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Recently Fabrizio et al. (2005) have shown that while Sir2 has a
positive impact on replicative lifespan in S. cerevisiae, it actually
has a negative impact on chronological lifespan, which is a mea-
sure of how long a non-dividing cell or organism survives. In addi-
tion, while it is generally accepted that Sirtuins positively regulate
longevity in metazoans, SIRT1 may actually function in a pro-aging
pathway (Fabrizio et al., 2005), as sirt1”*" mice manifest many
phenotypes of long-lived IGF-I-deficient dwarf mice (McBurney
et ai, 2003). Furthermore, SIRT1 represses the DAF-16 homolog
FOX03 (Motta et al., 2004), and this is presumably antagonistic
to longevity (Lin et al, 1997). If the activities of NSTs negatively
regulate replicative lifespan in N. crassa, then competition between
NSTs and NPO for NAD+ could occur, with NPO acting to promote
longevity through inhibition of NSTs.

Regardless of whether Sirtuins promote or inhibit longevity, the
general observation that NAD+-dependent deacetylases impact
aging in both yeast and metazoans suggests conservation of this
role during evolution. It is therefore reasonable to expect that NSTs
may play a role in N. crassa as well. Until such a role has been defin-
itively established, however, it is not possible to draw conclusions
about the involvement of NSTs in the NPO pathway. Analysis of the
aging phenotypes of nst mutants, individually and in combination
with each other and the npo mutant, would provide an answer to
these mechanistic questions.
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Voigt B, Kuramoto T: Mashimo: T, Tsurumi T, Sasaki Y,
Hokao R, Serikawa T. Evaluation of LEXF/FXLE rat recombi=
nant inbred strains.for genetic dissection of complex traits. Plivsiol
Genomics 32: 335-342, 2008, First-published November 27, 2007:
doi:10:1152/physiolgenomics.00158.2007.—Rccombinant - inbred
(RI) strains are formed trom an oufcross between two well-character-
ized inbred stains followed by at least 20 gencrations of inbreeding. RI
strains can be utilized for the analysis of many complex phenotypic
traits: The LEXF/EXLE RI strain set consists of 34 Rl strains derived
by reciprocal crossing of LE/Stm and F344/Stm. Here we report on
genetic dissections of .complex traits using this RI set and their
parental strains. We. have developed strain distribution patterns for
232 informative simple sequence length polymorphism markers. The

framework map covers the rat genome except for chromosone Y.

Seventy-six phcnotype parameters, which included physiological and
behavioral traits. were examined for these RI lines. Quantitative trait
locus (QTL) analysis of these parameters revealed 27 significant and
91 sugpestive QTLs; illustrating the potential of this RI resource for
the ‘detection of underlying gene functions for various phenotypes.
Although this RI set was originally developed to study susceptibility
to ¢chemicalzinduced tumors, it has been shown to be equally powertul

for a wide spectrum of traits. The LEXF/EXLE RI strains have been .

deposited at the National Bio Resource Project for the Rat in Japan
and are maintained under specific pathogen-free conditions. They are
available at http://www.anim.med.kyoto-w.ac.jp/nbr.

Rattus norvegicus; recombinant inbred rats; quantitative trait locus
mapping: physiological traits

THE DISCOVERY. OF GENE FUNCTIONS related to human diseases is
still a major issuc in biomedical research. A large number of
single genes have already been identified as underlying mod-
ifications associated with various monogenic disorders. More-
over, numerous articles on the dysfunctions of single gene

defects exist. but the consequences of allelic variations on the.

complex physiological network as well as the various players
of this network remain largely unknown. The NCBI database
Online Mendelian Inheritance in Man contains 17,744 entries.
of which only 386 are on genes with known sequences and
phenotypes (14). Since all complex phenotypes result from

interactions between numerous genes, quantitative trait locus.

(QTL) analysis in rodent models is an important method for
unraveling these phenotypes and extrapolating the results to
human studies. The number of such QTL cxperiments that
have -already been performed is enormous. To date, 3.538
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QTLs are described in the Mouse Genome Database (16) and
1,302 QTLs are listed in the Rat Genome Database (19). Even
though the majority of the Tisted QTLs were obtained from F2
or backcross studies, one could be misled to underestimate the
role of recombinant inbred: (RI) lines: since they have been

qutilized in rodents for more than 40 years (3. 4, 7, 15, 25).

However. the majority of the RI lines originated from mouse

strains, and only ‘a few rat-derived RI lines are or were

available (1, 8,18, 20, 23).

Successful QTL mapping: always depends on diverse
phenotypes and genotypes and a statistical. method. for
determining. the odds between phenotype and genotype
patterns. This diversification of phenotypes combined with
numerous recombination events across the rat genome are
given requirements for the largest R rat strain set available.
the LEXF/EXLE strains. which were historically generated
to study genes involved in tumor genesis: Considering the
QTLs that have already been described in other experiments
(19) and the theoretical power of the LEXF/EXLE strains,
the questions that we wanted to answer in this study cover
two aspects: 1) the scientific value of this RI panel as a fool
for the dissection of quantitative traits and 2) the number
and nature of the detected QTLs themselves. In other words.
we asked whether or not these RI strains can be utilized for
the determination of QTLs for physiological and other
randomly analyzed phenotypic parameters despite  the
LEXF/EXLEs initial research purpose being only based on
their different susceptibility to chemical-induced tumors.

Furthermore, if QTLs are detectable; we wanted to know

how effective this set of RI strains is for identifying QTLs
for randonily examined phenotypic parameters. Finally, we
examined whether the QTLs that are obtained are new
compared with previously known QTLs or whether they
confirm independently computed results from other experi-
ments. For instances where these questions can be defini-
tively answered, the LEXF/EXLE panel could become a
universal tool for the detection of virtually every type of
physiological QTL.

 MATERIALS AND METHODS

Animals. The LEXF/EXLE RI strains and their parental: strains;
F344/Stim and LE/Stm, were originally generated at-the Saitama
Cancer Center Research Institute by Shisa et al. (20). LE/Stm: was
derived from a closed Long-Evans colony. from the Ben May Labo-
ratory for Cancer Research of the University of Chicago, and E344/
Sun originated from F344/DuCrj (Charles River Japan).- The strains
were inbred at the Saitama Institute for more than 50 and 23 geiter=
ations, respectively. The RI lines were generated in two phases: first
the LEXE strains were established. followed by the FXLE strains.
Several RI lines had substrains that branched out al' the 7th 0. F1th
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generation after an attempt to fix_the coat color. These sublines. are
indicated by the' letters” B-D following “the “strain’ number, e.g.,
LEXFSD. Further details on the history of these RI strains are
described elsewhere (20, 23). The following strains were used for

this study, with the inbred

generations indicated: in' parenthieses:
F344/Stm (F69), LE/Stm (F95), LEXFIA (F5 1),

LEXFIC (F48),

LEXF2A (F50), LEXFIB (F54). LEXF3C (F54), LEXF3 (F52),

LEXF4 (F50), LEXF5 (F52), LEXF6B
LEXF7B (F53), LEXF7C (F49); LEXFS

LEXF9 (F53), LEXFI0A  (F54),
(F54), LEXFI1 (F53). FXLE12 (F27), FXLE(3 (F27), FXLE14

(F26), FXLE15 (F30),
- (F26), FXLE19: (F28);
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EXLE16 (F26), FXLEI7 (F25). EXLELS
FXLE20 (F27), FXLE21 (F28), FXLE2?

(F30), FXLE24 (F24), FXLE25 (F28). and FXLE26 (F26). Since
the genotyping performed in this study revealed breeding contam-
ination for the EXLE23 strain, > only 33 ‘of 34/ RI lines: were

analyzed: Since the rederivation of EXLE23 from uncontaminated -

embryos has almost been accomplished; it will be possible for
future experiments to be carried out with all 34 RIstrains. The rats
were maintained at the specific pathogen-free facility of the Insti-
tute for Animal Reproduction. At 5 wk of age, six male rats from
each strain. were ‘shipped to. the Environiental Biological Life
Science Reseaich: Center for phenotype ‘screening.” All animals
were maintained under a 12:12-h light-dark cycle with lights on at
7:00- AM and ambient conditions of 23+ 3°C and 55 + 15%
humidity.  They were housed in groups - of threeanimals' per
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informative simple sequence length polymorphism (SSLP) m
indicate the positions of significant quantitative trait loci (QTLs).
available from Table 1 and also online at hitp://wiww.aninuned kyoto-

arkers used in this study. Scale roughly. cortesponds (o their
Suggestive QTLs are not shown for the sake of clarity. Detailed
w.ac,jp/NBR/RLSSLP. QTLs/SSLP. QTLs.htui.
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aluminum cage (dimensions of 240 X 380 x 200 mn) and were
given free access (o acidified” water’ and: chow (CE2. CLEA).
Animal care and all experimental procedures were approved by the
Animal Research Committee. Graduate School of Meédicine. Kyoto
University: (approved no.: MedKyo07001).

Phenoryping. Phenotypic: profiles: for: this project consisted of the
following: 7 categories:covering 109 parameters:. 1) functional obser-
vational: battery  (FOB. neurobchavioral lest). ' 2) behavior: studies:
3) blood pressure, 4) urine parameters, ) biochemical blood: tests,
6) hematology, and 7) anatomy: (see Table 2). All measurcments were
performed on all male rats from each strain from 3 to 10wk of age.
The detailed protocols used for measurements of these parainelers are
available. on our website, at http://www.anim.med.kyoto-u.ac.jp/
nbr/phenotype and were described previously (13), QTL analysis
was performed with a subset of 76 quantitative parameters, which
were part of: the above-mentioned phenotypic profiles.

Genotyping. The genetic profiles consisted of 357 simple sequence
length polymorphism (SSLP) markers with known genomic locations,
which. are. distributed: throughout the rat chromosomes. except for
chromosome Y. Detailed: marker information is ‘available at the
National Bio Resource Project (NBRPY honte page at http:/fwww.
anin.med.kyoto-w.ac.jp/NBR/Genotyping. htm. - Genomic.. DNA
was extracted from the spleen. The product sizes of the SSLP matkers
were determined with an ABI3100 DNA sequencer (Applied Biosys-
ems).

The phylogenetic tree of the RI strains was obtained through
maximum parsimony analysis implemented in PAUP 4.0b10:(22) on
the basis of 259 markers that were polymorphic between the parental
Strains. An initial heuristic search using Fitch parsimony was cartied
out with 1.000 random addition sequence replicates. followed by a
tree bisection-reconnection (TBR) branch swapping algorithm. Tree
stability was estimated by bootstrap analysis on- 1000 replicates
where the characteristics: were sampled  with equal probability.
TreeView  (hitp://taxonomy.zoology.gla.ac.uk/rod/treeview.html)
was used to display the resulting tree (17).

OTL analvsis. Two hundred thirty-two markers of 357 tested were
informative for the RI strains and were therefore included 'in the
genetic map for subsequent QTL scans. The basis for marker posi-
tioning and order, however, was not recombination fractions but their
known location on the physical map. Genomewide scans for QTLs
were performed with the 76 mean and variance values from 33 strains
and the physical map of 232 genetic markers noted above. Calcula-
tions were perfornied with MapManager QTXb20. which is available
at http://www.mapmanager.org/ (12). Interval mapping was pei-
formed by ftting a regression equation along the genetic map 1o a
hypothetical QTL in 1-¢M sieps with an additive regression model.
Permutation tests were performed (o empirically determine the sig-
hificance thresholds for all QTL mapping results. A minimum of
1.000 permutations for each QTL calculation for the constrained
additive regression model were applied 1o establish individual sug-
gestive, significant. and highly significant thresholds. which corre-
spond 0 genomewide probabilities for the 37th, 95th. and 99.9th
percentiles, respectively. as proposed by Lander and Kruglvak (11).

RESULTS

Genetic feanures. Two hundred fifty-nine of 357 markers
that were tested were polymorphic between the parental strains
LE/Stm and F344/Stm. Twenty-seven of these polymorphic
markers did not show recombination with neighboring markers
among any RI strains and were therefore not included in the
physical map; hence. 232 markers were informative and were
utilized for QTL calculations (Fig. 1). The markers comprised
in total ~2.4 Gbp on the physical map, which is ~90% of the
rat genome (6). The SSLP markers provided in fotal 2,821
recombinations in these 33 Rl strains and showed an average

Physiol Genomiics s VOL 32

spacing of ~12 Mbp (Table 1), with the largest gap being 78
Mbp on chromosome 6.

The genetic relationship among the RI and parental strains
on the basis of the utilized SSLP markers is displayed in Fig. 2.
which reflects their historical breeding processes and substrains
as previously described (20, 23).

OTL mapping efficiency of this Rl panel, Analysis of the
phenotypic parameters revealed that 43 of 76 mean values were
significantly different between the parcntal F344/Stm and LE/
St strains (Table 2); In total; 118 QTLs were detected. by
interval mapping, of which 27 passed the significant or highly
significant criteria and 91 showed suggestive linkages (Table
2). Twenty-two traits (28%) could not be associated with any
QTL. Thirty-five QTLs (30%) were associated with: 20 traits
(26% that did not show significant phenotypic differences
between the parcntal strains as indicated in Table 2. One
hundred two QTLs were to our knowledge new and not
deseribed: in the RGD: QTL database (19). Sixteen: were con-
firmed by this database, of which 11 and 5 were suggestive and
significant, respectively. Figure 3 shows six fepresentative
highly significant QTLs that were found in this study. Further
details on all QTLs detected can be obtained from Table 2 or
online at  http://www.anim.med.kyoto-u.ac.jp/NBR/RL_
SSLP_QTLs/SSLP._QTLs:htm.

Table 1. Statistics on SSLP murkers and OTLs

AMbp Avérage Recombinations
Chromosome - Recombinations. Covered: . Spacing. Mbp per Mbp QTLs
I 342 255 13 134 i3
2 220 249 11 0.88 16
3 135 148 13 091 4
4 244 177 9 138 7
5 196 171 12 LS 9
6 84 140 20 131 5
7 128 138 L 093 1
8 172 t10 9 156 2
9 120 93 10 129 4
10 126 96 6 131 13
I 11 33 9 145 6
12 40 24 2 67 4
13 62 87 15 0.71 3
14 84 134 26 0.63 7
IS 106 64 9 166 a0
16 90 67 b 1.34 3
k7 117 84 10 1:39 4
18 122 75 9. 163 6
19 36 93 |3} 0.60 3
20 84 49 3 1.71 4
X 116 L3 16 103 4
Total 2821 2420 LS £23 18

Recombinations.: no. of recombination: events: on each chromosome that
acctrred: during the breeding of the recombinat inbred (RI) strains and. are
now manifested Tof these RI lines on (he basis of the 232 informative simple
sequence length polymorphism (SSLP) markers. Mbp covered, genomic region
thit is covered by ihe SSLP for each chromosome: (in Mbp) and is’ calculated
frony the physical position of the markers. Average spacing of the miarkers and
recombinations per. Mbp are computed: from: the no. of recombinations: and
Mbp covered and refer 1o the: marker nuinbers. Quantitatve trail loci (QTLs)
detected for euch chromosome. include’ sugeestive, significant. and: highly
significant QTLs. Note: Although there is a strong correlation between: Mbp
¢overed and QTLs, no: correlation could: be found between recombinations per
Mbp and QTLs (data not shownj
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F344Stm
LEXF2C
LEXF28B
LEXF2A
LEXF3
LEXF1A
LEXF1C
FXLE21
LEXF8A
LEXF8D
LEXF5
LEXF11
FXLE13
LEXF6B
FXLE15
FXLE14
FXLE16
FXLE20
FXLE22
FXLE17
FXLE19
FXLE12
FXLE18
FXLE26
FXLE25
LEXF10A
LEXF10C
LEXF108
FXLE24
LEXF7C
LEXF7B
LEXF7A
LEXF4
LEXF9
LE/Stm

DISCUSSION

The initial screening for QTLs using 232 informative SSLP
markers. in these 33 LEXF/FXLE RI and 2 parental: strains
already revealed 118 QTLs for 54 quantitative: parameters,
which is equivalent to arate of ~70% when referring to the 76
parameters examined. These pure numbers indicate that this RI
panel is a powerful tool for QTL mapping and shows promise
for use in further dissectionis of quantitative ‘traits. It can be
concluded by simple statistics that a QTL can be detected for
two of three randomly examined parameters. However, a closer

look shows that the strength of the abtained QTL scems to

depend on the different natures of the parameters that were
examined. All analyzed quantitative parameters are likely to be
controlled by more than one gene, and it is thought that the
strength of a QTL is higher when fewet genes contribute to it.
In other words; the detection of a QTL beconies more difficult
if many genes account for the phenotypic variance with a
relatively similar, low size. This observation can also be seen
in our data. The parameters that were examined can be roughly
divided into two groups: simple physiological parameters such
as organ weights, enzyme activities; or ion concentrations and
more complex behavioral traits like rearing, locomotor activity,
or passive avoidance tests. Many high-score likelihood ratio
statistics (LRS) values were calculated for physiological pa-
rameters, but the LRS levels for all behavioral parameters were
always only in the range of the empirically calculated sugges-
tive threshold, confirming the complex ‘characters of these
traits. The difficulties in detecting weak QTLs are not only
relevant for studies that utilize standard sib-mated RI strains.
Valdar et al. (24) simulated a QTL analysis on a basis of 1,000
individuals for several breeding strategies, including normal F2
intercross, backcross, advanced intercross RI lines, heteroge-
neous stock RI lines, and various forms of collaborative cross
approaches. They showed that a simple mapping computation
based on a single marker regression model can guarantee the
detection only of QTLs with effect sizes of 30% or greater.
QTLs with smaller effects can be detected, but they may be
overlooked. A more sophisticated mapping calculation such as
composite interval mapping may lower this threshold to 10%
of the trait variance, provided that 1,000 individuals are uti-
lized in various breeding strategies (24).

To date. QTL studies mostly utilize F2 or backcross animals
to map loci related to a specific phenotype for which the
parental strains show highly significant differences and there-
fore highly segregating QTLs. Such crosses are time= and
resource infensive but have the advantage that they can be used
to produce maps down to the resolution of single genes. This is
especially successful in the case of virtual monogenic QTLs (2,
5). In contrast, the benefit of RI strains is the fast experimental
approach since the use of RI lines avoids long-term crossing
periods as well as genotyping and provides ad hoc a sufficient
number of recombination events. This makes it possible. to
reduce the experimental effort for QTL ‘mapping using RI

Fig. 2. Genetic relationship betwesn tecombinant inbred (RI) and parental
strains on the basis of 259 polymorphic SSEP markers. Note: since laboratory
rat strains in general and RI strains in particular do not refer to different species
as usually indicated in phylogenetic trees, this figure should be interpreted as
an overview of how far or how close each RI line is related to other RI and
parental strains if it is assumed that the relationship computation is started from
LE/Stm.

Physiol Genoiics + VOL 32 www.physiolgenomics.org
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Signiticant QTL: Highly Signiticant QTL. Phenotype
Trait Suggestive QTL. chromosome(LRS) chromosome(LRS ) chromosome(LRSY Parental
Body wt 5 wk ns
Body'wt 6 wk
Body wt 10 wk 2(10.8) i
Brain wt 10wk RESERU]
Heart wi 10 wk z
Lung wt 10wk [4(16.0) ns
Liver wt: 10wk 2(8.2)
Kidney wt 10 wk k3
Spleen wt 10wk : e
Adrenals wt 10wk 119.0% IS{IL8) : I
Testis w10 wk (8512091 G (1L7.7) ng
Relative brain wt 10 wk 297
Reélative heart - wt:10:wk @20 1390 ns
Relative lung wt: 10wk 10(18.3) +
Relative liver wi 10 wk S5(8.7).16(12.3) 18 (16.3) £
Relative kidney:wt 10 wk 21951 (R I12 (94 nis
Relative spleen wt 10wk LO37u12414) I
Relative: adienals wt 10wk 18(10.7) 7(14.8) ns
Relative testis wi:10 wk S¢12.9), 613D 2072 s
Systolic blood pressure 10.0125),17.¢11.9) s
Heait rate P1(92),20082) 0 2(24:5) 14(35.0) ¥
Body- temperature. 10(14.5) #
Red: bload eell number 1089, 11023 X (81 iN
Hemoglobin concentration 10.09:5) ns
Hematocrit PO, T014.0). X (134d) [¢15.8)
Mean corpuscular volume 1(15.3) ¥
Mean cell hemoglobin mass ~ ns
Mean cell hemoglobin concentration T390 (1160 1.(12.3) (191 %
White blood cell number ns
Platelet number. QI35 T 133) i T
Prothrombin time 14:¢15:1) ns
Activated partial thromboplastin time ¥
Glutamate oxalacetate ransaminase XB.0 : ns
Glutamate pyruvate transaninase 20124, 1284 4(19.4) ns
Alkaline phosphatase OISR 10 T (1) 19.(10.5) S¢d6:) o
Total protein 10.¢10:5), 19 (15.2) 170181
Albumin 8(10:4) ns
Albumin total protein ratio 2 (135X (0. i
Glucose 1(8.0). 2(10.7)..13(9.6) i
Total cholesterol 3(8.8) 10¢1E6) 16 (14.2) S8 (2244 5(21.8) o
High-density lipoprotein 309:3), 4 612,00 5:(14: 1. 10 (10.4)5: 16 (14:2) 5(22.5)018.267) I

Low-density lipoprotein ST 4 (31 18(13.9) 10(20.6)
Triglyceride 2(10.5): 9 (10:4), 13 (14.0) 2(17.3) k4
Total bilirabin [HgRMY : :
Blood uiea nitrogen 9941 14 (118 I
Creatinine TL120T) ns,
Inorganic phosphate s
Caleium (plasma) 2(8.:4)..19.(10.9) i
Sodium (plasma) ns
Potassiam (plasmia) ns
Chloride (plasnia) E
White blood cells
Basophils : ns
Eosinophils 4 4.7 6.(16.5)
Stab form leukocytes ns
Segmented leukocyles
Lymphocyites ns
Monocytes 14 ¢10.3) ns
Other ns
Urine voluime 2099 ns
Sodiun turine) 10.49.8) 11323, 9¢15.9) X
Potassium (urine} 20945 4(8.5). 8(8.8) 1(16.9) ns
Chloride {urine} 1y
Relative urine volume ns
Relative sodium’ concentration (urine) 4(15.9) ns
Relative: potagsium concentration (urine) 2¢13.6) +
Relative chiloride concentration (urine) 4¢10.3) ns
Rearings ks
Continued
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Table 2.—Continued

LEXF/FXLE RI PANEL, AND QTLS

Significant QTL,;
chromosome(LRS)

Highly Significant QTL.
chromosome(LRS)

Phenotype
Parental

Trait Suggestive QTL, chromosome(LRS)
Forelimb grip strength 6(13.5)
Hindlimb grip strength 3(13.8)

Landing foot splay
Locoriotor activity

2(9.5),5(8.6), 6 (9.1)

10 min

20 min

30 min 20(11.3)

Total 4(9.1)
Passive avoidance test training time 20(9.9)

Passive avoidance test retention time 10(114),12(94)

QTLs are divided according t the calculation software MapManager into. the categories of suggestive, significant, and highly significant. These thresholds
were established enipitically by 1,000 permutations for sach trait: The chromosome location and likelihood ratio statistic value (LRSY are shown. The EOD score
can be calculated by dividing the LRS by 4.6: Phenotype parental describes statistical differences for each phenotype parameter between the parental F344/Sani
and LE/Stm calculated with the 2-tailed; unpaired r-test. *P 0.01=0.05; 1P 0.001-0.01; TP < 0.001:ns, P> 0.05.

strains to only the phenotyping. However. this advantage is
also a limiting factor in terms of the analytical power of RI
strains.  Singlé genes’ have to our knowledge not yet been
mapped in QTL experiments using RI panels. More than 500
sophisticated bred RI lines would be required to detect weak
QTLs that account for 5% of the phenotypic variation to within
<1¢M (24). This is far more accurate than the resolution of the
QTLs obtained in this study. Their confidence intervals are in
most cases larger than 20 Mbp, which corresponds to several
hundred candidate genes. Logical subtraction can be used to
exclude most of them, but too many putative candidate genes
remain to allow successful causative gene detection. Nonethe-
less there remains the potential to increase the accuracy of this
RI resource by increasing the density of the markers. This
study describes. the results of QTL mapping using only 232
SSLP markers, which leaves several huge gaps of >50 Mbp in
the rat genome. Currently, the STAR consortium 21) is de-
termining the sequence for up to 100,000 single nucleotide
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Fig. 3. Highly significant QTLs obtained from interval map-
- ping. The black lines indicate the likelihood ratio statistics
(LRS) values; the red lines illustrate the additive effect. 1f a M.
red line is- positive, it can be ‘asstmed that LE/Stm alleles ?g‘}%ﬁ;’{{{ﬁfg&ﬁf},’g
increase the parameter. A negative red line indicites that Ez':m*.‘;';"'i%'.:“”.
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polymorphism (SNP) loci for many rat strains, including those
in this resource, and it is expected to generate a SNP map: for
these RI strains that will consist of ~30,000 SNPs (Hiibner N,
personal communication). Not all of these will be informative
because of the limited number of recombinations among these
34 Rl lines, but it can be assumed that these SNPs will greatly
increase the accuracy of QTL mapping using this RI panel.
Another way to increase the number and probably also the
accuracy for the QTLs for this RI panel is the application of
different and more sophisticated calculation methods, Standard
interval mapping as used here takes into account only single
markers, whereas in contrast composite interval mapping also
takes the effect of other loci into account. Such calculations
have not been performed yet because the primary goal of this
study was the general evaluation of this RI panel for QTL
mapping and because the upcoming SNP map will allow for a
more detailed dissection of these complex traits. This is also
the reason why we are not dissecting every QTL that we obtain
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and are publishing them: without further discussion regarding
candidate “genes  or: cross-species  comparison, . Their value
might seem limited because. of the relatively. rough 'genome-
wide 232-marker map, but their correctness=—not accuracy—
should not be underestimated. The result that in total . 102 of
118 QTLs are not contained in: the RGD QTL database (19) is
due to the majority of these parameters never: having been
examined in QTL research in the rat before. On the other hand,
QTLs for common parameters: such” as: cholesterol; glucose
concentration, or heart weight were confirmed by our results;
which was also the reason why we decided to publish not only
significant but also suggestive QTLs. They confirm the results
of other independent experiments and: prove the investigative
power of the LEXF/FXLE RI strains.

Anotherinteresting finding of this work is the subset of the
20 detected: QTLs for which' the parameters of the parental
strains’ F344/Stm- and: LE/Stm are not significantly different.
Standard trait dissection’ in: RI strains starts: with phenotypic
examination of the trait in the parental strains. If the parental
strains show distinct values for the parameter it can be assumed
that the corresponding genes will segregate among the RI
progeny along with: the QTLs, which can then easily be
detected. This raises the question of how it is possible to find
QTLs if the parental strains do not show significant differences
for a particular trait.. The answer to this lies in the complex
regulation of the 20 traits. which show a wide range of
phenotypic values among: the RI strains and can therefore be
dissected by standard statistical methods. The QTLS for these
traits impressively show the real interactions between the
genes, which regulate the quantitative values of these param-
eters in the mixed allelic environment of Rl strains. V

As initially: stated, QTL mapping is based on a statistical
method that is used to determine the odds: between diverse
phenotypes and genotypes.: If a specific allelic variation is
associated with several up- or downregulated measured values,
the same genomic location of the allelic variants will always
appear as QTL for these regulated values. Hence. there is a bias
in the detection of regulatory elements that are responsible for
several related parameters as also shown in our data for the
QTLs for lipid metabolism parameters such as cholesterol and
high-density lipoproteins (Fig. 3). This behavior lies in the
nature of the statistical mapping approach and can also be seen
in the more recent expression QTL (eQTL) mapping. a variant
of QTL mapping in which tissue-specific gene expression data
are mapped onto a usually dense genetic map (9). Physiolog-
ical QTLs combined with eQTLs—not utilized for this Rl
resource yet—would dramatically increase the power of this
resource to the level of candidate gene detection.

Finally, it should be mentioned that these RI strains and
all data on them dre freely available at http://www.anim.
med.kyoto-u.ac.jp/nbr. They have already been used by
and can be distributed to interested rescarchers worldwide.
Additional results obtfained from this unique and largest
available RI rat strain set will be forthcoming in the future.
QTLs from this resource will: be deposited into proficient
QTL databases like the RGD database (19) and will not only
improve our knowledge on rat physiology but also support
progress in: biomedical research across a range of species
through comparative research approaches.
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Characterization of the Kyoto Circling (KCl) Rat
Carrying a Spontaneous Nonsense Mutation in
the Protocadherin 15 (Pcdh15) Gene
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and Present address; Department of Medical Therapeutics, Molecular Therapeutics, Gifu
Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan

Abstract: Protocadherin-15 (Pcdh15) plays important roles in the morphogenesis and cohesion
of stereocilia bundles and in the maintenance of retinal photoreceptor cells.  In humans,
mutations in PCDH 15 cause Usher syndrome type 1F (USH1F)and non-syndromic deafness .
DENB23. In mice, repertories of Pcdh15 mutant alleles have been described as Ames waltzer
mutations. For further understanding of Pcdh15 function in vivo and to develop better clinical
treatment for the disabling symptoms of USH1F and DENB23 patients, animal models suitable
for clinical as well as pharmacological studies are required. Here we report the characterization
of a Pcdh15 mutant allele, Kyoto circling, (Pedh15%) in the rat. Rats homozygous for Pcdh 15
display circling and abnormal swimming behaviors along with the iack of an auditory-evoked
brainstem response at the highest intensities of acoustic stimulation. Positional cloning analysis
revealed a nonsense mutation (c. 2911C>T, p. Arg971X) in the Pcdh 15 gene, which is predicted
to result in the truncation of the PCDH15 protein at the 9th domain of cytoplasmic cadherin
domains. Histological study revealed severe defects in cochlear hair cell stereocilia, collapse
of the organ of Corti, and marked reduction of ganglion cells in adult Pcdh15* mutants. Severe
reduction of sensory hair cells was also found in the saccular macula. Since the rat is more
advantageous for clinical and pharmacological studies than the mouse, the KCl rat strain may
be a better disease model for Pedh15-deficit USH1F and DFNB23.

Key words: deafness, disease model, protocadherin 15, rat, USH1F

Introduction largely serve to identify the genes responsible for hear-
ing impairments [1, 16]. Genetic analysié of mouse

Genetic analyses of congenital deafness in mice and ~ Ames waltzer (av) mutation, which causes deafness and .
rats and hereditary neurosensory disorders in humans - - vestibular dysfunction associated with degeneration of
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ku, Kyoro 606-8501; Japan -



2 K.NAOI, ET AL.

the inner ear neuroepithelia, identified provtocadherin 15
(Pcdh15) as the gene responsible for hearing impairment
[5]: Several different alleles have been idéntified in'the
avlocus and include av’, av¥, av’’, v, a8 (avTeNTazRpwy

av’”®, and av¥ (av™%) [4, 5, 8, 17, 18]. Extensive

analyses of these av mutants show that mutation in
PcdhlS5 affects hair bundle morphogenesis and polarity
(8, 12, 17] and mechanotransduction [7]: A detailed
study on the localization and function of PCDHI5 in hair
cells by Senften ef al. strongly supports the role of
Pcdhl5 in bundle morphogenesis and polarity [14].

More recently, Kazmierczak ef al. have shown by im-

munohistochemical studies using rodent hair cells and
biochemical experiments that PCDHIS5 interacts with
cadherin 23 to form tip-link filaments that connect the
stereocilia and are thought to gate the mechanoelectrical
-transduction channel [10].

In humans, missense mutations of the PCDHI5 gene
cause non-syndromic deafness; DFNB23, recessive pre-
lingual hearing loss with normal vestibular responses
and electroretinogram [3]. Meanwhile, nonsense muta-
tions of the PCDHI5 cause Usher syndrome type 1E
(USHIF), a recessive disorder characterized by con-
genital profound hearing loss, vestibular problems; and
delayed retinitis pigmentosa [2, 6]. The prevalence of
USHIF in USH1 patients varies among the cohort, but
it is arelatively common subtype of USHI. To treat the
deafness of USHIF patients, cochlear implantation is
widely used. Recently, an aminoglycoside-dependent
therapeutic approach has been attempted in vitro as a
novel and definitive treatment of USHIF [13} What-
ever therapeutic approaches for USHIF and DENB23
are ¢hosen, it is currently necessary to validate them in
an animal model that mimics the mutant phenotype of
human diseases. The laboratory rat (Rattus norvegicus)

provides important mammalian models for various hu-

man diseases. Due to ifs suitable body size and great
adaptability, the rat serves as an animal model espe-
cially in neurological, behavioral, surgical and pharma-
cological studies. An experimehtal system with the rat
model for USH1F and DENB23 would be advantageous,
especially when the causative gene of the rat model is
identified as a mutation of Pcdhls5.

Rats showing abnormal behaviors characterized by
constant circling movements were found in the F; gen-

eration of Crl:CD(SD) rats purchased from Charles
River Laboratory Japan (Kanagawa, Japan) in 2003.
Preliminary genetic analysis showed that these abnormal
traits were inherited in an autosomal recessive manner.
Although inbreeding has not been fully completed (F18),
we called the rats Kyoto Circling (KCI) and named the
causative gene kei:

In this report, we describe the identification of the kci
as a nonsense mutation of the Pedhls gené, and the his-
topathological characteristics of the KCI rat.

Materials and Methods

Animals

KCl rats were provided by the National Bio Resource
Project for the Rat in Japan and kept in our animal facil-
ity for all experiments in this study. BN/SsNSlc rats
were purchased from Japan SLC, In¢. (Shizuoka, Japan).
KCI rats were bred by a brother-sister mating of kci/+
heterozygous females with kcilker homozygous males:
Animal care and experimental procedures were approved
by the Animal Research Comrhittee, Kyoto University
and were conducted according to the Regulation on
Animal Experimentation at Kyoto University.

- Auditory brainstem response measurement

Auditory brainstem response (ABR) measurements
were performed in three individuals each for keil+
heterozygous and kcilkei homozygous rats at 9 weeks of
age. The following experiments were performed using
animals anesthetized with ketamine (80 mg/kg,i.p.)and
xylazine (8 mg/kg, 1.p.). Stainless steel needle electrodes
were inserted subcutaneously into the vertex (indiffer-
ent); one side (active), and the other side (grdund) of the
retroauricular region. The ABR was obtained by averag-
ing 1,000 evoked responses to click stimuli at intensities
of 43,52,63,72,81,and 90 dB peak equivalent sound
pressure levels (peSPL) with 50-ms intervals generated
by an acousti¢ stimulator (MEB-5504, Nihon Kbden,
Tokyo, Japan). Clicks were delivered through an inner

ear type earphone facing the meatus acusticus externus.
ABR thresholds were detemined for each stimulus fre-
quency by identifying the lowest intensity producing a
reproducible ABR pattern on the computer screen (at
least two consistent peaks).
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Table 1. Primers used for amplifying rat Pcdlil5 cDNA

Primer name Forward (5'>3) Reverse (5'>37) Position*
cPedhls.1 ATGTCCCCACAGTTT CGTTGCCAGTCAACATGAGT 412-1066
cPcdhl5.2 CCAGAAGATCCGACATCCAA CTGCAGTCAGCTGGATGACA 1009-2027
cPcdhl5.3 GTTTACACGGACATGAGTCC GAACACGGGAGCGTTATCAT 19782571
cPedhis4 GCCACTGTGAACATAGTGGT GGAAACTGCACATCATCCAC 2527-3344
cPedhl5.5 GTTTATGCTGAAGACGCAG GCTATAGTCTTCTAGGGAG 3268-4338
cPcdhl5.6 GTTGTAGAGTCCATTGGTGC CCACACCCTCTGGATCTTITT 4279-5145
cPedhl5:T GITAAGAGTCAGTCCCTIGAG TTACAAGGACGTT 5095-6234

*Nucleotide positions of 5" and 3" ends of PCR products for rat Pedhl5 cDNA (XM_001080000).

- Genetic mapping :

(BN/SsNSlc x KCI)F; rats were backcrossed to KCI
to obtain N rats. Homozygous kcilkci animals were
identified on the basis of the appearance of circling be-
havior and inability to swim at 3-4 weeks of age. A
total of 259 N, progeny were produced in this study.
Genomic DNA was prepared from tail biopsy using the
automatic DNA purification system (P1-200, Kurabo,
Japan). For the initial mapping of kci, we employed
pooled-SSL.P analysis [15]. DNA from 14 randomly
selected rats of each genotype at the kci locus was stan-
dardized to 20 ng/ul and equal amounts of individual
DNA were pooled with respect to each genotype. The
keilkei and kei/+ DNA pools were genotyped for 61 mi-
crosatellite markers distributed among all autosomal
chromosomes. The KCI rats used in the genetic study
were homozygous for all of these markers. For the fine
mapping of kci, all N, animals were genotyped.

RNA extraction and RT-PCR

Total RNA was extracted from the brain of 7-week-old
animals with ISOGEN (Nippon Gene, Japan) according
to the manufacturer’s instructions and was stored in RNA
Storage Solution (Ambion). Five micrograms of total
RNA was used for first-strand cDNA synthesis with Su-
perscript I reverse transcriptase (Invitrogen), and a 1-ul
aliquot of 50 yl of reaction mixture was used as a tem-
plate for PCR. Rat Pcdhil5 cDNAs were amplified with
7 sets of primers (Table 1). These PCR products over-
lapped each other and spanned the entire coding sequence
of Pedhls.

Sequencing
PCR products were treated with ExoSAP-IT (Amer-

sham Biosciences) to digest single—strand DNAs and
excess primers. Cycle sequencing was performed with
the BigDye Terminator Ready Reaction Mix v3.1 ac-
cording to the manufacturer’s instructions (Applied
Biosystems). PCR sz{mples were purified with CENTRI-
SEP spin columns and then loaded into an'ABI PRISM
3100 genetic analyzer (Applied Biosystems).

Histopathology

We examined the inner ears of 4 kcifkci homozygous
mutant rats and 4 control (kcil+ heterozygous) rats at 16
weeks of age. Perfusion fixation through the left ven-
tricle was conducted with Karnovsky solution (5% glu-
taraldehyde and 4% paraformaldehyde) under anesthesia.
For light microscopy, the removed cochlea were fixed
in 10% neutral-buffered formalin for 24 h and decalcified
in ethylene diamine tetraacetic acid (EDTA). The spec-
imens were then dehydrated in graded ethanol,embedded
in paraffin and stained with hematoxylin and eosin (HE)
or embedded in epoxy resin and stained with toluidine
blue.

For scanning electron microscopy. (SEM), the removed
cochleae were immersed in 4% glutaraldehyde in 0.1 M
phosphate buffer (pH 7 4) for 24 to 48 h. After dehydra-
tion and critical point drying under a dissecting micro-
scope, the vestibule and membrane tectoria ductus co-
chlearis were removed. The blocks of tissues were
covered with ionized gold and visualized under a scan-
ning electron microscope (JSM-5200, JEOL, Tokyo,
Japan). The surface view of the organ of Corti was
analyzed.

For retina histology, eyes were removed from 4 kcilkci
homozygous mutant rats and 2 control rats at 16 weeks:
of age after anesthetic overdose followed by cervical
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dislocation,” Eyes were fixed overnight in Davidson’s

fixation solution, embedded in paraffin, and stained with
HE.

Restlts

Mutant phenotype
Mutant offspring are identifiable at approximately 15
days of age by manifestation of twisting the neck toward

the back when lifted by the tail. After weanin g, mutant .

rats fail to show a startle response and display head toss-
ing and bidirectional circling behavior. Circling behav:
ior is observed as early as 14 days of age and persists

throughout life. When the KCI rats were placed into.a

deep tank filled with warm water (35°C), they immedi-
ately began rotating along their long axis and sank.
While underwater, the rats still rotated along their body
length. The rats seldom resurfaced before they were
rescued. These findings suggest that KCI rats might have
lost their balance and have defects in the inner ear, which
senses linear and angular acceleration,

Auditory brainstem response
In addition to this balance disorder, the KCI rats

showed no response to sounds such as knocking and -

clapping. To test the auditory organ function, we mea-

sured ABR in KCI homozygous (kci/kci) rats and their
normal littermates (kci/+). In keil+ heterozygotes, ABRs

composed of I I, III, 1V, and V peaks were observed at
- all of the intensities examined (Fig. 1A), but no kcilkei
homozygotes exhibited ABR up to the maximum level
of acoustic stimulation (Fig. 1B), indicating that the KCT
rats were completely deaf,

Genetic analysis

- Pooled-SSLP analysis. showed a linkage relationship
between D20Rat4 and the kci locus. A distinct reduction
of the BN allelic fragment of the D20Rat4 was seen in
the kcilkci pool relative to both the F, hybrid and the
keil+ pools. A genetic linkage study of 259 (BN/SsNSlc
x KCDF,; x KCI backcross progeny using 3 additional
markers on Chr 20 narrowed down kci to a 2.3:cM in-
terval between Rab36 and D20Rat75 (Fig. 2A). Within
this interval, three genes, Rab36 (member RAS oncogene
family), Gnaz (guanine nucleotide binding protein, alpha

z subunit), and PcdhlS (protocadherin 15); and three
predicted transcripts (RGD 1561987, LOC502417 and
RGD1563351) have been mapped, and these genes were
considered as candidates for kci (Fig. 2B). Pcdhl5 was
considered to be the strongest candidate among them,

~ because mutations of this gene are responsible for deaf-

ness in humans and mice.

Although the expression level and size of the Pcdhl5
transcript are not altered in KCI rats, sequencing analy-
ses of the entire coding région revealed the substitution
of a cytosine to a tymidine residue at nucleotide position
2911 from the start of the coding region (c. 2911 C>T)
(Fig. 2C), which was verified by PCR-RFLP analysis
(Fig. 2D). This substitution introduces a stop codon at
the 971st amino acid of the PCDH15 protein of the KCI
rat (p. Arg971X). In the presence of the premature stop
codon, the PCDHIS5 protein expressed in the kei allele
would be truncated after the ninth extracellular cad-
herin domain (Fig. 2E). The kci nonsense mutation was
completely associated with mutant phenotypes in 259
backcross progeny and not shared among 62 Crj:CD(SD)
rats (data not shown). These findings suggest that the

* nonsense mutation of Pcdhl5 is responsible for the kci
‘mutant phenotype.

Histopathological analysis

As illustrated in Fig. 3, stereocilia of both inner and
outer hair cells of affected mutants were severely disor-
ganized compared to those of control animals in which
stereocilia were of normal configuration. The normal
“V”-shaped arrangement of stereocilia was completely
disrupted in all three rows of outer hair cells (Fig. 3).
Stereocilia were misoriented and thickly fused. Tnner
hair cell stereocilia also showed a disorderly arrange-
ment compared to controls (Fig. 3).

In the cochlea of keilkci rats, severe to total 1oss of
inner and outer hair cells was found (Fig. 4). The organ
of Corti was collapsed into a poorly differentiated mass
of cells in which the normal arrangement of fluid spaces
was not noticeable. The number of cochlear nerve fibers
in the osseous spiral lamina was dramatically reduced
(Figs. 4A and 4B). Despite the severe degeneration of
the organ of Corti in affected animals, the configuration
of the cochlear duct remained normal. Reissner’s mem-
brane was in its normal position and no abnormalities of
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Fig. 1. Representative ABR waveforms of kci/+ heterozygous (A) and kci/kei homozy-
gous (B) rats at 9 weeks of age. Five major peaks were detected for kci/+
heterozygous rats at the various intensities tested (43-90 dB).. No peaks were

obtained for kcilkci homozygous rafs.

the stria-vascularis were observed by light microscdpy.
The number of spiral ganglion cells was also reduced
(Figs. 4C and 4D).

In the saccula macula of kcifkei rats; the number of

‘sensory hair cells was severely reduced compared to

control rats, although that of supporting cells seemed to
be normal. The remaining hair cells appeared to be de-
generated and the otolithic membrane was very severe-
ly damaged (Figs. 4E and 4F).

In the retina, no anatomical defects were noted in any
keilkei homozygous or heterozygous rats (Fig. 5). Ret-
inas from all animals included all normal retinal layers,
and no abnormalities were noted in the cellular structure
as examined at the light microscopic level.

Discussion

The behavior of rats homozygous for the kci mutation
is very similar to those described previously in mouse
Pcdhl5-mutant alleles [4, 5,8, 17, 18]: The mutation in
the kci allele is a nonsense mutation (c. 2911 €>T; p.
Arg971X) and 1s predicted to result in fruncated PCDH 15
protein at the 9th domain of extracellular cadherin do-
mains. This substitution was completely correlated with
behavioral abnormalities in backcross progeny and was
not shared by the outbred colony from which founders
of KCI were discovered. Based on genotype-phenotype
correlation and a significantly similar phenotype with
Pedhl5-mutant Ames waltzer mice, we concluded that
Pcdhls was the gene responsible for the mutant pheno-
type of the KCI rat. The kci is designated Pedhl15*.
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Fig. 2.. Identification of the rat kci muitation. (A) Genetic linkage map around the kei locus (left). Distribution of haplotypes observed
.- among 10 progeny carrying a recombinant chromosome between D20Rat59 and D20Rat75. Black boxes. homozygote for
the kci allele. White boxes, heterozygote for the kci and BN alleles. (B) The kci locus was physically localized to the 2.6-Mb
region defined with Rab36 and D20Rat75. Within the kci locus, three genes (white boxes) and three predicted transcripts
(gray boxes) have been mapped. (C) Sequence analysis of Pchdl5 ¢cDNA from wild-type and kcifkei rats. In the keilkei rat,
4 nucleotide conversion C to. T (red) occurred at the position of nucleotide 2911 of the rat PchidI5 cDNA. The kci mutation
generates a premature termination at codon 97] of the putative PCDHIS5 protein. Due to the kei mutation, a Kpnl site (GG-
TACC) is lost and a Ddel site (CTNAG) is generated. (D) Molecular diagnosis for the ke mutation.  PCR products ampli-
fied with a pair of primers; rPcdh ) 5kei-F (5% GGGTTGCCAGCAAGTCGG -3’y and tPcdh15kei-R (5’- CTTAAAAATTGT-
TGTAGGCTC -3%), were subjected to restriction digestion with Kpnl (upper) or Ddel (lower). A 141-bp PCR product from
the wild-type allele was digested with Kpnl to 114-bp and 27-bp fragments, but not with Ddel, while a 141-bp PCR prodiict
from the kci allele was digested with Ddel to 114-bp and 27-bp fragments; but not with Kpnl. Note that the 27-bp fragment’
was too small to be seen. The CD(SD) rat was used as a control (+/+). (E) Schematic representation of PCDH15 indicating
cadherin repeats (C1-C11), transmembrane domain (TM), and cytoplasmic domain: In the KCI rat, the protein is prema-
turely truncated and lacks the last two cadherin domains, transmembrane and cytoplasmic domains.
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Fig. 3. Scanning electron micrograph of the organ of Corti from control (kci/+) (A, C) and homozygous
tkeilket) (B, D) rats at 16 weeks of age. The single row of inner hair cells is indicated by an
arrow and the three rows of outer hair cells (A) are labeled 1, 2, and 3. Stereocilia in the
control show a normal configuration. In the kcilkci rat, stereocilia of both inner and outer hair
cells are severely disorganized. Most outer hair cells lose their stereocilia and the remaining
stereocilia are shortened, fused, and disorientated. Bar=10 um (A, B). Bar=5 um (C, D)

The Pedhl5* allele is a functional null, because the
mutation introduces a stop codon, and it is included in
the repertoire of rodent Pedhl5 mutant alleles. Mature
KCI rats show constant circling behavior and histologi-
cal defects in both cochlear and vestibular hair cells,
which are comparable with those observed in mouse
Pcdhl5-null alleles such as av’®, av*’, or av® [4, 8, 17].

Behavioral and histological findings of KCI rats indicate
that PCDHI5 is also indispensableé in stereocilia bundle
morphogenesis in rats. In addition to analyses of differ-
ent alleles of av, further extensive analyses of KCl rats
will allow us to understand the function of Pcdhl5 in

inner hair cell development and the cause of inner ear
disorders in USHIFE and DFNB23 patients.

As an animal model for USHIF and DFNB23, KCI
rats have great advantages over the av null-mutant mice.

Since the rat has suitable body size for artificial ma-

nipulation, the KCI rat could serve as a better disease
model in the development of novel clinical treatments
for USHIFE and DENB23. In the rat, ample data on
physiology and pharmacology have been accumulated.
Thus; the KCI rat could also serve as a better disease

model in the development of new drugs for USHIF and
DFNB23.
Patients with USHIF suffer from progressive retinitis
pigmentosa, in addition to profound congenital hearing
loss and vestibular deficits [11]. Although cochlearim-
plantation can recover auditory perception, there are no
clinical treatments for recovery of visual perception,
thus, animal models for retinitis pigmentosa in USHIE
patients have been greatly anticipated. Although
PCDH 5 protein is known to be expressed in the rodent

retina [9], we could not detect any evidence of retinal
degeneration or disorganization in the KCI mutant rat.
To identify functional abnormalities of the retina in the
KClIrat, further analyses, such as electroretinograms and
electron microscopic' observations, will be necessary. In
av mice, it has been reported that two nonsense av muta-
tions, Pcdh15% and Pedh 547, show significantly
attenuated but stable electroretinograms in the absence
of histopathology of the retina [9].

In summary, we established the KCI rat strain and
identified the causative gene of the KCI mutant pheno-
type as the Arg971X mutation of the Pcdhl5 gene. The
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Fig. 4. Histology of cochlear (A, B), spiral ganglion (C, D), and saccular macula (E, F) in control (A,
C, E) and kcilkei rats (B, D, F) at 16 weeks of age. (A) The organ of Corti from a control
animal with normal inner hair cells (IHC) and outer hair cells (OHC) and inftraepithelial fluid
spaces. The osseous spiral lamina is filled with myelinated netve fibers (N). (B) The collapsed
organ of Corti and the degeneration of inner and outer hair cells in the keilkci. Thereis also a
dramatic reduction in the number of myelinated nerve fibers (arrow) in the osseous spiral
lamina. (C) Cross sections of the spiral ganglion from a control cochlear. (D) The spiral
ganglion (arrows) from the keifkei rat showing reduced numbers of ganglion cells in an af-
fected animal at 16 weeks of age. (D) The saccular macula from a control animal with normal
sensory hair (H) and supporting (S) cells. (E) Cross section of the saccular macula demonstrat-
ing a marked decrease in the number of hair cells (H) in an affected animal. The otolithic
membrane (OM) was also severely damaged. The supporting cells (S) appear normal. The
specimens were embedded in epoxy resin and stained with toluidine blue (A,B) or embedded
in paraffin and stained with hematoxylin and eosin (C=F). Bar=100 Hm (A, B). Bar=50 um
(C-F). : : :




