought to be premalignant lesions rather then preneoplastic
lesions. A recent review article described the significance of
these three lesions (ACF, BCAC and MDF) in colon
carcinogenesis'®'. Since ACFs are widely accepted as a
reliable end point in experimental colon carcinogenesis, this
study reports the effects of herbal supplements on the
“classical” ACF. We should thus estimate the reported
chemopreventive efficacy of non-nutritives in edible plants
using both ACFs and these new lesions as biological markers
for colon carcinogenesis in future studies. Since the ligands
for PPARs can inhibit AOM-induced ACFs, which weakly
express PPAR#'%2, we are now searching for natural
compounds that act as ligands for PPARs**8%, In the near
future, we would like to provide promising non-nutritive
compounds (including citrus compounds, auraptene and
nobiletin) with less toxicity from edible Asian plants!©%183.184
for use in clinical CRC chemoprevention trials.
Furthermore, new compounds with more effective
chemopreventive effects can be synthesized from the non-
nutritive compounds, including collinin!®-'®5, in edible
plants if a small amount of the parent compound can be
isolated. Development of prodrugs that can easily reach
target tissues and exert their biological activity greater than
the parent chemicals at the sites is also important for cancer
chemoprevention strategies'**. Additionally, low doses of
combinations of known non-nutritive chemopreventive
agents can be considered to obtain a pronounced
chemopreventive effect against CRC development in the
future'®,

Epidemiological studies have shown that obesity and
diabetes might be risk factors for CRC development'®. An
animal study using db/db mice, which have obese and
diabetic phenotypes because of disruption of the leptin
receptor, demonstrated that these types of mice are highly
susceptible to colon carcinogenesis'®’. Citrus unshiu
segment membrane (CUSM) contains fiber, flavonoids and
pectin, but its biological activity is unknown. Therefore, we
conducted a short-term experiment to determine whether
dietary CUSM affects the development of AOM-induced
ACFs and BCACs in the colons of C57BL/KsJ-db/db
mice!®®. Male db/db mice were given subcutaneous
injections of AOM (15 mg/kg body weight) once a week for
5 weeks. From one week after the last dosing of AOM, they
received a diet containing 200, 1,000, or 5,000 ppm CUSM
for 7 weeks. At week 12, dietary administration of CUSM
caused a reduction in the frequency of ACFs (53-59%
reduction). In addition, the number of BCACs was lowered
by treatment with CUSM (29-62% reduction). Furthermore,
pathological alterations (fibrosis) in the liver that resembled
a metabolic disorder, non-alcoholic steatohepatitis'®®
(NASH), were reduced by feeding with CUSM. NASH may
cause fibrosis, cirrhosis and premature death resulting from
liver failure in some cases. Its prevalence is increasing, and
it is probably underestimated as a cause of cirrhosis and/or
liver cell cancer. The need to determine an effective

treatment is clear and urgent using an animal mode] of
NASH*. Our data may indicate that CUSM is useful for
reducing the risk of colon carcinogenesis in obesity and
diabetes. '

Finally, we should note the unexplained discrepancies
between the results of different animal carcinogenesis assays
and the exact mechanisms of carcinogenesis. Also, we
should explain why so many apparently different protective
agents are able to prevent experimental CRC7%7L74-77.79,
Although several studies using the AOM rat mode] have
demonstrated that diets expected to increase serum
triglycerides and glucose are associated with indicators of
risk of neoplasm in the colon, direct associations have yet to
be demonstrated because of lack of these measures in
previous studies. Thus, further investigations are needed to
determine whether dietary non-nutritive compounds affect
these serum biomarkers that influence the risk of CRC
through systemic effects involving the circulation and
through luminal effects.

Conclusion

In conclusion, certain flavonoids and other substances
with biological activity, including antioxidative and/or anti-
inflammatory properties, that are present in edible plants,
including vegetables and fruits, can exert chemopreventive
action on rat colon carcinogenesis as shown herein.
However, more work needs to be done to better understand
the underlying mechanism(s) of action and to confirm their
safety for use in humans. Since plants are complex mixtures
of chemicals, the potential for finding new chemopreventive
agents in plants is high. Studies are underway to identify
new compounds in edible plants with chemopreventive
potential. In order to screen chemopreventive agents based
on different mechanisms, a new in vitro co-culture model'®!
and microarray analysis'®? might be useful. The effects of
these agents on colon carcinogenesis should be carefully
studied to assist the discovery and development of new
chemopreventive agents and to understand carcinogenesis
mechanisms. Our goal is to develop chemopreventive
agents that are effective in decreasing the risk of CRC in
general and/or in high-risk populations. Even if this strategy
is only partially successful, it would have a significant
impact on reduction of CRC mortality.
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Lack of Enhancing Effect of Lauric Acid on the
Development of Aberrant Crypt Foci in Male ICR Mice
Treated with Azoxymethane and Dextran Sodium Sulfate
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Abstract: The effect of lauric acid (LA), which is reported to induce cyclooxygenase (COX)-2 expression in
macrophage cells (RAW 264.7) on the development of aberrant crypt foci (ACF), putative precursor lesions of colonic
adenocarcinoma, was investigated in an inflammation-related mouse colon carcinogenesis model treated with
azoxymethane (AOM) and dextran sulfate sodium (DSS). To induce ACF, male ICR mice were given a single
intraperitoneal injection of AOM (10 mg/kg body weight) and then followed by 1% DSS in drinking water for one week,
starting one week after dosing of AOM (AOM/DSS group). The AOM/DSS/LA group was fed with a diet containing
1% LA for 7 weeks, starting one week after the cessation of DSS administration. Other groups included the AOM/LA
group given AOM and 1% LA diet for 9 weeks, the DSS/LA group given DSS and the diet with 1% LA, the AOM group
that received AOM alone, the DSS group given DSS alone in drinking water, the LA group fed with 1% LA-containing
diet alone, and the untreated group. At week 10 (end of the study), the frequency of ACF did not significantly differ
between the AOM/DSS group (7.4 % 3.0) and the AOM/DSS/LA group (8.4 £ 5.0). The value was extremely low in
the AOM/LA group (1.0 £ 1.0) and in the AOM alone group (2.4 £ 2.7). No ACF developed in other groups. Our
findings suggest that dietary LA did not influence the occurrence of ACF in the AOM/DSS-induced mouse colon
tumorigenesis, indicating a lack of LA enhancing effects on the early phase of inflammation-related mouse colon

carcinogenesis. (J Toxicol Pathol 2007; 20: 93-100)

Key words: lauric acid, aberrant crypt foci, inflammation, azoxymethane, dextran sulfate sodium, mice

Introduction

Colorectal cancer (CRC) is one of the leading causes of
cancer deaths in the Western countries. Globally, CRC
accounted for about 1 million new cases in 2002 (9.4% of the
world) and the mortality rate is about one half that of
incidence (about 529,000 deaths in 2002)!. The incidence of
CRC is particularly high in Canada and Australia where
there is high consumption of red and processed meat®. In
contrast, Mediterranean countries have lower rates of CRC
when compared with other Western countries®. The low
incidence rates might be due to diet*, because the
consumption of fruits, vegetables, fish and olive oil is quite
high in Mediterranean countries. In 1969, Wynder ef al.®
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first suggested that patients with CRC have a high caloric
intake in the form of fats, and that dietary fats may be
involved in the pathogenesis of CRC development. Since
their innovative case-control study, a number of
epidemiological studies have implicated dietary fat in the
etiology of CRC®. In most industrialized societies, CRC has
a high incidence among both women and men. In Japan,
CRC incidence has particularly increased since the end of
World War II with an increase in dietary fat intake. Some of
the inconsistencies in findings on dietary fats may relate to
the fact that they are generally assessed in accordance with
their quantity (total fat), origin (animal or vegetable) or type
(saturated, monounsaturated or polyunsaturated)’=.
However, on the basis of results reported from a number of
studies conducted in different countries, there is sufficient
evidence to suggest that certain fatty acids play a role in
CRC occurrence. Currently, some epidemiological studies
have indicated that higher concentrations of butyric acid and
eicosanopentaenoic acid (EPA) provide protection against
CRC!%-12, These fatty acids induce apoptosis in colonic
cancer cells!®!. In contrast, specific fatty acids that increase
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Fig. 1. Chemical structure of lauric acid (LA) that is the main
constituent of triacylglycerol contained in coconut oil,

coconut milk, and palm tree oil. LA is also present in butter
and lard. :

the risk of CRC are unclear. Recently, a high fat intake was
reported to be associated with an increased risk for
inflammatory bowel disease (IBD), such as ulcerative colitis
(UC)"* and Crohn’s disease (CD)!S. CRC is one of the
complications of both diseases'’.

Lauric acid (LA, C,,H,,0,, Fig. 1), also called »-
dodecanoic acid is a medium chain fatty acid, which forms
monolaurin in the human or animal body. The highest
content of LA is found in a mother’s breast milk and coconut
oil'®. LA occurs as the glyceride in many vegetable fats,
especially coconut oil and laurel oil and is used chiefly in the
manufacture of soaps, detergents, cosmetics and lauryl
alcohol. 1t is also used in food additives and insecticides. LA
was recently reported to have antiviral'® and antibacterial?%*!
actions, and is able to destroy lipid-coated viruses including
human immunodeficiency, herpes, cytomegalovirus and
influenza viruses. More recently, interesting reports
describing that LA induces the expression of cyclooxygenase
(COX)-2 and inducible nitric oxide synthase (iNOS), both of
which are involved in colon carcinogenesis®*-?, through toll-
like receptor 4 in mouse macrophage 264.7 cells have been
published®?’. Over-expression of both enzymes was also
immunohistochemically observed in the inflamed colon of a
colitis-related mouse colon carcinogenesis model treated
with azoxymethane (AOM) and dextran sodium sulfate
(DSS)%,

Recently, many studies have reported that several non-
steroidal anti-inflammatory drugs (NSAIDs), including
COX-2 inhibitors, suppress the development of chemically-
induced colon carcinomas in rats?*>2, In addition, clinical
trials have demonstrated that a NSAID, sulindac, suppresses
adenomas in patients with familial adenomatous polyposis®.
Nimesulide, a selective inhibitor of COX-2, suppresses the
formation of aberrant crypt foci (ACF), a putative
precancerous lesion of the colon cancer?’**%¢, induced by a
colon carcinogen AOM in rats*’, and is able to inhibit the
occurrence of colonic adenocarcinoma induced by AOM/
DSS in mice3®. Similarly, iNOS, a generator of cellular
nitric oxide is also overexpressed in colon tumors®*4°, These
results suggest that COX-2 and iNOS play important role in
the incidence and development of colon cancer.

In the current study, we investigated whether LA
promotes the occurrence of ACF in an inflammation-related
mouse colon carcinogenesis model*!. Also, we investigated
whether LA-albumin complex induces COX-2 expression in

RAW264.7 cells (a murine macrophage-like cell line) as
previously described?®. RAW264.7 cells are known to be
useful for examining the production of inflammatory
mediators, including cytokines, prostaglandin E,, COX-2
and iNOS, after inflammatory stimuli*?,

Materials and Methods

Chemicals and reagents

A colonic carcinogen, AOM, was purchased from
Sigma-Aldrich K.X. (Tokyo, Japan). DSS with a molecular
weight of 40,000 was purchased from ICN Biochemicals,
Inc. (Aurora, OH, USA). LA was obtained from Wako Pure
Chemicals (Osaka, Japan). Dulbecco’s modified Eagle’s
medium (DMEM) and fetal bovine serum (FBS) were
purchased from Gibco BRL (Grand Island, NY, USA).
Bovine fetal serum albumin (BSA) and lipopolysaccaride
(LPS) were purchased from Sigma-Aldrich K.K. Enhanced
chemiluminescence western blot detection kits and reagents
were purchased from Amersham Pharmacia Biotech.
(Buckinghamshire, UK).

Animals, drinking water and diet

Male Crlj: CD-1 (ICR) mice (Charles River Japan,
Inc., Tokyo, Japan) aged 5 weeks were used in this study.
They were maintained at the Animal Facility of Kanazawa
Medical University according to the Institutional Animal
Care Guidelines. All animals were housed in plastic cages (5
mice/cage) with free access to drinking water (tap water) and
basal diet, CRF-1 (Oriental Yeast Co., Ltd., Tokyo, Japan)
under controlled conditions of humidity (50 + 10%), light
(12/12 h light/dark cycle) and temperature (23 £+ 2°C). They
were quarantined for the first 7 days after arrival, and then
divided into experimental and control groups. DSS for
induction of colitis was dissolved in water at a concentration
of 1% (w/v) every day. Experimental diet containing LA
(1%, w/w) was prepared every week by mixing with
powdered basal diet CRF-1. The dose of LA was selected,
based on a report by DeLany et al.*?

Experimental procedure

Thirty-six male ICR mice were divided into eight
groups (Fig. 2). Groups 1 (n=5), 2 (n=5), 3 (n=5) and 5
(n=4) were given a single intraperitoneal injection of AOM
(10 mg/kg body weight). Group 1 was then given a one-
week exposure of 1% DSS in drinking water, and was given
no further treatment. Group 2 was given AOM and DSS, as
per group 1. Then, mice of group 2 were fed a diet
containing 1% LA for 7 weeks, starting one week after the
cessation of DSS administration. Animals of group 3 were
given a diet containing 1% LA for 9 weeks, starting one
week after the AOM injection. Group 4 (n=4) was given 1%
DSS in drinking water and a diet containing 1% LA alone for
7 weeks. Groups 5, 6 (n=4) and 7 (n=5) were treated with
AOM alone, 1% DSS alone and 1% LA-containing diet
alone, respectively. Group 8 (n=4) served as an untreated
control. At week 10, all mice were sacrificed under ether
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iz : 1% DSS in drinking water X : sacrifice
[1:1%LA indiet

— : basal diet and tap water

Fig. 2. Experimental protocol.

anesthesia to assess the occurrence of colonic ACF. They
underwent careful necropsy, with emphasis on the colon,
liver, kidney, lung and heart. All grossly abnormal lesions in
any tissue, and the organs such as liver, kidney, lung and
heart were fixed in 10% buffered formalin solution for
histopathology and COX-2 immunohistochemistry.

Determination of ACF

The number of ACF per colon was determined
according to the method described in our previous report*,
At necropsy, the length (from the ileocecal junction to the
anal verge) of the large bowel was measured. The colons
were flushed with saline, excised, cut open longitudinally
along the main axis, and then washed with saline. Colons
were cut and fixed in 10% buffered formalin for at least 24 h.
Fixed colons were dipped in a 0.5% solution of methylene
blue in distilled water for 20 s, and placed on a microscope
slide for counting ACF. After counting ACF, colons were
routinely processed for histopathology.

Histopatholgy and COX-2 immunohistochemistry

Tissues, including colon, were examined on
hematoxylin and eosin-stained sections. Colitis with or
without ulceration (inflammation score) was also evaluated
on hematoxylin and eosin-stained sections, according to the
following grading system*3: grade 0, normal colonic
mucosa; grade 1, shortening and loss of the basal one third of
the actual crypts with mild inflammation and edema in the
mucosa; grade 2, loss of the basal two thirds of the crypts
with moderate inflammation in the mucosa; grade 3, loss of
entire crypts with severe inflammation in the mucosa, but
with retention of the surface epithelium; and grade 4, loss of
entire crypts and surface epithelium with severe
inflammation in the mucosa, muscularis propria and
submucosa.

Immunohistochemistry for COX-2 was carried out with
4-um thick, paraffin-embedded sections. Anti-COX-2

mouse monoclonal antibody (diluted 1:200, Transduction
Laboratories) was used as the primary antibody. To reduce
the non-specific staining of mouse tissues by the mouse
antibodies, a Mouse On Mouse IgG blocking reagent
(Vector Laboratories, Inc., Burlingame, CA, USA) was
applied. Staining was performed using a LSAB KIT or
DAKO EnVision kit (DAKO, Glostrup, Denmark) or
Vectastain Elite ABC Kit (Vector Laboratories). At the last
step, the sections were counter-stained with hematoxylin.
As a negative control, the primary antibody was omitted.

Cell culture

RAW264.7 cells obtained from the American Type
Culture Collection (Rockville, MD, USA) were cultured in
DMEM containing 10% FBS, L-glutamine (330 zg/ml),
penicillin (100 U/ml) and streptomycin (100 gg/ml) at 37°C
in a 5% CO,/air environment. Cells (2x10°) were plated in a
60-mm dish and cultured for an additional 18 h to allow the
number of cells to approximately double, Cells were
maintained in serum-poor (0.25% FBS) medium for another
18 h prior to the treatment with LA.

Preparation of LA-albumin complexes

LA was solubilized in ethanol or combined with fatty
acid-free and low endotoxin BSA at a molar ratio of 10:1
(fatty acid : albumin) in serum-poor medium (0.25% FBS).
Fatty acid-albumin complex solution was freshly prepared
prior to each experiment.

Western blotting

For western blot analysis, 2x10° cells were lysed in
lysis buffer [protease inhibitor, phosphatase inhibitor, 10
mM Tris, 1% sodium dodecy! sulfate (SDS), | mM sodium
vanadate (V)]. Protein concentration was determined using
a DC protein assay (Bio-Rad Laboratories Ltd., Kyoto,
Japan), with y~globulin used as the standard. Denatured
proteins were separated using SDS-polyacrylamide gel
electrophoresis on a 10% polyacrylamide gel and then
transferred to PVDF membranes. After blocking overnight
at 4°C in Block Ace (Dainippon Pharmaceutical, Osaka,
Japan), the membranes were incubated with the primary goat
polyclonal antibody against COX-2 (SC-1745, Santa Cruz
Biotechnology, Santa Cruz, CA, USA) at 1:1000 dilution
and the primary goat polyclonal antibody against S-actin
protein (SC-1615, Santa Cruz Biotehcnology) at 1:1000
dilution. Then, the membranes were incubated with a
horseradish peroxidase-conjugated goat anti-mouse IgG
secondary antibody (AMI3404, Biosource International,
Camarillo, CA, USA) at a dilution of 1:1000 for 2 h at room
temparature. The blots were developed using an ECL
western blotting detection reagent (Amersham Biosciences,
Buckinghamshire, UK). The intensity of each band was
analyzed using NIH Image.

Statistical analysis
Where applicable, data were analyzed using one-way
ANOVA with the Bonferroni correction (GraphPad Instat
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version 3.05, GraphPad Softwear, San Diego, CA, USA) and
P<0.05 as the criterion of significance.

Results

General observation

Bloody stool was observed in some mice in groups 1, 2,
4 and 6, when they were given DSS. There were no
significant changes of weight gains of mice in any group
during the study (data not shown). Mean body, liver and
relative liver (g liver weight/100 g body weight) weights at
sacrifice are shown in Figs. 3, 4 and 5, respectively.
Although there were no significant differences in the body
and liver weight among the groups (Figs. 3 and 4),
differences of the relative liver weights between groups 4
and 7 (P<0.05) and groups 7 and 8 (P<0.01) were
statistically significant (Fig. 5). No significant differences
were noted among the groups in the length of the large bowel
(Fig. 6). R
Frequency of ACF

ACF (Fig. 7a and 7b) developed in mice of groups 1, 2,

Fig. 6. Length of large bowels (cm, mean + SD) of each group.

3 and 5. They were mostly small ACF consisting of 1-3
aberrant crypts (Fig. 7a). Only a few large ACF consisting
of 4 or more aberrant crypts (Fig. 7b) in groups 1 (2 large
ACF) and 2 (1 large ACF) were seen. As summarized in Fig.
8, the numbers of ACF per colon in groups 1, 2, 3 and 5 were
relatively low, with predominance in group 2. However, the
mean numbers of ACF per colon did not significantly differ
between groups 1 and 2. The value of group 3 was much
lower than those of groups 1 (P<0.01) and 2 (P<0.001), and
was smaller than that of group 5, but without statistical
significance.

Histopathology, colonic inflammation score and COX-
2 immunohistochemistry

There were no significant alterations in the
histopathologies of the liver, kidney, lung, and heart among
the groups. In the colon, inflammation with or without
mucosal ulcer was observed in mice of groups 1, 2, 4, and 6.
The order of inflammation score in the groups was as
follows: group 2 (2.80 £ 0.84) > group 1 (2.60 = 0.89) >
group 4 (1.75 £ 0.50), group 6 (1.75 £ 0.96) > group 3 (0.40
+ 0.55) > group 5 (0.25 £ 0.50) > group 7 (0.20 £ 0.45) >
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Fig. 7. (a) A small ACF consisting of 2 aberrant crypts and (b) a large ACF consisting of 5 aberrant crypts from a mouse that
received AOM and 1% DSS. (a) Methylene blue stain. (b) Hematoxylin and eosin stain. Original magnification, (a) and (b)
x20.

Fig. 9. COX-2 immunohistochemistry of the non-lesional area of mouse colons from each of groups 1 (a), 2 (b), 4 (¢), and 6 (d). Bars
inserted are 60 zm.
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Fig. 8. The mean numbers of ACF per colon in each group.

group 8 (0 = 0). Significant differences were observed
between groups 1 and 5 (P<0.001), groups 2 and 3
(P<0.001), groups 2 and 4 (P<0.001), groups 4 and 7
(P<0.05), and groups 6 and 8 (P<0.05). However, dietary
LA did not significantly affect the colon when compared
with the mice that received AOM/DSS, AOM alone or DSS
alone. Also, the inflammation score of mice treated with LA
alone was low.

COX-2 immunoreactivity was strongly positive
reaction in the infiltrated inflammatory cells and the
endothelium of small blood vessels in the lamina propria of
the non-lesional colonic mucosa of mice that had received
. DSS (groups 1, 2, 4, and 6; Fig. 9), but in groups 3, 5, 7 and
8 it was very weak (data not shown).

Expression of COX-2 in RAW264.7 cells teated with
LA-albumin compex

Since we did not observe a modifying effect of LA on
AOM/DSS-induced colon carcinogenesis, we tested the
effect of LA on the expression of COX-2 in RAW264.7
cells, under the conditions described by Lee ef al.?® in which
complexes with 10 zM LA-1 uM BSA, 50 uM LA-5 uM
BSA or 100 uM LA-10 uM BSA induced COX-2. protein
expression in RAW 264.7 cells. We did not observe over-
expression of COX-2 in RAW264.7 cells treated with
complexes with 10 zM LA-1 uM BSA, 50 uM LA-5 uM
BSA or 100 M LA-10 M BSA (data not shown), but the
complexes with 500 LM LA + 50 M BSA and 500 kMM LA
alone induced COX-2 expression (Fig. 10).

Discussion

In the current study, 1% LA feeding after exposure to
AOM and DSS did not significantly enhance ACF
formation, suggesting no synergistic effects of LA with DSS .
in inflammation-related mouse colon carcinogenesis. Since
LA has been reported to induce expression of inflammatory
marker gene products such as COX-2, inducible nitric oxide
and interleukin (IL)-1a in mouse macrophage 264.7 cells,
we expected treatment with LA to enhance ACF formation

B-actin T seme e S S e s TSRS S

COX-2

(uM)‘
100+10 5004350
LA +BSA

BL LPS DSS 100 500 10 50
LA BSA

Fig.10. A complex of a high dose of lauric acid (LA) and BSA

induced COX-2 expression. RAW 264.7 cells maintained in
serum poor (0.25%) medium were treated with the indicated
concentrations of LA solubilized with BSA at a molar ratio
of 10:1 (fatty acid : BSA). After 11 hours, cell lysates were
analyzed by COX-2 or f-actin immunoblot. Lane 1, cells
treated in medium alone; lane 2, cells treated with LPS
alone; lane 3, cells treated with DSS alone; lanes 4 and 5,
cells treated with LA without BSA; lanes 6 and 7, cells
treated with BSA without LA; and lanes 8§ and 9, cells
treated with LA in medium with BSA.

induced by AOM and DSS. However, our findings suggest
no modifying effect of dietary LA in inflammation-related
mouse colon carcinogenesis induced by AOM and DSS.
Interestingly, dietary LA (group 3: AOM + LA) lowered
ACF formation induced by AOM when compared to group 5
(AOM alone), but the difference between ACF formation in
these two groups was not significant.

Lee et al. 8 previously reported that even a low dose of
LA (10 mM) and BSA (I mM) complex can up-regulated
COX-2 expression in RAW 264.7 cells. In our in vitro study
we were not able to reproduce their results, but a high dose
of the complex, which contained 500 #M LA and 50 zM
BSA, induced COX-2 expression. Moreover 500 uM LA
alone also induced the expression. While in vitro
experimental conditions are not relevant to in vivo
experiments, data from our ACF assay may indicate that
dietary LA at a dose of 1% does not influence the early phase
of colon carcinogenesis, the inflammation score and the
COX-2 immunochistochemical expression in the inflamed
colon.

It is well known that patients with IBD, both UC and
CD, are at increased risk of developing CRC. Furthermore,
activated transcription factor NF«B is found in inflamed
mucosal biopsies of patients with IBD*¢, NF«B can
stimulate iNOS to generate NO and COX-2 to generate
prostanoids that have proinflammatory and carcinogenic
effects?’. COX-2 is over-expressed in about 90% of
colorectal adenocarcinomas and in 40-90% of colorectal
adenomas*®®, COX-2 expression is thus observed at an
early stage of colorectal tumor development and in most
tumors, either benign or malignant. Animal experiments
have been shown the direct evidence of the important
contribution of COX-2 in colorectal tumor development.
Indeed, treatment with selective COX-2 inhibitors in animal
models of familial adenomatous polyposis (FAP)
significantly reduced the number of polyps®®®!. Selective
COX-2 inhibitors also reduce tumor incidence and
multiplicity induced by AOM and DSS*%. These findings



Miyamoto, Suzuki, Yasui ef al. 99

confirm COX-2 plays an important role in colorectal
carcinogenesis.

LA was the most efficient at inducing COX-2
expression in mouse macrophage RAW264.7 cells among a
group of saturated fatty acids tested (C8:0-C18:0)%.
However our results described here suggest that LA has no
promoting effect on AOM/DSS- and AOM-induced ACF
formation in mice. Also, LA feeding, at a dose of 1% in diet,
did not cause severe inflammation and elevation of COX-2
expression in the mouse colon. A recent review article
reports that COX-2 expression might not be the driving force
for the development from inflammation to cancer, but rather
plays an enhancement role in cancer development from
chronic inflammation®., DeLany er al.** found that LA, a
medium-chain fatty acid, is the most highly oxidized fatty
acid, and the unsaturated fatty acids and the long-chain
saturated fatty acids are the least oxidized in that order®. In
this study, we used 1% LA, a concentration that is 7 times
greater than that used in their study®’. To make certain our
findings are in line with the review by Lu et al.>? further
studies using different experimental models and conditions
(different doses of LA) are warranted.
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Chronic myelogenous leukemia (CML) is a hematological malignancy
that begins as indolent chronic phase (CP) but inevitably progresses
to fatal blast crisis (BC). p210BCR/ABL, a chimeric protein with
enhanced kinase activity, initiates CML CP, and additional genetic
alterations account for progression to BC, but the precise
mechanisms underlying disease evolution are not fully understood.
In the present study, we investigated the possible contribution of
dysfunction of Bcl11b, a zinc-finger protein required for thymocyte
differentiation, and of H2AX, a histone protein involved in DNA
repair, to the transition from CML CP to BC. For this purpose, we
crossed CML CP-exhibiting p270BCR/ABL transgenic (BAY-) mice
with Bc/11b heterozygous (Bc/11b*-) mice and H2AX heterozygous
(H2AX*-) mice. Interestingly, p270BCR/ABL transgenic, Bc/11b
heterozygous (BA'-Bcl11b*-) mice and p210BCR/ABL transgenic,
H2AX heterozygous (BA'Y-H2AX*-) mice frequently developed CML
BC with T-cell phenotype and died in a short period. In addition,
whereas p210BCR/ABL was expressed in all of the leukemic tissues,
the expression of Bci11b and H2AX was undetectable in several
tumors, which was attributed to the loss of the residual normal allele
or the lack of mRNA expression. These results indicate that Bci11b
and H2AX function as tumor suppressor and that haploinsufficiency
and acquired loss of these gene products cooperate with p210BCR/ABL
to develop CML BC. (Cancer Sci 2009; 100; 1219-1226)

Chronic myelogenous leukemia (CML) is a disorder of
hematopoietic stem cells, characterized by excessive and
uncontrolled proliferation of differentiated myeloid cells.(-®
Clinically, CML undergoes two different stages.!-® In the initial
stage, chronic phase (CP), the leukemic cells retain the ability
to differentiate into mature granulocytes and are sensitive to
conventional therapies. However, after several years’ duration of
CP, the disease inevitably accelerates and ultimately progresses to
the terminal stage, blast crisis (BC), which exhibits aggressive
proliferation of immature blast cells and is resistant to intensive
therapies.®

The cytogenetic hallmark of CML CP is t(9;22)(g34;q11)
(known as Philadelphia chromosome, Ph), which generates a
BCR-ABL fusion gene encoding a 210-kDa chimeric protein
(p210BCR/ABL)."* p210BCR/ABL possesses a constitutively
active tyrosine kinase activity, which plays an essential role in
the initiation of the disease.' Although Ph is the unique and
sole chromosomal abnormality in CP, additional and non-
random chromosomal abnormalities are frequently observed in
BC, indicating that secondary genetic events account for the
disease progression.!-3

To understand the pathogenesis of the disease, it is necessary
to establish animal models that express p2/0BCR/ABL and
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recapitulate the clinical course of CML. For this purpose, we
generated transgenic mice expressing p2/0BCR/ABL under the
control of the mouse TEC promoter.* The p2]0BCR/ABL trans-
genic (hereafter, designated as BA'®") mice reproducibly exhibited
a myeloproliferative disorder closely resembling human CML
CP.® In addition, by crossing BA®¥~ mice with p53 heterozygous
mice and Dok-1/Dok-2 knockout mice, we showed that the loss
of p53 and absence of Dok-1/Dok-2 accelerated the disease and
caused CML BC.®9 Furthermore, by applying retroviral insertional
mutagenesis to BA'® mice, we demonstrated that overexpression
and enhanced kinase activity of p210BCR/ABL and altered
expression of Notchl contribute to CML BC.” These results
demonstrated that the BA®~ mouse is not only regarded as a model
for CML CP, but is also useful for investigating the molecular
mechanisms underlying the progression from CP to BC.
Chromosomal and molecular analyses have revealed that several
mechanisms are implicated in this process, such as: (i) loss of
tumor suppressor; (ii) differentiation arrest; and (iii) chromosomal
instability.®” Indeed, as an example of (i), we demonstrated that
loss of p53 cooperates with p210BCR/ABL and induces CML
BC.®% In the present report, as candidate genes for (ii) and (iii),
we chose Bclllb (also known as Rit! and Ctip2), encoding a
transcription factor required for thymocyte differentiation,® and
H2AX, encoding a histone protein involved in DNA repair,” and
examined the possible contribution that dysfunction of these gene
produces for the disease progression of CML. For this purpose,
we crossed BA'®~ mice with mice heterozygous for Belllb
(Bell1b¥-) or H2AX (H2AX*-) and generated BA®-Bclllb*-
mice and BA¥"H2AX"~ mice. Interestingly, both types of double
transgenic mouse frequently developed CML BC and died in a
short period. The pathological, flow cytometric, molecular, and
chromosomal analyses of the diseased mice are described.

Materials and Methods

Mice. p2l10BCR/ABL transgenic, Bcll 1 heterozygous, and H2AX
heterozygous mice were generated as described previously.#310
Crossing and genotyping of the mice were carried out as
described previously.® All of the mice were kept according to
the guidelines of the Institute of Laboratory Animal Science,
Hiroshima University.

Pathological analysis. Autopsies were carried out on dead or
moribund animals. Peripheral blood smears were stained with
Wight-Giemsa. After gross examination, tissues were fixed in
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10% neutral buffered formaldehyde and representative slices were
stained with hematoxylin—eosin (HE).

Western blot analysis. Proteins were extracted from tissues,
separated by SDS-PAGE, transferred to a nitrocellulose
membrane, and blotted with appropriate antibodies as described
previously.®® The antibodies used in this study were: anti-ABL
monoclonal antibody, Ab3 (Oncogene Science, Cambridge, MA,
USA); an anti-Bcll1b polyclonal antibody;® and an antihistone
H2AX antibody (Millipore, Bedford, MA, USA). Positive signals
were detected with the enhanced chemiluminescence system.

Southern blot analysis and genomic PCR. For Southern blotting,
DNA was digested with restriction enzymes, separated in an
agarose gel, blotted to a nylon membrane, and hybridized with
a ¥P-dCTP-labeled TCR/ probe. Genomic PCR was carried out
using the following primers as described previously:!? P1 (5'-
TGCAGCTTTCCGGGCGATGCCA-3"), P2 (5-ACTTTCCCAG-
AACCCCACGC-3'), and P3 (5-CCTGCTTGCCGAATATCAT-
GGTGG-3") for Bclllb; and P1 (5'-TCACATTGTTTCCTTCG-
GTGTCAC-3'), P2 (5-AAGTGTTGTGATTGGGAAGCGTAG-3"),
P3 (5-AGATCCCGTTGACTGAACACAGG-3"), P4 (5-TTCAG-
GTTTTGTTGTCGCGCCGTAG-3), and P5 (5"-TCAGCTCTTT-
CTGTGAGGGAGGTGG-3') for H2AX.

Northern blot analysis and RT-PCR. Total RNA was extracted using
TRIzol (Invitrogen, Carlsbad, CA, USA), separated in 1.2% formal-
dehyde gel, blotted to a nylon membrane, and hybridized with
a *?P-dCTP-labeled H2AX probe. RT-PCR was carried out using
the following primers as described previously:*" 5-CGAGCTCA-
GGAAAGTGTCCGAG-3’ and 5'-GGAAATTCATGAGCGGG-
GACTG-3' for Bcll1b; 5'-CCTTCTGGAAGACTTGGCCTTC-3
and 5'-GAGGAAGATGTGCCTGTTACC-3’ for H2AX; and 5'-
TTCAACACCCCAGCCATGTA-3’ and 5-CTCAGGAGGAG-
CAATGATCT-3 for f-actin.

Flow cytometric analysis, Cells were stained with FITC- or
phycoerythrin (PE)-conjugated anti-Thy-1.2, anti-B220, anti-Macl,
and anti-Grl monoclonal antibodies (Pharmingen, San Diego, CA,
USA), as described previously.®

Chromosomal analysis. Chromosomes were prepared by means
of standard culture procedures for tumor cells and treated with
trypsin-Giemsa as described previously.(?

Patient samples and normal bone marrow cells. Patient samples
were taken after obtaining informed consent and approval from
the institutional review board at Hiroshima University.!'®
Diagnosis of CML CP or CML BC (myeloid or B-lymphoid
lineage) was carried out based on morphological, cytogenetic,
and immunophenotypic analyses. Normal bone marrow cells
were obtained from a healthy volunteer.

Results

BAY-Bcl11b*- and BAY-H2AX*- mice developed acute leukemia
and died in a short period. To investigate the contribution of
haploinsufficiency of BcllIb and H2AX to the disease
progression of CML, we crossed CML-exhibiting BA®~ mice
with Bell1b* mice and H2AX*" mice. Mice with four different
genotypes were generated by each crossing: BA®¥- x Bcll1b*-
created BA*Bcll1b** (wild type), BA®-Bcll 1b** (p210BCR/ABL
transgenic), BA™Bcll1b*- (Bcll1b heterozygous), and BA'®-
Bcll1b*- (p210BCR/ABL transgenic, Bclllb heterozygous); and
BA"®" x H2AX*~ produced BA7-H2AX** (wild type), BA®-H2AX*"*
(p210BCR/ABL transgenic), BA™H2AX*~ (H2AX heterozygous),
and BA¥"H2AX"- (p210BCR/ABL transgenic, H2AX heterozygous).
Mice with these genotypes were normally born approximately at
the expected Mendelian ratio (see the mouse number shown in
parentheses in Fig. 1), indicating that the crossing did not affect
the embryonic development of the mice.

All of the mice were observed continuously and peripheral
blood parameters were counted routinely. The genotype-based
survival curves of the mice in each crossing are shown in
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Fig. 1. Survival curves of mice generated by (a) BAY-x Bc/11b* and
(b) BA- x H2AX*. The survival curves of BA*Bc/11b** and BA--HX2A*",
BAW-Bcl11b* and BAYW-H2AX**, BA“-Bcl11bh*- and BA"H2AX*, and
BAY"Bcl11b* and BAY"H2AX* mice are shown as thin dotted, thick
dotted, thin continuous, and thick continuous lines respectively. In the
BA'"- x Bcl11b* group, 8 of 15 BA%-Bc/11b* mice died within
7 months of age and in the BA'-x H2AX*" group, 4 of 11 BAY"H2AXb*"
died within 3 months of age. The number of an unanalyzable BA'%-
Bcl11b*- mouse due to death (no. 3) is shown in parentheses.

Figure 1. During a 7-month observation period, in the BA®-
X Bell1b*- group, 8 of 15 BA*¥ Bcll 1b*- died of acute leukemia,
in contrast BA¥Bcll1b**, BA¥ Bcll1b**, and BA™"Bcll1b*-
littermates did not show any disorders (Fig. la). As for the
BA'- x H2AX*"~ group (lower panel), 4 of 11 BA®-H2AX"-
mice exhibited proliferation of blast cells and died within
3 months of birth, whereas no disease was observed in BA™-
H2AX**, BA®"H2AX*", and BA"H2AX*" littermates (Fig. 1b).
The representative results of pathological analysis of BA'®-
Bcll1b*- and BA®¥-H2AX*" leukemic mice are shown in Figure 2.
Macroscopically, both leukemic mice exhibited marked thymic
enlargement with splenomegaly, which were occasionally
associated with lymph node swelling or pleural effusion (data
not shown). The peripheral blood smears exhibited proliferation
of blast cells morphologically resembling lymphoblasts (upper
panels of Fig. 2). Tissue sections showed that the blast cells
caused destruction of the basic structure of the thymus (second
panels of Fig.2) and infiltrated in non-hematopoietic tissues,
such as liver (third panels of Fig. 2). In contrast, the bone marrow
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Table 1. Characteristics of p270BCR/ABL'S"~ Bcl11b*- leukemic mice

Age at PB parameters

Mouse ) Macroscopic p210BCR/ABL Bcl1tb Bclt1b

disease WBC Hb Pt . TCRf status , .
no. h tumor sites expression expression status

(months) (x 10%uL) (g/dL) (x 10%/uL)
1 3.1 35.0 125 65.6 Thy, Spl G/R + + GIT
2 3.3 5.0 10.5 64.8 Thy, Spl Glloss + + GIT
3 4.0 ND ND ND Thy ND ND ND ND
4 5.3 2.3 7.1 44.2 Thy G/loss + + GIT
5 6.0 12.0 12.3 355 Thy, PE G/loss + - T/loss
6 6.1 6.6 13.9 53.5 Thy G/R + - Tloss
7 6.4 14.6 15.5 471 Thy, Spi G/R + + G/T
8 6.9 1.5 14.1 74.9 Thy, PE G/R + - T/loss

'Found dead. G, germline; Hb, hemoglobin; ND, not done; PB, peripheral blood; PE, pleural effusion; Pit, platelet; R, rearranged; Spl, spleen;

T, targeted; Thy, thymus; WBC, white blood cell.

BA” Bcl11b™”

peripheral ;
blood

thymus

liver

bone
marrow

Fig. 2. Representative results of pathological analysis of BA'%-Bc/11b*
(left panels) and BAY-H2AX* (right panels) leukemic mice. Wight-
Giemsa-stained peripheral blood smears and HE-stained tissue slices are
shown. in both leukemic mice, blast cells proliferated in the peripheral
blood (upper panels), caused destruction of the basal structure of the
thymus (second panels), and infiltrated around the vessel and in the
sinusoids in the liver (third panels). In contrast, bone marrow exhibited
myeloid cell hyperplasia with differentiation and proliferation of
megakaryocytes (bottom panels).

showed a predominance of myeloid cells with differentiation
and proliferation of megakaryocytes (bottom panels of Fig. 2).
These results demonstrated that haploinsufficiency of Bclllb
and H2AX cooperated with p2]0BCR/ABL, transformed
p210BCR/ABL-expressing hematopoietic cells, and caused CML

Nagamachietal.

BC. The characteristics of BA® BcllIb*- and BA®-H2AX*" leukemic
mice are summarized in Table 1 and Table 2, respectively.

Leukemias that developed in BAW-Bc/11b*- and BAY-H2AX*-
mice were of T-ceil lineage and were mostly clonal in origin. To
determine the cell lineage and clonality of the leukemias that
developed in BA'¥"Bclllb*~ and BA®~H2AX*" mice, blast cells
were subjected to flow cytometric and Southern blot analyses.

The representative results of flow cytometric analysis of
BA®Bcll1b*- and BA®-H2AX*" leukemic cells are shown in
Figure 3(a). In both types of mice, leukemic cells were highly
positive for Thyl.2, the antigen specific for T lymphocytes, but,
were negative for CD19, Grl, and Macl, the markers for B
lymphocytes, granulocytes, and macrophages respectively.

The clonality of the leukemic cells was examined by gene
rearrangement analysis. DNA extracted from a control thymus
and tumor tissues of BA® Bclllb*- and BA®-H2AX* leukemic
mice were digested with a restriction enzyme and blotted with
the T-cell receptor B (TCR-f) gene. As showp in Figure 3(b),
more than half of the samples (no. 1 and no. 6-8 in BA®"
Bcll1b* and no. 1 and 2 in BA¥-H2AX*") showed rearranged
bands, and in the remaining samples (no. 2, 4, and 5 in BA'Y"
Bcll1b*" and no. 3 and 4 in BA®-H2AX*), loss of the upper
germline band was observed (the positions of germline bands
are indicated by arrows and shown as ‘G’). These results
demonstrated that the blast cells of BA®Bclllb* and BA'®-
H2AX*"- leukemic mice were committed to the T-cell lineage
and most of the tumors were clonal in origin.

Frequent and acquired loss of Bcl11b and H2AX protein expression
in the tumor tissues of BAY-Bc/11b*- and BAY-H2AX*-~ leukemic
mice. We then investigated protein expression in the tumor tissues
of BA¥"BcllIb*- and BA®-H2AX*" leukemic mice. Proteins
extracted from a control thymus and tumor tissues of BA'®-
Bcll1b*- and BA®-H2AX*- leukemic mice were blotted with
antibodies against c-ABL, Bclllb, and H2AX.

The results of p210BCR/ABL expression in these tumors are
shown in the upper panels of Figure 4(a,b). As shown in both
panels, the 210-kDa band was detected in all of the tumor samples,
indicating that the blast cells originated from p2l0BCR/ABL-

. expressing hematopoietic precursors. We next examined the

expression of Bcll1b and H2AX proteins in BA® Bcll1b*" and
BA¥-H2AX*" leukemic samples respectively. Interestingly, in the
anti-Bcll Ib western blot, the expression of Bclllb was found to
be lost in three of seven samples (no. 5, 6, and 8, middle panel
of Fig. 4a). In addition, in the anti-H2AX blot, the expression of
H2AX was undetectable in two of four samples (no. 2 and 3,
middle panel of Fig. 4b). These results indicated that the protein
expression of Bcll1b and H2AX was lost in several samples of
BA®¥"Bcll1b*- and BA'¥-H2AX*- leukemic mice.

To investigate the molecular mechanism underlying the loss
of Bclllb and H2AX expression, DNA extracted from tumor
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