oncogenes and tumor suppressor genes are rarer
than in colorectal cancer, although DNA meth-
ylation leads to the silencing of numerous genes.
Infectious pathogens such as Helicobacter pylori
and Epstein—Barr virus (EBV) have been impli-
cated in the altered methylation seen in gastric
cancer. For instance, methylation levels in the
gastric mucosa of individuals with a history of
H. pylori infection correlate with gastric cancer
risk [49]. In addition, enlarged-fold gastritis,
which is caused by H. pylori, is associated with
an increased risk for gastric cancer, and the gas-
tric mucosa in these patients show high levels of
promoter methylation and hypomethylation of
LINEI [50]. The molecular mechanisms by which
H. pylori and other pathogens induce DNA
methylation remain unknown. It is known, how-
ever, that the chronic gastritis caused by H. pylori
is associated with mucosal cell proliferation and
cytokine expression. On the other hand, the
expression levels of three DNA methyltransfer-
ases (DNMT1, DNMT3A and DNMT3B) are
unaffected [51], indicating that other factors are
likely involved in the methylation changes seen
in gastric cancer.

It was also recently reported that there is a link
between EBV infection and changes in DNA
methylation in gastric cancer [29,48]. Unlike

t(8;21)
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colorectal cancer with CIMP, gastric cancers
with EBV infection rarely show MSI [29]. Gastric
cancers with EBV also do not show mutations
of K-ras or p53, but they do show methylation
of multiple genes [29]. Similar EBV-associated
aberrant methylation of multiple genes is also
seen in nasopharyngeal cancers [52]. Several lines
of evidence suggest that EBV induces LMP1-
mediated expression of DNMT1 [53]. In naso-
pharyngeal carcinoma, for example, induction
of DNMT1 by LMP1 is caused by activation
of c-Jun NH2-terminal kinase (JNK)-activator
protein (AP)-1 signaling [54]. EBV-associated
aberrant methylation in cancer thus appears
to be a good model with which to gain insight
into the molecular mechanisms underlying the
altered DNA methylation in cancer, and may
facilitate the development of new therapies.

Epigenetic alterations caused by
translocation in leukemia

The proteins involved in the epigenetic regula-
tion of gene expression are often impaired in
cancer. For example, the chromosomal translo-
cations seen in leukemia often lead to epigen-
etic alterations of genes, although such altera-
tions are rarely found in common solid tumors
(Ficure 4). In acute myeloid leukemia (AML), for

t(5;11)(q35;p15.5)

Epigenomics © Future Science Group

Figure 4. Model of aberrant transcription caused by translocations in leukemia.

(A) AML-MTGS fusion protein in AML with t(8;21). AML-MTG8 lacks the p300 binding domain of
AML1, which causes HAT activity to be replaced by HDAC activity within the complex. This in turn
leads to silencing of genes involved in the differentiation of hematopoietic cells. (B) NUP98-NSD1
fusion protein in AML with t(5;11)(q35;p15.5). Histone H3K9 methylation by EZH2 prevents
expression of genes such as HOXA9 in differentiated hematopoietic cells. NUP98-NSD1 transactivates
HOXA9 via methylation of histone H3K36 and acetylation of histones H3 and H4.

HDAC: Histone deacetylase.
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example, a protein complex that induces differ-
entiation of hematopoietic cells is disrupted by
translocations such as t(8;21), which generates
AML1 (RUNX1)-MTGS fusion [t(3;21)], lead-
ing to the expression of AMLI-MTGS fusion
proteins [55]. These fusion proteins then act as
dominant negative forms of the core transcrip-
tion complex. AMLI-MTGS represses genes
usually activated by AMLI, including FMS,
p14ARF and C/EBPo. through recruitment
of corepressor complexes, including HDAC
[56-58]. AML1-MTGS can also recruit DNMT1,
thereby prolonging epigenetic silencing of target
genes [59].

In normal hematopoiesis, expression of
HOXA7, HOXA9 and HOXA10 promotes self-
renewal. The downregulation of these genes
coincides with terminal differentiation, and
overexpression of HOXA loci is frequently
observed in AML. Chromosomal transloca-
tions involve mixed lineage leukemia (MLL), a
H3K4 histone methyltransferase that positively
regulates gene expression. Leukemogenic MLL
fusion proteins delete MLL SET domain lysine
4 methyltransferase activity and fuse MLL to a
variety of translocation partners. For example,
the MLL-CBP fusion protein affects genes by
directly targeting histone acetyltransferase [60],
while MLL-AF10 recruits hDotLl histone
methyltransferase to targets (61]. These fusion
proteins also play key roles in' the activation of
HOZXA clusters. In addition, approximately 5%
of AMLs harbor the t(5;11)(¢35;p15.5) trans-
location, which generates the NUP98-NSD1
fusion protein {62]. NUP98-NSDI upregulates
expression of the HOXA cluster through the
methylation of H3K36 and the prevention of
H3K27 methylation by EZH2 [63]. Thus, many
of the translocations seen in leukemia lead to
the creation of fusion proteins that aberrantly
modify the histone tail, leading to dystegula-
tion of gene expression. This suggests that these
histone-modifying enzymes could be effective
targets of therapy.

Genome-wide methylation analysis

Recent progress in microarray-based techniques
has enabled analysis of gene methylation on'a
genome-wide scale. Two basic approaches are
used to prepare microarray probes: methyla-
tion-sensitive enzyme digestion’ followed by
adaptor ligation and PCR-amplification’ (64},
and immunoprecipitation of methylated DNA
using an antibody specific for methyleytosine
or methyl-CpG binding protein (65.66]. With
microarray-based methylation analysis, the

methylation profiles of thousands of genes
become available. For instance, by applying a
MCA microarray (MCAM) to hepatocellular
cancer (HCC), Gao et a/. assessed the methyla-
tion status of approximately 6500 CpG islands
in HCC and liver cirrhosis {67]. They found
that HCC:s arising from liver cirrhosis had sig-
nificantly more methylation than those aris-
ing from chronic hepatitis. In addition, Kuang
et al. used MCAM to examine the methylation
profile in acute lymphocytic leukemia. They
found that 404 genes were hypermethylated in
acute lymphocytic leukemia and that patients
with methylation of multiple CpG islands had
a poorer overall survival rate (68]. MCA can
also be applied to bacterial artificial chromo-
some (BAC)-arrays (BAC array-based MCA
[BAMCAY]). For instance, Arai et al. examined
the methylation profiles of precancerous regions
and clear-cell renal cancers using BAMCA [69].
They found that clinicopathologically aggressive
clear-cell renal cancers show methylation pro-
files that are distinct from less aggressive cancers.
They suggested that alteration of DNA meth-
ylation during a precancerous stage may gener-
ate more malignant clear cell renal cancers and
determine patient outcome. In addition, Deng
et al. performed a massive methylation analysis
using DNA prepared using a padlock probe
{70}. By using 30,000 probes to examine 66,000
CpG sites in 2020 CpG islands, they assessed
the methylation status of human fibroblasts and
induced pluripotent stem cells: They found that
288 regions were differentially methylated in the
two cell types. We anticipate that the next gen-
eration of sequencers will significantly accelerate
the exploration of genome-wide methylation.

Large-scale sequencing of cancer genomes has
revealed that large numbers of genes undergo
somatic mutations in human cancer [71,72].
However, concurrent mutational and methyla-
tion studies have been carried out on only a lim-
ited scale. Chan er /. examined the methylation
status of 189 CAN genes, which are mutated in
colorectal and breast ¢ancers [73]. By analyzing
36 common targets of mutation in colorectal
and breast cancer, they found that 18 genes
were silenced by DNA methylation in primary
cancers. They also showed that a subset of genes
targeted by both genetic and epigenetic events
are useful predictors of a poor prognosis.

Future perspective

Recent studies have shown that there are multiple
levels of genetic alterations (e.g., those affecting
nucleotides or chromosomes) and epigenetic
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alterations (e.g., DNA methylation, histone mod-
ification or alteration of chromatin structure) in
cancer {74]. Moreover, the heterogeneity of these
changes represents a major obstacle to full under-
standing of the mechanisms underlying cancer
development. In this regard, there are three key
questions that should be addressed in the future:

« What is the meaning of similar epigenetic
alterations in different genome systems?

# What is the relationship between methylation
of a specific gene and overall genome dynamics?

# Can individual cells within heterogeneous
cell populations be studied for their epigenetic
profile?

In addition, there are several potential clinical
applications for the integrated analysis of genetic
and epigenetic alterations in cancer. Genetic
and epigenetic alterations in cancer can pro-
vide information useful for selecting appropriate
treatments for patients diagnosed with cancer.
Moreover, gene mutatiois and DNA methyla-
tion reportedly influence the sensitivity to che-
motherapeutic drugs and could serve as molec-
ular markers for predicting the responsiveness

of tumors to chemotherapy. However, compre-
hensive analysis of the pharmacoepigenom-

ics awaits the advent of genome-wide analysis
of DNA methylation using microarrays and

next—generation sequencers,
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CpG island methylator phenotype
Genetic & epigenetic interactions in cancer

K-ras mutations and infrequent p53 mutations.

histone-modifying activity.

= Cancer with simultaneous methylation of multiple CpG islands.

Chromosomal translocations & histone modifications
» Chromosomal translocations found in leukemia often cause aberrant histone modification by creating fusion genes that abolish normal

= Colorectal cancers with CpG island methylator phenotype show distinct genetic alterations, including microsatellite instability, BRAF and
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Background & Aims: Aberrant DNA methylation is
an early and frequent process in gastric carcinogene-
sis and could be useful for detection of gastric neo-
plasia. We hypothesized that methylation analysis of
DNA recovered from gastric washes could be used to
detect gastric cancer. Methods: We studied 51 candi-
date genes in 7 gastric cancer cell lines and 24 samples
(training set) and identified 6 for further studies. We
examined the methylation status of these genes in a
test set consisting of 131 gastric neoplasias at various
stages. Finally, we validated the 6 candidate genes in
a different population of 40. primary gastric cancer
samples and 113 nonneoplastic gastric mucosa sam-
ples. Results: Six genes (MINT2S, RORA, GDNF,
ADAM23, PRDMS5, MLF1) showed frequent differen-
tial methylation between gastric cancer and normal mu-
cosa in the training, test, and validation sets. GDNF and
MINT?2S5 were most sensitive molecular markers of early
stage gastric cancer, whereas PRDMS and MLF1 were
markers of a field defect. There was a close correlation
(# = 0.5-0.9, P ='.03-.001) between methylation levels
in tumor biopsy and gastric washes. MINT25 meth-
ylation had the best sensitivity (90%), specificity (96%),
and area under the receiver operating characteristic
curve (0.961) in terms of tumor: detection in gastric
washes. Conclusions: These findings suggest MINT25
is a sensitive and specific marker for screening in
gastric cancer. Additionally, we have developed a new
method for gastric cancer detection by DNA methyl-
ation in gastric washes.

astric cancer is the second-leading cause of cancer

death in the world. Its prognosis is determined by
clinical stage at diagnosis and treatment.!-3 Diagnostic
tools such as gastrointestinal (GI) endoscopy followed by
pathologic analysis or fluoroscopy or both have proven
useful; however, the mortality rate has remained high
throughout the world. The sensitivity and specificity of
GI endoscopy is high, but its diagnostic power depends
on the technical skill of the endoscopist. Endoscopic
biopsy is a topical procedure whereby only a small por-

tion of abnormal tissue is removed. It can be difficult to
determine which tissue layer to remove which occasionally
leads to a misdiagnosis. Moreover, GI endoscopy is neither
comfortable nor risk free for patients, and it is associated
with frequent morbidity. Furthermore, gastric cancer is
more prevalent among elderly patients, who are likely to be
taking medications such as antiplatelet or anticoagulant
drugs, which further complicates the procedure.

The need for less-invasive and more-efficient diagnos-
tic tools has led to a search for gastric cancer antigens.*?
However, we now know that common biomarkers such as
carcinoembryonic antigen {(CEA) and carbohydrate anti-
gen 19-9 (CA19-9) are not found frequently enough to
yield high specificity or sensitivity assays. Molecular
markers that distinguish benign from clinically silent
malignant disease are needed to reduce the number of
unnecessary endoscopic-biopsies and to increase power
for early-stage detection of gastric dysplasia and early
gastric cancet.

Cytosine DNA methylation is an important epigenetic
change which leads to the recruitment of transcription
repressors and chromatin changes. During the development
and progression of gastric cancer, many genes are silenced
by abertrant methylation of cytosine-phosphate-guanosine
(CpQG) islands (CGls), which are CpG dinucleotide-rich ar-
eas located within the promoters of approximately 60% of
human genes.® Aberrant DNA methylation occurs more
frequently than mutations in gastric cancer.”** Studies
have detected cancer-specific. DNA methylation in stool,
blood plasma, urine, and pancreatic juice in several different
cancers.!*15 Furthermore, concordant promoter hyper-

Abbreviations used in this paper: 5-aza<dC, 5-aza-2'-deoxycytidine;
ADJ, normal tissue adjacent to tumors; ANOVA, analysis of variance;
bp, base pair; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembry-
onic antigen; CGl, CpG island; CpG, cytosine-phosphate-guanosine; EN,
stomach mucosal tissue in endoscopically normal patient; EW, stom-
ach wash sample in endoscopically normal patient; Gl, gastrointesti-
nal; PCR, polymerase chain reaction; ROC, receiver operating charac-
teristic; T, tumor tissue in patient with gastric cancer; W, stomach
wash sample in patient with gastric cancer.
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methylation of multiple genes, which is described as the
“CpG island methylator phenotype,” has been found in
both gastric and colorectal carcinomas.'¢-2! Therefore,
these epigenetic methylation markers could be useful for
detecting gastric cancer. It has also been proposed that
DNA methylation analysis could be useful to detect field
cancerization in this disease.??-24

Because many mucosal cells can be found in stomach
juice, the detection of molecular markers in stomach
juice is a possible noninvasive approach to screening for
gastric cancer. However, because of the secretion of hy-
drochloric acid from parietal cells in gastric mucosa,
stomach juice is strongly acidic, with a pH < 3. It is
difficult to use cells from gastric juice for molecular
studies because of the DNA damage caused by this acid-
ity.25 One alternative to stomach juice is the use of gast-
ric washes for molecular analysis. Endoscopists obtain
washes for analysis by washing with a saline solution
around the stomach mucosa during routine endoscopic
examination. Moreover, given that cells exfoliate abun-
dantly into the gastric washes and that undamaged DNA
recovered from the washes can be assayed with sensitive
and quantitative techniques, there is a strong biologic
rationale to pursue this emerging technology.

Here, we identified 6 methylation markers for the de-
tection of early gastric neoplasia. Applying this to DNA
from gastric washes, we found a high sensitivity and
specificity in detecting gastric cancer.

Materials and Methods
Cell Lines

Seven gastric cancer cell lines (Snul, SnuS, AGS,
MKN7, MKN74, MKN45, Katolll) were obtained from
the American Type Culture Collection (Manassas, VA) or
the Japanese Collection of Research Bioresources (Tokyo,
Japan). To analyze restoration of each gene expression,
cell lines were incubated for 96 hours with 1 umol/L
S-aza-2'-deoxycytidine (5-aza-dC), after which they were
harvested and their RNA was extracted for further anal-
ysis.

Patient Characteristics and Sample Collection

Training and test sets of gastric tumor tissues
were collected from Korean patients who underwent en-
doscopic or surgical resection of gastric dysplasia or can-
cer at Yonsei University Wonju Christian Hospital
(Wonju, Korea) from January 2000 to December 2004. A
total of 131 tumor tissue samples from 131 patients
(Table 1A) were randomly collected and examined; 40
gastric dysplasias, 48 eatly gastric cancers, and 43 ad-
vanced gastric cancers. Among 78 surgically resected can-
cer patients, 64 matched adjacent gastric samples found
not to contain cancer cells and = 2 cm distant from the
lesion were also used for methylation analysis. In addi-
tion to the tumor samples, nonneoplastic gastric muco-
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sal samples from 22 age-matched patients who under-
went surgery for peptic ulcer disease during the same
period were also obtained for the analysis. Serial sections
from paraffin-embedded tissue blocks were obtained and
used for both histologic diagnosis and tissue DNA ex-
traction in all cases. For all cases, the cancer epithelial
compartments were needle microdissected from 10-um
thick sections. Microdissected areas were assessed by an
expert pathologist (M-Y.C.) to estimate the percentage of
gastric tumor cells in each preparation, and the micro-
dissected areas of the gastric tumors were estimated to
contain > 70% cellularity.

For the validation set (Table 1B), we collected tumor
tissues (T), adjacent normal tissues (ADJ), and stomach
wash samples (W) from October 2005 to September 2006
in a different population of patients (Japanese) with
localized gastric cancer. All patients had never been
treated for their cancer at the time of sample collection at
St. Marianna University School of Medicine Hospital
(Kanagawa, Japan). In addition, we collected stomach
mucosal tissues (EN) and stomach wash samples (EW)
from endoscopically normal patients who were undergo-
ing endoscopy at the same hospital. No significant dif-
ferences in age and sex were seen between the patients
with gastric cancer and the endoscopically normal sub-
jects. This study protocol was approved by the institu-
tional review board of both Yonsei University Wonju
Christian Hospital and St. Marianna University School of
Medicine, and informed consent was obtained from each
patient.

To obtain gastric washes, patients were required to
swallow a liquid solution (100 mL of water containing 80
mg of dimethylpolysiloxane [Gascon: Kissei Pharmaceu-
tical Co, Ltd, Matsumoto, Japan], 1 g of sodium bicar-
bonate, and 20,000 units of pronase [Pronase MS; Kaken
Pharmaceutical Co, Ltd, Tokyo, Japan]) approximately 10
minutes before endoscopic examination. After local an-
esthesia had been administered, the endoscope was in-
serted into the stomach through the esophagus, and the
effect of premedication with pronase on the visualization
of the gastric mucosal wall was assessed. During endo-
scopic examination, the endoscopist washed the stomach
wall with a washing solution of 5% Gascon in water.
Wash solution was applied to the entire stomach wall,
with no exclusive focus on areas that appeared abnormal.
Gastric washes were aspirated through the suction chan-
nel of the endoscope into specimen collection containers
(No. 16200BZZ00045; Nippon Sherwood, Tokyo, Japan).
The specimen collection container was directly connected
to the endoscope modulator, and the washes were vacu-
umed manually. The samples were immediately centri-
fuged, and the pellets were frozen at —80°C. DNA was
extracted with the use of the standard phenol-chloroform
method.

After the collection of gastric washes, biopsies were
performed with biopsy forceps (Radial Jaw; Boston Sci-
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Table 1. Clinicopathologic Characteristics of Patients and Controls Studied

A. Test set

Nonneoplastic (n = 22)

Dysplasias (n = 40)

Early cancer (n = 48) Advanced cancer (n = 43)

Age, mean * SD, y# 61 + 14
Sex, n?
Male 18
Female 4
Location, n
Proximal® 1
Distal? 21
Endoscopic findings, n
Protruded —
Flat —
Depressed —

Bormann type 1 —

Bormann type 2 —

Bormann type 3 —

Bormann type 4 e
Histologic grades, n

Low-grade dysplasia —_

High-grade dysplasia —_
Differentiation, n

Well or moderate —

Poorly or signetring cell type —
Lauren classification, n

Intestinal —

Diffuse —

65 + 8 63 + 12 60 + 11

31 35 32

9 13 1

4 14 22
36 34 21

5 2 —
33 11 —

2 35 —
— — 3
_ — 12
- — 25
— — 3
19 — —
21 — —
— 25 10
— 23 33
— 40 30
— 8 13

B. Validation set (gastric washes)

=
L=
Sz
zS
gE
g

Nonneoplastic (n = 48)

Gastric cancer {n = 20)

Age, mean * SD, y? 66 + 20 65 + 18
Sex, n?

Male 20 13

Female 28 7
Location, n

Proximal® — 11

Distal? — 9
Tumor size < 20 mm, n — 4
Lauren ciassification, n

Intestinal e 10

Diffuse — 10
UICC clinical stage, n

Stage | — 6

Stage !l — 4

Stage il — ¢}

Stage IV — 1

Note: UICC indicates International Union Against Cancer.
?Mean age and sex were not different among 4 groups.
Sproximal, cardia, fundus, and body; distal, angle, and antrum.

entific Corp, Natick, MA) under endoscopic guidance
with a GIF-Q240 endoscope with the use of the EVIS
LUCERA system (Olympus, Inc, Tokyo, Japan). Mucosal
samples of the gastric body 5 mm in diameter were
collected for biopsy. In the endoscopically normal sub-
jects, endoscopic biopsy was performed at the corpus. In
patients with gastric cancer, 2 biopsy samples were col-
lected per site of cancer and adjacent tissue.

The concentration and quantity of all DNA extracted
from biopsied tissues and gastric washes were measured

with the NanoDrop spectrophotometer (ND-1000 Spec-
trophotometer; Nano Drop Technologies, Wilmington,
DE).

Endoscopic and Histopathologic Analysis of
Gastric Neoplasia

The endoscopic appearance of gastric dysplasia
was classified on the basis of gastroscopic findings, as
protruded-type (0-I), flat-type (Ila or 1Ib) or depressed-
type (Ilc, Iic + Ila, or III). Early gastric cancer was defined
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by a depth of tumor invasion limited to the submucosal
layer of the stomach regardless of the presence of lymph
node involvement. Advanced gastric cancer was classified
endoscopically with the Borrmann classification. All re-
sected gastric neoplasias were diagnosed histologically by
a pathologist (M.-Y.C.) according to the World Health
Organization classification (Supplementary Figure 1).

Bisulfite Polymerase Chain Reaction and
Pyrosequencing Analysis of DNA Methylation

Bisulfite treatment of gDNA was performed with
an EpiTect bisulfite kit (QIAGEN, Valencia, CA) accor-
ding to the manufacturer’s protocol. Bisulfite-treated
DNA (1 pL) was used as a template in subsequent poly-
merase chain reaction (PCR). All of the primers and PCR
conditions used for amplifying promoter CpG DNA frag-
ments of candidate methylation marker genes are listed
in Supplementary Table 1A. For most assays, we used
touchdown PCR. All PCR assays included a denaturation
step at 95°C for 30 seconds, followed by an annealing
step at various temperatures for 30 seconds, and an
extension step at 72°C for 30 seconds. After PCR, the
biotinylated strand was captured on streptavidin-coated
beads (Amersham Bioscience, Uppsala, Sweden) and in-
cubated with sequencing primers (Supplementary Table
1B). Pyrosequencing was performed with PSQ HS 96
Gold single-nucleotide polymorphism reagents on a PSQ
HS 96 pyrosequencing machine (Biotage, Uppsala, Swe-
den). The protocol for pyrosequencing has been de-
scribed in detail previously.?® Pyrosequencing quantita-
tively measures the methylation status of several CpG
sites in a given promoter. These adjacent sites usually
show highly concordant methylation. Therefore, the
mean percentage of methylation of detected sites was
used as a representative value for each gene promoter.

K-ras and p53 Mutation Analysis with the
Use of DNA from Tumor and Gastric Washes

Direct sequencing was conducted to identify mu-
tations in codons 12 and 13 of the K-ras gene and in
exons 2 through 11 of the pS3 gene in T and W samples;
primer sequences were obtained from a previous report,
with minor modifications.?” PCR products were directly
sequenced in the M.D. Anderson Core Sequencing Facil-
ity with the use of the same primers.

Reverse Transcription PCR

First-strand ¢<DNA was prepared by reverse tran-
scription of 5-ug samples of total RNA with the use of
Superscript III reverse transcriptase (Invitrogen, Carls-
bad, CA). Real-time quantitative reverse transcription-
PCR was carried out with the use of TagMan Gene
Expression Assays (GDNF, Hs00181185_m1; PRDMS,
Hs00924598_m1; ADAM23, Hs01046804_m1; MLF1,
Hs0023695_m1; RORA, Hs00536545_m1; and glyceral-
dehyde-3-phosphate dehydrogenase, Hs_00266705_gl;
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Applied Biosystems) with a 7500 Real-time PCR System
(Applied Biosystems) according to the manufacturer’s
instructions.?® SDS2.1 software (Applied Biosystems) was
used to do comparative A-Ct analysis. Glyceraldehyde-3-
phosphate dehydrogenase served as an endogenous con-
trol.

Detection of Helicobacter pylori with DNA

from Gastric Washes

PCR was used to evaluate the presence of #red, to
show H. pylori infection, with the use of HPU1 and HPU2
primers.?? PCR for cagA was performed to type the H.
Ppylori strains, with the use of cagAl and cagA2 primers.3°

Selection of Candidate Genes in Gastric
Cancer for Methylation Analysis

We first selected a total of 51 candidate genes.
Eight of the S1 genes were identified as hypermethylated
in multiple cancers by methylated CGI amplification and
microarray?! or methylated CGI amplification coupled
with representational difference analysis (MCA — RDA).*2 In
addition, we identified from a literature search 43 genes
that were described as potential methylated tumor sup-
pressor genes in gastric cancer cells or tissues.

Statistical Analysis

All statistical analyses were performed with SPSS
for Windows, version 12 (SPSS, Inc, Chicago, IL) and
PRISM software for Windows, version 4 (GraphPad
Prism, Inc, San Diego, CA). Methylation level (in %) was
analyzed as a continuous variable for comparison of each
gene with clinicopathologic features; means and 95%
confidence intervals were calculated. Comparisons of cat-
egorical variables were made using the chi-square test and
Fisher’s exact test when appropriate. Associations be-
tween continuous variables or levels of promoter meth-
ylation and clinicopathologic variables were evaluated
with the use of analysis of variance (ANOVA) and Stu-
dent’s ¢ test. In parallel, we computed the median DNA
methylation value and range for each sample, and we
defined the receiver operating characteristic (ROC) curve
in SPSS software. The z score analysis was used to not-
malize the methylation levels of several genes in each
sample. The z score for each gene was calculated as
follows: z score = (methylation level of each sample —
mean value of methylation level)/standard deviation of
methylation level. In this analysis, a z score > 0 means
that the methylation level is greater than the mean value
for the population. We examined possible correlations
between DNA promoter methylation levels and patient
age in 6 genes (MINT2S, RORA, GDNF, ADAM23, PRDM,
and MLFI) found in normal-appearing mucosa, by calcu-
lating Spearman’s nonparametric correlation coefficients
(r and P, respectively). All reported P values were 2-sided,
and P < .05 was considered statistically significant.
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Results
Clinicopathologic Characteristics of Patients

P value®
<.001
<.001
<.001
<.001
<.001
<.001

Clinicopathologic characteristics of patients with
gastric dysplasia, early gastric cancer, or advanced gastric
cancer and age-matched controls without neoplasia in
the training set and test set are listed in Table 1A. Table
1B lists the characteristics of patients in the validation
set; in those, samples included Tumor tissue (T), normal-
appearing tissue adjacent to tumors (AD]J), stomach mu-
cosal tissue in endoscopically normal patients (EN),
stomach wash samples in patients with gastric cancer
(W), and stomach wash samples in endoscopically nor-
mal patients (EW). We observed no significant differences
among these groups.

Cutoffa
172
11.6
17.9
10.2
52.6
235

&
g
-
Z
=]
v

g
g
c
g
»a

84.4

27 (22.0-32.0)¢
74.4
48.8

AGC (n = 43)

60.3 (49.9-70.7)°

17.6 (13.0-22.1)
58.1

19.3 (12.0-26.5)

38.8 (29.3-48.2)
33.3

19.4 (14.9-23.9)
41.9

Methylation of Selected Markers in Gastric
Neoplastic Progression with the Training
and Test Sets

We determined the levels of methylation of all
genes in 7 gastric cancer cell lines (AGS, KatolIl, MKN?7,
MKN4S, MKN74, Snul, and SnuS) and compared them
with normal blood DNA obtained from 2 healthy per-
sons. Methylation was determined by bisulfite-pyrose-
quencing, a quantitative method that yields percentage of
methylated alleles in the studied DNA (examples in Sup-
plementary Figure 2). The first criterion for marker se-
lection among the candidate genes was hypermethylation
(>15%) in > 3 of the 7 cancer cell lines but a lack of
methylation (=15%) in normal peripheral blood DNA.
We found that 51 genes were hypermethylated in > 3 of
the 7 cell lines (data not shown). Next, we compared the
levels of methylation of the 51 genes in a test set of
13 gastric cancer tissue samples and 11 age- and sex-
matched normal gastric mucosa samples (Supplementary
Table 2). On the basis of differential methylation, we
selected 6 genes (MINT25, RORA, GDNF, ADAM23,
PRDMS, and MLFI) as potential markers for the detec-
tion of gastric neoplasia.

Next, we tested these 6 potential markers with an
independent set of gastric neoplasia samples (test set).
The results are summarized in Table 2 and Figure 1.
Methylation levels increased significantly in gastric neo-
plastic progression from nonneoplastic gastric mucosa
tissue to normal adjacent tissue to tumors and to early
gastric cancer samples for all 6 marker genes (MINTZ2S,
RORA, GDNF, ADAM23, PRDMS, and MLF1; P < .001,
according to ANOVA). When considering progressive
stages, 2 patterns were evident: (1) type 1 markers, show-
ing consistently high levels of methylation in both gastric
dysplasia and cancer (MINT25 and GDNEF); (2) type 2
markers, showing high levels of methylation in early
gastric cancer and gastric dysplasia but decreased levels in
advanced gastric cancer (RORA, ADAM23, PRDMS, and
MLF1). Of interest, use of the type 2 markers showed
higher methylation levels in gastric dysplasia than in

77.8
84.8
54.5
50

EGC (n = 48)
58.6 (45.3-71.8)°

32.4 (26.1-38.7)°
83.3
39.8(33.8-45.9)¢
27.4(18.0-36.7)°
59.4 (48.2-70.6)°
63.6
26.5 (19.9-33.0)°

92.5
76.3
89.7
85.3

GD (n = 40)
36.8 (31.7-41.9)°

67.4 (57.2-77.5)
8.7

35.4 (29.2-41.5)°

38.7 (31.0-46.4)°

74.3 (64.5-84.1)°

35.8 (29.2-42.3)°
67.5

ADJ (n = 64)

16.7 (7.2-6.3)
23.3

9.7 (7.4-12.0)¢

23

16.6 (13.1-20.1)¢
31.6
25.5
16.7

10.1 (4.9-15.4)¢
18.3

31.8 (24.9-38.8)

14.2 (11.8-16.6)

NGM (n = 22)
6.7

6.4 (5.3-7.6)

9.7 (7.9-11.6)
45

2.8 (1.2-4.4)
9.5

11 (8.2-13.7)
4.5

5.9 (2.7-9)
25.1(18.4-31.7)

Methylation, %
Methylation, mean (95% Cl)

Frequency

RORAa
Methylation, mean (95% Cl)

Frequency

GDNF
Methylation, mean (95% Cl)

Frequency

ADAM23
Methylation, mean (95% Cl)

Frequency

PRDM5
Methylation, mean (95% Cl)

Frequency

MLF1
Methylation, mean (95% Cl)

Frequency
ADJ, normal-appearing gastric mucosa adjacent to gastric cancer; AGC, advanced gastric cancer; EGC, early gastric cancer; GD, gastric dysplasia; NGM, nonneoplastic gastric mucosa.

aThe cutoff value for the 7 hypermethylated genes was determined according to the mean methylation level of each gene + 2 SDs.

Table 2. Methylation Status of the 6 Differentially Methylated Markers According to Gastric Neoplastic Progression
bThe methylation levels in the 5 groups were compared with ANOVA.

<Significantly different from nonneoplastic gastric mucosa in Tukey's multiple comparisons (P < .05).

dSignificantly different from nonneoplastic gastric mucosa in t test (P < .05).
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advanced gastric cancer (P < .001), which is consistent
with our studies in ulcerative colitis and colon cancer.33

Epigenetic Silencing of Selected in Gastric
Cancer Cell Lines

To examine the expression profile of the candidate
marker genes, we initially carried out real-time PCR with
cDNA from normal colon and normal stomach tissues
and 7 gastric cancer cells (MKN7, MKN74, MKN45,
Snul, SnuS, AGS, Katolll). We detected expression of
GDNF, PRDMS, ADAM23, MLF1, and RORA in both nor-
mal colon and stomach tissues; conversely, we detected
weak expression of these genes in gastric cancer cells and
also an inverse correlation of expression with DNA meth-
ylation level. MINT2S is an alternatively spliced form of
the CABINI gene and was therefore not studied. Treating
those 7 cell lines with the DNA methyltransferase inhib-
itor 5-aza-dC restored silenced gene expression (Supple-
mentary Figure 3).

DNA Methylation Levels of the 6 Genes in
the Validation Set

To analyze the potential of these genes in screen-
ing for gastric cancer, we tested a validation set that also
included gastric washes. We first measured DNA concen-
trations in T, N, W, EN, and EW samples. Gastric washes
consistently yielded more DNA than did tissue biopsy
samples from the same patients (Supplementary Figure
4). To test the quality of recovered nucleic acids, we ran
the DNA on 1% agarose gels and found higher molecular
weight (intact) DNA in gastric washes from some pa-
tients with cancer than from healthy controls (Supple-
mentary Figure 5). DNA spectrophotometer analysis also
showed better quality of DNA from washes from patients
with cancer. Next, we stained gastric washes, and we
could see both cancer cells and normal cells in the washes
(cancer cells were stained by CEA). Many cells were al-
ready breaking down in the gastric washes. Finally, we
tested by PCR the quality of DNA and found that it was
more difficult to amplify DNA from controls than from
patients with cancer, especially with fragments more than
200 base pairs (bp) (Supplementary Figure S).

We next measured DNA methylation levels of the 6
genes (MINT2S, RORA, PRDMS, MLF1, ADAM23, and
GDNF) by pyrosequencing analysis in 153 validation set
samples: T (20), ADJ (17), W (20), EN (48), and EW (48).
The z scores of these 6 genes were significantly different
in T and EN samples (Figure 1B). The difference in
methylation densities between T and ADJ (P < .0001), as
well as between W and EW (P < .0001), were highest in
MINT2S. The methylation levels of the genes tested in T
samples did not differ significantly according to sex, age,
or tumor stage except that methylation levels of MLFI
and ADAM23 showed a positive correlation with age
(MLFI: » = 0.5, P = .001; ADAM23: r = 0.3, P = .035).
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The DNA methylation densities of PRDMS and MLFI1
were significantly different between T and EN (P < .0001)
and between W and EW (P < .0001) samples. However,
the results did not show a significant difference between
T and ADJ samples (P = .16). Moreover, DNA methyl-
ation densities in ADJ samples were significantly higher
than methylation densities in EN samples (P < .0001),
suggesting that these 2 genes are potential markers of an
epigenetic field defect (Figure 1B).

Correlations in methylation levels between biopsy (T)
and gastric wash (W) are shown in Figure 2. The meth-
ylation levels of all 6 genes were closely correlated by
Spearman’s analysis (MINT2S5: r = 0.7, P = .001; RORA:
r= 0.5, P = .03; PRDMS: r = 0.7, P < .001; MLFL: r = 0.9,
P < .001; ADAM23: r = 0.7, P < .001; GDNF: r = 0.9,
P < .001). These results show that gastric washes closely
mirrored gastric biopsy results. We therefore analyzed the
sensitivity and specificity of the gastric wash methylation
assays statistically with the use of single-gene and mul-
tigene panels. Each cutoff value was determined with
ROC curves (Figure 3), and sensitivity and specificity were
calculated. The best results were 90% sensitivity and 96%
specificity with MINT2S alone and 95% sensitivity
and 92% specificity with a combination of MINT2S,
ADAM23, and GDNF (Table 3). Six early-stage gastric
cancer samples were included in validation sets. Methyl-
ation in gastric washes enabled detection of these cancers
in 83.3% of cases (5/6) by MINT25, 66.7% (4/6) by GDNF,
and 83.3% (5/6) by PRDMS. These results suggest that
DNA from gastric washes can be an appropriate alterna-
tive to DNA from biopsied tissue for the determination
of methylation status in gastric cancer and to screen for
this deadly disease.

Genetic Analysis with Biopsy and Gastric
Wasbhes in Gastric Cancer

We checked for the presence of mutations in
codons 12 and 13 of the K-ras gene and in exons 4
through 10 of the p53 gene in T and W samples. No K-ras
mutations were detected in codon 12 or 13 in any sample.
Mutations of pS3 were found in 1 (5%) of 20 T samples
and in 1 (5%) of 20 W samples. Both mutations were a
1-bp deletion in exon 10 (1006delG, heterozygous), and
the 2 samples were from the same patient.

Detection of H. pylori

H. pylori requires urease protein to survive in the
stomach flora because it needs protection from the acidic
solution secreted by parietal cells. Therefore, we used
ureA gene detection as a positive control for H. pylori.
Twenty-six gastric wash samples were found to be H.
pylori positive, and 42 were H. pylori negative. Of the 26 H.
pylori-positive samples, 12 were from patients with can-
cer (12/20, 60%) and 14 were from cancer-free persons
(14/48, 29%). In addition, 9 subjects were cagA positive in
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W samples (9/20, 45%) and 6 were cagA positive in EW
samples (6/48, 13%). We did not find any correlation
between ureA- or cagA-positive detection and DNA meth-
ylation.
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Figure 1. Methylation in gastric cancer. Methylation: levels of 6 genes
{MINT25, RORAa, GDNF, ADAM23, PRDMS, and MLF1) was measured
by bisulfite pyrosequencing and normalized by the z score method. (4) Re-
sults of individual genes in the test set. (B) Results of individual genes in the
validation set. EGC, early gastric cancer; AGC, advanced gastric cancer;
GD, gastric dysplasia; NGM, nonneoplastic gastric mucosa; T, tumor tis-
sue in patient with gastric cancer; ADJ, normal adjacent tissue to tumors;
W, stomach wash sample in patient with gastric cancer; EN, stomach
mucosal tissue in endoscopically normal patient; EW, stomach wash sam-
ple in endoscopically normal patient (*P < .05).
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Discussion

Gastric cancer is still a lethal disease around the
wotld. Eatly detection yields the opportunity for less-
invasive curative treatment and may improve prognosis.
Some detection tools are currently being used such as
fluoroscopy, endoscopy, and tumor markers; however,
these tools lack sensitivity and may require invasive tech-
niques.>* Alternatively, serum DNA methylation can be
used as a marker; however, it provides only a narrow
range of sensitivity.>s Using stool DNA is not useful for
gastric cancer detection because of DNA damage because
of stomach acidity and the length of the GI tract. Here,
we have identified sensitive markers of early gastric can-
cer, and we developed a new method of gastric cancer
detection with the use of methylation analysis of gastric
washes.

The use of stomach juice as a molecular diagnostic or
prediction tool has been previously shown to be unfea-
sible because DNA is easily denatured by gastric acidity.
Therefore, it is important to obtain genomic DNA from
fresh cells not affected by stomach acidity. Our data show
that gastric washes can yield enough DNA from shed
epithelium to be used for the screening and detection of
gastric cancer and that methylation analysis in this com-
partment confers a high sensitivity and specificity.

We found a close correlation between methylation lev-
els in biopsy and wash samples. Our data suggest that
cancer cells from the mucosal layer are easily exfoliated
into gastric washes, possibly because of loosening cell-to-
cell junctions, whereas the exfoliation of normal mucosal
cells is limited. In addition, the success of the technique
may relate to the fact that, normally, DNA recovered
from gastric washes is relatively degraded. In patients
with cancer, a significant proportion of the DNA derives
from exfoliated cells, is of larger molecular weight, is less
degraded through the apoptotic process, and is easier to
amplify by PCR; therefore; its methylation reflects well
that of the tumors (Supplementary Figures 5 and 6).
Therefore, we can obtain a larger fraction of cancer cells
than normal cells in the washes, even if the area of the
cancer site is smaller than that of the normal mucosa.
Indeed, our approach was successful, although the
washes were not specifically directed at diseased parts of
the stomach. These data raise the hope that gastric
washes without requiring an endoscope may also be suc-
cessful in cancer detection, an approach that should be
tested in future trials.

We identified 6 frequently methylated genes in gastric
neoplasia that can serve as biomarkers for the disease.
Methylation changes of these markers during gastric
carcinogenesis are gene and tumor stage dependent. Of
these genes, MINT2S and GDNF were stable biomarkers,
because they were highly methylated in gastric tumor
samples irrespective of tumor stage. The 6 genes were
already reported to be densely methylated in gastric can-
cer except for GDNF.>%37 For 5 genes (AMAD23, PRDMS,
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Figure 2. Correlation of meth-
ylation levels between tumor
and gastric washes samples.
Shown are Spearman correla-
tion coefficients r and P values.
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GDNF, RORA, MLFI), we showed correlations between
expression and methylation. For MINT2S, this was not
shown, because it corresponds to an alternate promoter
of the CABINI gene. Our data do not address whether
these genes are functionally involved in gastric neoplasia,
but this criterion is not necessary for cancer detection.

Of the genes we studied, MINT2S had the best sensi-
tivity (90%), specificity (96%), and area under the ROC
curve (0.961) in terms of tumor detection. A combination
of individual genes in methylation panels could increase
the performance of these markers: MINT2S + ADAM23 +
GDNF (sensitivity, 95%; specificity, 92%; area under the
ROC curve, 0.965; positive predictive value, 0.83; negative
predictive value, 0.98). The panel of MINT2S + ADAM?23 +
GDNF had greater sensitivity than did MINT2S alone
(Table 3); thus, it may be better for screening. It will be
important to validate gene combinations in separate data
sets, however.

In this study, we found surprising differences in DNA
methylation between different stages of gastric cancer.

A

Lines show linear regression

Methylation in W (%) models.

Dysplasia and early cancer have clearly higher methyl-
ation than normal stomach. By contrast, advanced gas-
tric cancer shows significantly lower methylation than
dysplasia and early cancer for all genes except MINT2S.
This paradoxical situation is strikingly similar to what we
previously observed in ulcerative colitis-associated colon
neoplasia.3® Rather than a decrease in methylation with
disease progression, we propose that the data are consis-
tent with separate pathways to carcinogenesis. One path-
way involves intense methylation and dysplasia/carci-
noma progression. We hypothesize that a distinct, more
aggressive pathway characterized by lower methylation
evolves rapidly to advanced cancer with little time (if any)
spent at the dysplasia stage.

Comparing normal adjacent tissue to tumors (ADJ)
from endoscopically normal patients (EN), 2 genes
(PRDMS and MLFI) showed significant differences.
PRDMS has previously been reported to be highly meth-
ylated in primary gastric cancer.?® In our data, its meth-
ylation appears to be a very early event. It appears likely
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Table 3. Performance of Gene Markers for the Detection of Gastric Neoplasia

A. Test set (cancer versus normal)

Neoplasm Normal
Sensitivity Specificity
Marker Area (SE) Cutoff (z score) Positive Total Positive Total (%) (%) PPV NPV
MINT25 0.943 (0.025) —0.4541 75 88 i} 15 84.1 90.9 .99 .52
RORAa 0.887 (0.026) -0.7135 114 131 8 22 83.2 86.4 .93 .45
GDNF 0.884 (0.027) -0.4911 104 127 2 22 81.9 90.9 .98 AT
ADAM23 0.812 (0.036) -0.7876 83 126 2 20 65.9 90.0 .98 .30
PRDM5 0.754 (0.042) 0.5094 68 106 1 19 64.2 94.7 .99 .32
MLF1 0.727 (0.040) -0.4170 81 131 4 22 61.8 81.8 .95 .26
B. Validation set (gastric washes in cancer patients versus controls)
1 EW
Sensitivity  Specificity

Variable Area (SE) Cutoff (z score) Positive Total Positive Total (%) (%) PPV NPV

MINT25 0.961 (0.025) 0.0571 18 20 2 48 90.0 95.8 90 .96
RORAa 0.707 (0.076) —-0.4213 11 19 7 48 60.0 85.4 61 .84
GDNF 0.740 (0.083) 0.0285 13 20 5 47 65.0 89.6 .72 .86
ADAM23 0.864 (0.047) —0.4949 13 19 8 48 70.0 83.3 .62 .87
PRDM5 0.827 (0.054) 0.0939 13 20 3 48 65.0 93.7 81 .87
MLF1 0.678 (0.089) 0.2411 12 20 7 48 60.0 85.4 .63 .84
MINT25 + PRDM5 + ADAM23  0.963 (0.020) —0.6015 18 20 4 48 90.0 91.7 82 .96
MINT25 + ADAM23 + GDNF 0.965 (0.020) -0.8141 19 20 4 48 95.0 91.7 .83 .98

EW, gastric wash in cancer-free controls; NPV, negative predictive value; PPV, positive predictive value; SE indicates standard error; W, gastric

wash in patients with cancer.

that these 2 genes are associated with field canceriza-
tion,?? and it would be interesting to determine prospec-
tively whether this methylation can be found in “at risk”
populations before cancer development.

DNA methylation analysis can be a useful biomarker
of cancer, but it is important to consider detection meth-
ods. Pyrosequencing is a cost- and time-effective assay
that provides quantitative screening. This allows one to
set cutoff points, which makes accurate comparisons
possible, and overcomes some of the problems associated
with very sensitive bisulfite DNA amplification methods.
Its applicability however is limited to situations in which
the tissue/DNA to be studied has a high fraction of
tumor cells.

In summary, we identified 6 methylation markers for
detection of early gastric neoplasia, 2 of which could be
useful as markers of the field cancerization. Moreover, we
have developed a new method for gastric cancer detection
by DNA methylation analysis in gastric washes. This
technology should now be tested in prospective studies
for evaluation and detection of gastric cancer.

Supplementary Data

Note: To access the supplementary material
accompanying this article, visit the online version of
Gastroenterology at www.gastrojournal.org, and at doi:
10.1053 /j.gastro.2009.02.085.
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The functional significance of Rest in
the maintenance of ESC pluripotency
remains controversial. We herein showed
that Rest is not necessary for the mainte-
nance of mouse ESCs, and instead
suggested that the Rest transcriptional
repressor connects to the Oct3/4-Sox2-
Nanog core regulatory circuitry during
early ESC differentiation.

The pluripotency of ESCs is maintained
by coordinated expression of a core
regulatory circuit of genes that includes
Oct3/4, Sox2, and Nanog. Rest (also
called Nrsf) is abundantly expressed in
ESCs and is a target of the Oct3/4-Sox2-
Nanog regulatory network. However, the
functional significance of Rest in the
maintenance of pluripotency remains
controversial. We have generated Rest
conditional knockout and Rest-inducible
ESC lines. Conditional ablation of Rest
showed that it is not required for mainte-
nance of pluripotency, but it is involved
in the suppression of self-renewal genes
during early differentiation of ESCs. In
addition, forced expression of REST in
ESCs results inrapid differentiation. These
results indicate that Rest is not necessary
for the maintenance of mouse ESCs, and
instead suggest that the Rest transcrip-
tional repressor connects to the Oct3/4-
Sox2-Nanog core regulatory circuitry
during early ESC differentiation.

The transcriptional repressor Rest is
a zinc finger protein that binds to a
conserved 23 bp motif known as RE1
(repressor element 1, also called NRSE)
in a number of genes encoding the funda-
mental neuronal traits (Chong et al., 1995;
Schoenherr and Anderson, 1995). Rest is
expressed throughout early development
where it represses the expression of

neural genes, such as Syp and Syt4
(Schoenherr et al., 1996). Rest is also
expressed in ESCs and it has also been
shown to be one of target genes of the
regulatory circuitry of the pluripotent state
in ESCs (Johnson et al., 2008; Sun et al.,
2005). However, the functional signifi-
cance of Rest in the maintenance of
pluripotency in ESCs still remains contro-
versial (Buckley et al., 2009; Jergensen
et al., 2009a; Singh et al., 2008). A
previous study with a heterozygous Rest
ESC line combined with an siRNA knock-
down indicated that Rest maintains pluri-
potency through the induction of self-
renewal genes, such as Oct3/4, Nanog,
and Sox2 (Singh et al., 2008). In contrast,
Jorgensen et al. generated a Rest null
ESC line and reported that such Rest
null ESCs revealed no substantial change
in either the Oct3/4 protein levels or alka-
line phosphatase activity in comparison to
matched wild-type controls (Jergensen
et al., 2009a, 2009b).

In order to elucidate the role of Rest in
the maintenance of pluripotency, we first
generated an ESC line and mice that con-
tained the conditional knockout alleles of
Rest. The first Rest allele in the ESCs
(V6.5) was replaced with the KO vector
carrying the floxed last exon of Rest, which
encodes the coRest binding site that is
essential for the generation of the silencing
complex (Andrés et al., 1999; Grimes etal.,
2000), followed by ires-Gfp to monitor
the transcription of the modified allele
(Rest®'+; Figure 1A). The transient
expression of Cre recombinase generated
a Rest floxed ESC line that lacks a drug
selection cassette (Rest?°*'*). Analyzing
the GFP expression allowed us to confirm
that Rest is expressed in ESCs (Figure 1B).

10 Cell Stem Cell 6, January 8, 2010 ©2010 Elsevier Inc.

Rest/~ ESCs were next generated with
the floxed Rest ESC line together with
a plasmid expressing Cre recombinase
(Figure 1A). After the excision of the floxed
Rest gene by the transient transfection of
Cre (Rest”~ (™) the second Rest allele
was also replaced with the floxed allele
(Rest®>"). The transient transfection of
Cre into Rest®~ ESCs resulted in the
establishment of Rest ™~ ESCs that were
isogenic to the parental ESCs without
any genetic modification except for the
Rest alleles.

After the recombination of the Rest
alleles, the lack of a Rest transcript in
such Rest™~ ESCs was confirmed by
a northern blot analysis (Figure 1B; Fig-
ure S1A available online). Consistent
with the recombination, a FACS analysis
revealed a lack of any GFP signal in the
Rest™~ ESCs (Figure 1B). In addition,
a western blot analysis revealed the lack
of any Rest protein in such Rest™~
ESCs (Figure 1B). Syt4 possesses RE1
and it is expressed while relying solely
on dissociation of the Rest repressor
complex from the RE1 site for maximal
expression (Ballas et al., 2005). The
expression of Syt4 significantly increased
in the Rest ™/~ ESCs, thus indicating that
the Rest-targeted gene is derepressed in
Rest™'~ ESCs (Figure S1B).

Consistent with the findings by Jorgen-
sen et al. (2009a, 2009b), the growth and
morphology of the Rest™~ ESCs were
indistinguishable from those of wild-type
V6.5 ESCs under the self-renewal condi-
tions (under the presence of LIF and
MEF). Furthermore, when the expression
of the pluripotent genes was compared,
the expression of Nanog, Oct3/4, and
Sox2 in Rest™~ ESCs were not altered
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Figure 1. Rest Is Not Required for the Maintenance of ESC Pluripotency

(A) A schematic drawing of the Rest-conditional knockout vector and targeted Rest allele.

(B) A northern blot analysis reveals a lack of Rest transcripts. GFP fluorescence is observed to have disappeared in the Rest™'~ ESCs. A western blot analysis
shows the absence of any Rest protein in two independent knockout ESC lines, RestKO8 and RestKO48.

(C) Transcript levels of pluripotent genes in Rest™~ ESCs. No significant changes in the expression of Oct3/4, Nanog, and Sox2 are detectable in the Rest™
ESCs relative to the control ESCs. Transcript levels were normalized to g-actin levels. The data are presented as the average values with SD of six independent
samples.

(D) Rest™~ teratomas differentiate into three different germ layers, including neural cells, ciliated columnar cells, and muscle cells. E12.5 chimeric mice were
generated by injecting Rest™~ ESCs into blastocysts.

(E) A schematic drawing of the conditional Rest knockout ESC line containing doxycycline-inducible Cre alleles.

(F) An experimental protocol. Conditional Rest knockout ESCs were treated with doxycycline (2 pg/ml) for 24 hr starting at 24 hr and then were harvested at 96 hr
after the passage. A FACS analysis revealed the presence of GFP-negative cells, thus indicating the occurrence of Rest ablation at 96 hr after passage.

(G) The conditional deletion of the Rest gene does not suppress the development of alkaline phosphatase (AP)-positive ESC colonies under the presence or
absence of feeder cells. Rest-floxed Cre-inducible ESCs were exposed to doxycycline and then were fixed after 3 days of exposure. The total number of colonies

=

and the percent positivity for AP are indicated. The data are presented as the mean + SD of three independent 35 mm wells.

in comparison to those in the control
ESCs (Figure 1C). To further examine the
pluripotency of Rest™~ ESCs, Rest™~
ESCs were next injected into the subcuta-
neous tissue of nude mice. Rest ™'~ ESCs
could generate teratomas with evidence
of differentiation into three different germ
layers (Figure 1D). To fully evaluate the
differentiation ability of the Rest™~
ESCs, GFP-labeled Rest™’~ ESCs were

injected into blastocysts followed by
transplantation into the uteri of pseudo-
pregnant mice to generate chimeric
embryos (Yamada et al., 2004). Eventu-
ally, this generated E12.5 chimeric mice
with the widespread contribution of
GFP-positive cells into the three germ
layers (Figure 1D; Figure S1C).

In order to rule out the possibility that
the adaptive responses, which occurred

Cell Stem Cell 6, January 8, 2010 ©2010 Elsevier Inc.

as a result of multiple cell passages,
reduced the requirement of Rest-medi-
ated maintenance of ESCs, the initial
response of the gene expression was
examined after the conditional ablation
of the Rest genes. For this purpose, an
ESC line was derived from transgenic
embryo that harbors a doxycycline-induc-
ible Cre transgene together with Rest-
floxed alleles (Figure 1E; Rest 2lox/2lox;

1
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Figure 2. Rest Promotes Primitive Endoderm Differentiation in ESCs

(A) Under confluent culture conditions, the expression of Gata4 and Gata6 were significantly lower in the Rest ™~ ESCs in comparison to the control isogenic ESCs
(V6.5). The expression of Sox7 and Dab2, which are both markers for the primitive endoderm, are suppressed in Rest™'~ ESCs. Transcript levels were normalized
to B-actin levels. The data are presented as the average values with SD of six independent samples.

(B) The exogenous expression of REST rescued the suppression of Gata4 and Gata6 in Rest™'~ ESCs. Mean + SD of three independent samples.

(C) The expression of pluripotent genes in the embryoid body (EB) cells. The expression of Occt3/4, Nanog, and Sox2 are upregulated in Rest ™'~ EB cells relative
to the control EB cells. The data are presented as the mean + SD of six independent samples.

(D) Conditional Rest knockout ESCs were cultured under differentiation culture conditions and treated with doxycycline (2 pg/ml) for 24 hr starting at 24 hr. The
cells were harvested at 96 hr after the passage. The expression of Syt4, Oct3/4, Nanog, and Gata4 after the conditional deletion of Rest under the differentiation
culture condition. Note that the expression of Nanog and Syt4, but not of Oct3/4, were upregulated in the doxycycline-treated cells. The data are presented as the
mean + SD of six independent samples.

(E) A schematic drawing of the doxycycline-inducible REST ESC line.

(F) 48 hr of the induction of REST causes the ESC differentiation into epithelium-like colonies with a decreased AP activity.

(G) The forced expression of REST in ESCs leads to decreased expression of Nanog, Oct3/4, and Fgf5, whereas it results in increased expression of Gata6. The
data are presented as the mean + SD of six independent samples.

(H) In vitro differentiation of REST-inducible ESCs into EBs under the absence or presence of doxycycline. The exogenous REST expression results in an
increased number of Gata4-positive cells at the periphery of EBs.

12 Cell Stem Cell 6, January 8, 2010 ©2010 Elsevier Inc.
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Rosa26::rtTA; Collal::tetO-Cre ESCs;
Beard et al., 2006; Hochedlinger et al.,
2005). This new ESC line enabled the
conditional deletion of the floxed Rest
genes in the presence of doxycycline.
After 3 days of doxycycline exposure,
the recombination in both alleles of the
Rest was confirmed in 70%-80% of these
ESCs by FACS (Figure 1F). However, the
conditional deletion did not suppress the
formation of AP-positive colonies regard-
less of the presence or absence of feeder
cells in comparison to the parental ESCs
without doxycycline (Figure 1G). In addi-
tion, the expression levels of Oct3/4 and
Nanog did not change, whereas the
expression level of Syt4 was derepressed
while demonstrating evidence of Rest
recombination shortly after doxycycline
treatment (Figure S1D). These results
therefore clearly rule out both the possi-
bility of the adaptation in the long-term
culture as well as the notion that
feeder cells reduce the requirement of
Rest-mediated ESC maintenance. Taken
together, our results indicate that Rest is
not required for the maintenance of ESC
pluripotency in these experimental condi-
tions.

Both Gata4 and Gata6 were signi-
ficantly downregulated in the Rest™’~
ESCs under confluent culture conditions
(Figure 2A), although the findings were
not prominent before the cells reached
confluence. Gata4 and Gata6 are tran-
scriptional factors that promote primitive
endoderm differentiation (Fujikura et al.,
2002; Niwa, 2007). These findings sug-
gest that the genetic deletion of Rest
prevents ESCs from differentiating toward
the primitive endoderm. The notion of the
suppression of primitive endoderm differ-
entiation is confirmed by the decreased
expression of both Sox7 and Dab2,
markers for the primitive endoderm (Shi-
moda et al., 2007; Yang et al., 2002), in
Rest™~ ESCs (Figure 2A). Consistent
with this notion, embryoid bodies (EBs)
generated from Rest™’~ ESCs revealed
a decreased number of Gata4-expressing
cells in the periphery of EBs on the histo-
logical sections in comparison to the
control EBs (13.1 + 15.0/EB and 30.4 +
9.02/EB in RestKO8 EBs and V6.5 EBs,

respectively, p < 0.006 by Student’'s
t test) (Figure S2A). Rescue experiments
were performed with a plasmid containing
human REST cDNA (Grimes et al., 2000)
to further investigate the direct associa-
tion of the genetic deletion of Rest and
the altered expression of Gata4 and
Gata6 in confluent Rest™~ ESCs. Impor-
tantly, the decreased expression of both
Gata4 and Gata6 in confluent Rest™~
ESCs were derepressed by the exoge-
nous expression of REST (Figure 2B).

The expression of Nanog, Oct3/4, and
Sox2 were significantly higher in the
Rest™'~ EBcellsthan inthe control EB cells
(Figure 2C). Accordingly, these observa-
tions suggest that the delayed repres-
sion of self-renewal genes during the early
differentiation of ESCs may thus cause the
suppression of the early differentiation
of Rest™'~ ESCs. To further examine the
initial response of gene expression upon
the early differentiation of Rest~'~ ESCs,
the differentiation (-LIF, -MEF) of Cre-
inducible Rest-floxed ESCs was induced
with/without doxycycline exposure (Fig-
ure 2D). At 3 days after doxycycline treat-
ment, the expression of Nanog, but not of
Oct3/4, was observed to be significantly
higher in the doxycycline-treated ESCs
than that of the nontreated ESCs (Fig-
ure 2D). In contrast, a decreased expres-
sion of Gata4 was not detectable at
3 days after doxycycline treatment when
the Syt4 expression had already been
derepressed (Figure 2D). These results
suggest that a decreased expression of
Gata4 in Rest™~ cells is preceded by an
increased expression of Nanog and that
Gata4 repression is therefore a secondary
effect of Rest ablation.

Finally, a doxycycline-inducible REST
ESC line was generated (Figure 2E;
Figure S2B). The forced expression of
REST led to the rapid morphological
changes of ESC colonies into an epithe-
lium-like shape, which was accompanied
by decreased AP activity (Figure 2F). In
line with such morphological changes,
ESCs with exogenous REST expressed
significantly lower levels of self-renewal
genes. The expression of Gata6 was
higher, whereas the expression of an
epiblast marker, Fgf5, was significantly

lower in such ESCs (Figure 2G). Further-
more, an increased number of Gata4-
expressing cells in the periphery of EBs
was observed in the exogenous REST-
induced EBs (79.2 + 19.6/EB and
50.7 + 17.6/EB in REST-induced EBs
and control EBs, respectively, p < 0.004
by Student’s t test) (Figure 2H), thus sug-
gesting that the forced REST expression
promotes the ESC differentiation into the
primitive endoderm. Importantly, the
REST-induced ESC differentiation was,
at least in part, rescued by the Nanog
overexpression (Figure 2I; Figure S2D).
Although the critical role of the Oct3/
4-Sox2-Nanog core transcription circuitry
in the maintenance of ESC pluripotency is
widely accepted (Boyer et al., 2005, 2006;
Chambers et al., 2003; Loh et al., 2006;
Mitsui et al., 2003; Niwa et al., 2000), the
mechanisms leading to the breakdown
of such core circuitry upon the early ESC
differentiation are still not well understood
(Kunath et al., 2007). The present study
demonstrated that Rest ablation causes
delayed repression of the pluripotent
genes, whereas overexpression of REST
immediately results in the suppression of
the pluripotent gene expression. Itis note-
worthy that the delayed repression of the
pluripotent genes by the conditional abla-
tion of Rest was predominantly observed
in Nanog. Given the fact that Rest is a tran-
scriptional repressor and Nanog harbors
RE1 in its promoter (Johnson et al,
2008), the current results therefore sug-
gest that Rest is involved in the silencing
of Nanog expression during the early
differentiation of ESCs. This notion is
also supported by the observation that
ectopic REST in Rest™’~ ESCs predomi-
nantly repressed the Nanog expression
relative to the expression in original
Rest™'~ ESCs (Figure S2C). These find-
ings suggest that Rest is an external
factor connecting to the Oct3/4-Sox2-
Nanog regulatory network core circuitry
to influence the initial differentiation of
ESCs. It is interesting to note that Rest is
abundantly expressed in ESCs and it is
a target of the Oct3/4-Sox2-Nanog regu-
latory network core circuitry (Johnson
etal., 2008). It is possible that the negative
feedback loop through Rest may play

(I) The Nanog overexpression dampens the REST-mediated ESC differentiation. REST was induced in Nanog-overexpressing and EGFP-overexpressing ESC
colonies by the doxycycline exposure. The 24 hr exposure of doxycyline led to the rapid differentiation in EGFP-overexpressing ESCs (arrowheads), whereas
Nanog-overexpressing ESCs retained an undifferentiated morphology. After the 48 hr exposure of doxycyline, 16 out of 256 EGFP-overexpressing colonies
(68%) started to differentiate, whereas none of Nanog-overexpressing colonies (0/21, 0%) revealed the evidence of differentiation (see also Figure S2D).
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arole in the stable transcriptional circuitry
and in the rapid response upon the early
differentiation of ESCs.

The current findings also suggest that
Rest promotes the early ESC differentia-
tion. Epiblast and the primitive endoderm
are two distinct cell types in the inner cell
mass (ICM) of the blastocyst. Genetic
evidence indicates that the Nanog and
Gata family transcription factors play
a role in the segregation of epiblast and
primitive endoderm within ICM (Cham-
bers et al., 2003; Koutsourakis et al.,
1999; Mitsui et al., 2003; Soudais et al.,
1995). Indeed, Nanog and Gata6 are
expressed in the ICM in a mutually exclu-
sive manner (Chazaud et al., 2006), thus
indicating the reciprocal control of the
gene expression. The current study found
that the conditional ablation of Rest
results in the delayed repression of Nanog
during the early differentiation of ESCs,
whereas REST overexpression causes
an increased expression of Gata6, which
is accompanied by the rapid differentia-
tion. In addition, the expression of Fgf5,
an epiblast marker, was significantly
downregulated by the REST overexpres-
sion. These results suggest that Rest
may be involved in the segregation of
epiblast and primitive endoderm through
modifying the Nanog expression.

In summary, the conditional ablation of
the Rest gene revealed that Rest is not
absolutely required for the maintenance
of ESC pluripotency. These results also
indicate that Rest plays a role in the
suppression of the pluripotent gene
expression upon the early differentiation
of ESCs.
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