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Inflammatory Processes Triggered by Helicobacter pylori
Infection Cause Aberrant DNA Methylation in
Gastric Epithelial Cells

Tohru Niwa', Tetsuya Tsukamoto?, Takeshi Toyoda?, Akiko Mori', Harunari Tanaka?, Takao Maekita®,
Masao Ichinose®, Masae Tatematsu?, and Toshikazu Ushijima’

Abstract

Altered patterns of DNA methylation associated with Helicobacter pylori (HP) infection of gastric epithelial
cells are thought to contribute to gastric cancer risk. However, it is unclear whether this increased risk reflects
an infection-associated inflammatory response or the infection itself. In this study, we sought to clarify me-
chanisms in a gerbil model of gastric cancer where we showed that HP infection is causally involved in in-
duction of aberrant DNA methylation. By genome-wide screening, CpG islands that were aberrantly
methylated in gerbil gastric cancer cell lines were isolated, and 10 islands were shown to be specifically meth-
ylated only in gastric mucosae infected with HP. By temporal analysis, methylation levels in gastric epithelial
cells started to increase at 5 to 10 weeks after infection and reached high levels by 50 weeks. When HP was
eradicated, methylation levels markedly decreased 10 and 20 weeks later, but they remained higher than those
in gerbils that were not infected by HP. Expression levels of several inflammation-related genes (CXCL2, IL-1p3,
NOS2, and TNF-c) paralleled the temporal changes of methylation levels. Significantly suppressing inflamma-
tion with the immunosuppressive drug cyclosporin A did not affect colonization by HP but blocked the in-
duction of altered DNA methylation. Our findings argue that DNA methylation alterations that occur in gastric
mucosae after HP infection are composed of transient components and permanent components, and that it is
the infection-associated inflammatory response, rather than HP itself, which is responsible for inducing the
altered DNA methylation. Cancer Res; 70(4); 1430-40. ©2010 AACR.
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Introduction

Aberrant DNA methylation of promoter CpG islands (CGI)
is one of the major inactivating mechanisms of tumor-
suppressor genes and is deeply involved in human carcino-
genesis (1). Nevertheless, there is only limited information
on its inducers and induction mechanisms. Chronic inflam-
mation, known to promote certain types of cancers (2), is one
of the possible inducers of aberrant methylation. The pres-
ence of aberrant methylation is frequently observed in non-
cancerous tissues of patients with inflammation-associated
cancers, such as liver cancers, ulcerative colitis—associated
colon cancers, and gastric cancers (3-7). However, a causal
role of chronic inflammation in methylation induction re-
mains to be established.
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In human gastric mucosae, the presence of Helicobacter
pylori (HP) infection, a well-known inducer of chronic inflam-
mation and gastric cancers (8, 9), is associated with high
methylation levels or high incidences of methylation (5, 10-
12). In addition, among individuals without HP infection,
noncancerous gastric mucosae of gastric cancer patients
have higher methylation levels than gastric mucosae of
healthy individuals (5, 10). In addition, eradication of HP
leads to a decreased incidence of CDHI (E-cadherin) promot-
er methylation (11, 13, 14). These findings suggest that HP
infection induces aberrant methylation in gastric mucosae
and indicate that levels of accumulated methylation are as-
sociated with gastric cancer risk. However, because infection
experiments are impossible in humans, it needs to be clari-
fied in animal models whether or not HP infection induces
methylation and what mechanisms are involved.

HP infection in humans is best modeled in Mongolian
gerbils (Meriones unguiculatus). As in man, HP infection
induces severe inflammation in gerbil gastric mucosae and
promotes gastric carcinogenesis induced by administration
of N-methyl-N-nitrosourea (MNU) or N-methyl-N'-nitrosogua-
nidine (15). The incidence of gastric cancers in gerbils depends
on the duration of HP infection, and eradication of HP signif-
icantly reduces the incidence (16), as in man (17, 18). Thus, we
can expect that the gerbil model is also useful in analyzing
whether HP infection induces aberrant methylation and what
mechanisms are involved in vivo. However, unfortunately,
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little information is available for the gerbil genome, and
the genetic and molecular analysis of this model has been
hampered.

In this study, we aimed to show that HP infection is caus-
ally involved in induction of aberrant DNA methylation and
to clarify a critical factor involved. For this, we first isolated
CGls that could be methylated in gerbil gastric cancers by a
genome-wide screening method, methylation-sensitive repre-
sentational difference analysis (MS-RDA). Using the CGIs iso-
lated, we then showed that methylation was induced
specifically in gerbils with HP infection and that inflamma-
tion induced by HP infection, not HP itself, was critically in-
volved in methylation induction.

Materials and Methods

Cell lines. Two gerbil gastric cancer cell lines, MGC1 and
MGC2, were established from a single gastric cancer induced
in a gerbil by MNU and HP infection (19). They were main-
tained in RPMI 1640 supplemented with 10% fetal bovine se-
rum on a type I collagen-coated dish (Asahi Techno Glass).
Although we did not check the cross-contamination of cell
lines biochemically or genetically just before use, they had
the same morphology and growth rates as described previ-
ously (19).

Animal experiments and sample preparation. Male
Mongolian gerbils (MGS/Sea) were purchased from Kyudo.
To induce gastric cancers, male gerbils were administrated
with 30 ppm of MNU (Sigma-Aldrich) in drinking water for
a week at 7,9, 11, 13, and 15 wk of age, and then inoculated
with HP (ATCC 43504, American Type Culture Collection) by
gavage at 17 wk of age (20). At 57 wk, gerbils were sacrificed
and stomachs were resected. Because it was difficult to iden-
tify cancers macroscopically in gastric mucosae with severe
hyperplasia, we dissected an area of gastric cancer tissue by
an apparatus for laser microdissection (ASLMD, Leica Micro-
systems) after histologic confirmation. For temporal analysis
of methylation levels, male gerbils were inoculated with HP
(ATCC 43504) at 5 wk of age. Eradication therapy was done
at 55 wk of age by administering amoxicillin, clarithromycin,
and lansoprazole by gavage (20). Gerbils that had HP after
the eradication therapy were excluded from analysis. As a ve-
hicle control, 0.5% of carboxymethyl cellulose was given by
gavage. To suppress gastritis, gerbils were administered with
250 pg/mL cyclosporin A (CsA; Neoral, Novartis Pharma) in
drinking water for 20 wk. The stomach was resected and cut
along the greater curvature. From the posterior wall of the
pyloric region (pyloric antrum), which contains the pyloric
glands, gastric epithelial cells (GEC) were isolated by the
gland isolation technique (21). The anterior wall of the pylo-
ric region was further cut into two pieces: one for RNA and
DNA extraction from a sample with mucus and mucosal and
submucosal layers and the other for histologic analysis.
Whole blood was obtained from the inferior vena cava. The
animal experiment protocols were approved by the Commit-
tee for Ethics in Animal Experimentation.

Human clinical samples. Human gastric mucosae were
obtained by endoscopic biopsy from 10 HP-negative (five

men and five women; average age 42.4 y, ranging from 29
to 56 y) and 10 HP-positive (four men and six women; aver-
age age 42.4 y, ranging from 23 to 53 y) healthy volunteers,
whose HP status had been judged by a serum anti-HP anti-
body test (SBS). Gastric cancer samples were obtained from
surgical specimens from 14 patients who underwent gastrec-
tomy due to early gastric cancers (seven men and seven
women; average age 65.9 y, ranging from 47 to 79 y). Sam-
pling was conducted under the approval of Institutional
Review Boards.

Nucleic acid extraction. From tissue sections, DNA was
extracted by heating the dissected sections at 100°C for 20
min at pH 12, followed by phenol/chloroform extraction
(22). From isolated glands, DNA was extracted by proteinase
K digestion and the phenol/chloroform method. From the
whole blood, DNA was extracted with a QuickGene DNA
whole blood kit (Fujifilm). RNA was isolated with Isogen
(Wako).

Quantitative PCR for gene expression analyses and
HP detection. To analyze gene expression levels, cDNA was
synthesized from 2 pg of DNase-treated RNA with an oligo-d
(T)12-18 primer. Real-time PCR using gene-specific primers
(Supplementary Table S1) and SYBR Green Real-time PCR
Master Mix (TOYOBO) was done, and the amplification curve
of a sample was compared with curves of standard DNA
samples with known copy numbers. Standard DNA samples
were prepared by serial dilution of a PCR product or a plas-
mid containing a cloned PCR fragment after its quantifica-
tion. Gene expression levels were normalized to that of
Gapdh. To measure the amount of HP, real-time PCR using
specific primers for the jhpr3 gene of HP was carried out and
normalized to the gerbil /4 gene (Supplementary Table S1).

Methylation-sensitive representational difference analy-
sis. MS-RDA is a subtraction method that can identify differ-
entially methylated loci between two genomes independent
of genomic information (23) and was done using Hpall or
Sacll methylation-sensitive restriction enzyme as described
previously (24). The final PCR product was cloned into pGEM
T-Easy (Promega) and sequenced. If a DNA fragment had a
CpG score 20.65 and G + C content 255%, the fragment was
considered to be derived from a CGI. To identify homologous
regions in mice and men, database searches were carried out
at a GenBank web site.

Methylation analysis. Fully methylated and fully un-
methylated controls were prepared by methylating genomic
DNA with SssI methylase (New England Biolabs) and ampli-
fying genomic DNA with $29 DNA polymerase (GenomiPhi
DNA Amplification Kit, GE Healthcare), respectively (25).
One microgram of DNA digested with BamHI was treated
with sodium bisulfite and suspended in 80 pL of Tris-EDTA
(TE) buffer as described previously (22). In the case of
paraffin-embedded samples, DNA was treated with sodium
bisulfite without BamHI digestion and suspended in 20 pL
of TE buffer. One microliter of aliquot was used as a template
for methylation-specific PCR (MSP) and bisulfite sequencing,
Conventional MSP and bisulfite sequencing were done
with specific primer sets (Supplementary Table S2) as de-
scribed previously (22). Quantitative MSP (qMSP) was done
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by real-time PCR using primers specific to DNA molecules
methylated at a locus and to a repeat sequence. Methylation
levels were expressed as a percentage of the methylated ref-
erence, which was obtained as [(number of methylated frag-
ments of a target CGI in sample) / (number of repeat
sequences in sample)] / [(number of methylated fragments
of a target CGI in SssI-treated DNA) / (number of repeat se-
quences in SssI-treated DNA)] x 100. As a repeat sequence,
the B2 repeat was used for gerbil DNA (ref. 26; Supplementa-
ry Table S2 and Supplementary Fig. S1) and the Alu repeat
was used for human DNA (27).

Statistical analysis. Statistical analyses were conducted
with SPSS 13.0] (SPSS Japan, Inc.). To evaluate significant dif-
ference between two independent groups of sample data, the
Mann-Whitney U test was used. Spearman's rank correlation
coefficient (r) was used to measure correlation.

Results

Identification of CGIs specifically methylated by HP
infection in GECs of Mongolian gerbils. To identify CGIs
methylated in GECs of gerbils with HP infection, we adopted
the strategy of a genome-wide screening in cancers and high-
sensitivity analysis in GECs. The genome-wide screening was
done by MS-RDA using a pool of two gerbil gastric cancer cell
lines (MGC1 and MGC2) as the driver and GECs of noninfect-
ed gerbils as the tester. The final products of two series of
MS-RDA using Hpall and Sacll were cloned and 180 DNA
fragments were sequenced. One hundred three of them were

Table 1. CGlIs methylated in gerbil gastric cancer cell lines and HP-infected GECs
Clone GenBank Genomic location deduced from analyses Nucleotide position in human
name accession no. using human or mouse genome database or mouse sequences
HE6 AB429514 Exon 2 of Ntrk2 gene* 16,449,514-16,449,840 bp in NT_023935.17
(human chr. 9)
HG2 AB429515 Exon 1 of Gpr37 gene* 49,589,571-49,589,704 bp in NT_007933.14
(human chr. 7)
SA9 AB429516 Exon 1 of Nol4 gene* 13,292,105-13,292,430 bp in NT_010966.13
(human chr. 18)
SB1 AB429517 Intergenic region between 20,698,454-20,698,697 bp in NT_007819.16
Sp4 and Sp8 genes* (human chr. 7)
SB5 AB429513 Not identified Not identified
SC3 AB429518 Promoter region of Rnf152 gene* 7,352,575-7,352,875 bp in NT_025028.13
(human chr. 18)
SD2 AB429519 Promoter region of Nptx2 gene* 23,480,374-23,480,422 bp in NT_007933.14
(human chr. 7)
SE3 AB429520 Intron 1 of Slc35f1 gene* 39,311,942-39,312,270 bp in NT_001838990.2
(human chr. 6)
SF12 AB429521 Intergenic region between 53,513,634-53,513,936 bp in NT_039621.7
Cntn1 and Pdzm4 genes (mouse chr. 15)
SH6 AB429522 Intergenic region between 213,253-213,298 bp in NT_027140.6
Sox1 and Loc729095 gene* (human chr. 13)
*Conserved regions identified in the human database.

nonredundant, and 56 of them contained a sequence likely to
have originated from a CGI Due to the lack of information
on the gerbil genome, we first analyzed the methylation sta-
tuses of CpG sites within the DNA fragments isolated using
MSP. MSP primers were successfully designed for 27 of the 56
DNA fragments, and we analyzed the two gastric cancer cell
lines, five samples of GECs from gerbils infected with HP for
50 weeks, and five samples of GECs from age-matched gerbils
without infection. Ten (HE6, HG2, SA9, SB1, SB5, SC3, SD2,
SE3, SF12, and SH6) of the 27 DNA fragments were methyl-
ated in the cell lines and GECs of HP-infected gerbils, but not
in any GECs of gerbils without infection (Table 1; Fig. 1). The
others were methylated only in the cell lines or methylated
even in GECs of gerbils without infection.

Methylation in primary gastric cancers was analyzed for
three randomly selected CGIs (HE6, SA9, and SB5). The
methylation levels of HE6 and SB5 in eight primary cancer
samples were similar to or below the mean methylation le-
vels in GECs with HP infection for 50 weeks. In contrast, the
methylation level of SA9 in most cancer samples was 2.1- to
19.1-fold higher than the mean methylation level in GECs
from HP-infected gerbils (Supplementary Fig. S2). These re-
sults suggested that HP infection induced aberrant methyla-
tion of multiple but specific CGIs in gerbil GECs, and that
methylation of some of these CGIs was associated with
growth advantage of the cells.

Methylation of the corresponding CGIs in human sam-
ples. To examine whether or not these CGIs are also meth-
ylated in humans by HP infection, conserved regions of the
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10 gerbil CGIs in humans were searched for. Eight of the 10
CGlIs were found to be conserved between gerbils and hu-
mans (marked in Table 1), and five were located in the vicin-
ities of genes (Fig. 2A, left). When the methylation levels of
these five CGIs were quantified in human gastric mucosal bi-
opsies, all of them had 5- to 48-fold higher methylation levels
in individuals with HP infection (7 = 10) than in those with-
out (n = 10; right). Their methylation levels had close corre-
lation with each other (correlation coefficient = 0.70-0.88;
Supplementary Table S3).

The methylation levels of the five CGIs were then analyzed
in primary human gastric cancers. NTRK2, GPR37, NOL4, and
NPTX2 had methylation in seven, three, four, and five, respec-
tively, of 14 cancers analyzed, using the average methylation
level of mucosal biopsies of HP-infected healthy volunteers as
a threshold. There was no case with methylation of RNF152
(Fig. 2B). These results showed that some of these CGIs were
also methylated in human gastric cancers.

Induction of DNA methylation by chronic HP infection.
Using the 10 CGIs isolated by MS-RDA, the effect of HP in-
fection on methylation induction was analyzed at 1, 5, 10,
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Figure 1. Isolation of CGls that were aberrantly methylated in gerbil
gastric cancers and GECs. A, a CpG map of the fragment isolated by
MS-RDA. Vertical lines, individual CpG sites; arrows, positions of MSP
primers; open arrows (HE6 and SA9), positions of bisulfite sequencing
primers. B, representative results of MSP analyses in GECs from gerbils
with and without HP infection for 50 wk and gastric cancer cell lines.
M, MSP using a primer pair specific to methylated DNA; U, MSP using a
primer pair specific to unmethylated DNA; M-control, genomic DNA
treated with Sss/ methylase; U-control, DNA amplified with GenomiPhi.

and 50 weeks after HP infection (Fig. 3A). The methylation
levels of HG2, SB5, and SD2 started to increase at 5 weeks
after infection. At 10 weeks, CGIs other than SE3 and SH6
showed significantly higher methylation levels than those
of the noninfected gerbils (3.2- to 85.0-fold). At 50 weeks,
all the CGIs showed significantly higher methylation levels
(14.3- to 215-fold; Fig. 3B; Supplementary Fig. S3). These re-
sults suggested that chronic HP infection, not acute HP infec-
tion, was responsible for methylation induction.

The presence of dense methylation (methylation of a ma-
jority of CpG sites on a single DNA molecule) was confirmed
by bisulfite sequencing of HE6 and SA9 in GECs of two ger-
bils with HP infection and two without. Densely methylated
DNA molecules were detected only in HP-infected gerbils
(Fig. 3C). The vast majority of DNA molecules were either
largely unmethylated or largely methylated, and the fraction
of methylated DNA molecules was in accordance with meth-
ylation levels measured by qMSP. The methylation levels of
the 10 CGIs closely correlated with each other (average cor-
relation coefficient = 0.87; range 0.70-0.95; Fig. 3D; Supple-
mentary Table S4).

Decrease in methylation levels after HP eradication. HP
was eradicated at 50 weeks after infection, and the methyla-
tion levels of the 10 CGIs were measured in GECs of the ger-
bils before and 1, 10, and 20 weeks after the eradication
(Fig. 3A). Complete absence of HP was confirmed by PCR
of HP genomic DNA (Fig. 4C). At 1 week after eradication,
no decrease in methylation was observed (Fig. 3B; Supple-
mentary Fig. S3). At 10 weeks after eradication, in contrast,
the methylation levels of the 10 CGIs decreased to 9% to 32%
of those before the eradication (significant for 9 of the 10
CGls, except for SH6). An additional 10 weeks (20 weeks after
eradication) did not lead to a further decrease in methylation
levels. Importantly, the methylation levels after the decrease
due to eradication were still significantly (P < 0.01 for two
CGls, and P < 0.05 for seven CGlIs) higher than those in ger-
bils without any HP infection in their life.

Close association between methylation induction and
inflammation, and not HP itself. HP infection is known to
induce severe inflammation in gastric mucosae in gerbils, as
in humans. Histologic analysis revealed that infiltration of
polymorphonuclear cells and mononuclear cells started at
5 to 10 weeks after HP infection, and it became severe at
50 weeks (Fig. 4A; Supplementary Fig. S4). After eradication,
a decrease in infiltration was not clear at 1 week, but was
marked by 10 and 20 weeks (Fig. 4A). These histologic find-
ings were paralleled by expression of inflammatory cell mar-
kers [Cd3g, Cd14, Ela2, and Ms4al (Cd20) for T cell,
macrophage, neutrophil, and B cell, respectively] in gastric
tissues containing both mucosal and submucosal layers
(Fig. 4B). Although Ms4al expression decreased after eradica-
tion, gerbils without eradication (continuous infection) also
showed a similar decrease, indicating that the decrease in
Ms4al expression (B-cell infiltration) was independent of
HP eradication.

To explore the components of inflammation associated
with methylation induction, the expression of inflamma-
tion-related genes [Cox2, Cxcl2 (MIP-2), Ifng, Il1b, 112, 1l4,
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116, 117, Nos2 (iNos), and Tnf (Tnf-a)] was also quantified
(Fig. 4B). A marked increase after HP infection and a de-
crease after eradication were observed for Cxcl2, Il1b, Nos2,
and Tnf, paralleling inflammatory cell markers (Fig. 4B).
The Cox2, Ifng, 112, 114, and 1l6 expression did not parallel
the methylation levels after HP eradication, and the /I7 ex-
pression showed a paradoxical increase compared with the
group of continuous infection (Fig. 4B). Regarding the
amount of HP in gastric mucosae, it had no association with
methylation levels (Fig. 4C).

There remained a possibility that inflammatory cells had
methylation of the CGIs analyzed, and that their contamina-
tion into GECs led to an apparent increase in methylation

levels. To exclude this possibility, we analyzed the methyla-
tion levels of the 10 CGIs in DNA extracted from the whole
blood of HP-infected gerbils. With the exception of SB1 and
SB5, which showed relatively high methylation levels in the
blood, 8 of the 10 CGIs showed almost no methylation (Sup-
plementary Fig. S5). This excluded the possibility that meth-
ylation detected in the GECs was due to methylation in
inflammatory cells contaminating the GECs.

Suppression of methylation induction by suppression of
inflammation. To conclude that inflammation is indispens-
able for methylation induction, we suppressed HP-induced
inflammation by administration of CsA, which blocks T-cell
activation through inhibition of the calcineurin signal
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Figure 2. Methylation of homologous regions in human gastric mucosae. A, methylation levels in human gastric mucosal biopsies. Left, genomic structures
and the regions analyzed by qMSP. Vertical lines, individual CpG sites; gray box, regions with homology between gerbil and man; open boxes, exons;
faced arrowheads, positions of primers for gMSP. Right, result of qMSP analyses. Methylation levels were quantified in 10 healthy volunteers without
HP infection and 10 with HP infection. Bold horizontal bars, average. **, P < 0.01. B, methylation levels in primary gastric cancers. Fourteen primary
gastric cancer samples and a pool of 10 mucosal biopsies of HP-infected healthy volunteers were analyzed. For the gastric mucosae, their mean
methylation level and SD are shown. PMR, percentage of the methylated reference.
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Figure 3. Temporal profiles of DNA methylation levels after HP infection and its eradication. A, experimental design for HP infection and eradication.
The numbers of gerbils that were successfully eradicated of HP are indicated in parentheses. B, temporal profiles of methylation levels. Methylation levels
are shown as mean + SD. 1, P < 0.05, compared with noninfected gerbils; *, P < 0.05, compared with the methylation level before the eradication.

C, the presence of dense methylation in the GECs of gerbils with HP infection. Bisulfite sequencing of HE6 and SA9 was done in GECs of a gerbil infected
with HP for 50 wk and an age-matched control gerbil. The fractions of clones with dense methylation were in accordance with methylation levels
(percentages of the methylated reference given in parentheses). Bars, CpG sites on which gMSP primers were designed. Similar pattems were observed for
another pair of noninfected and infected gerbils (data not shown). D, scattered plot of methylation levels of HE6 versus those of SA9. The values of

all 149 gerbils whose methylation was analyzed in this study were plotted. r, correlation coefficient.

(ref. 28; Fig. 5A). Macroscopically, administration of CsA to
HP-infected gerbils markedly suppressed erosion and the
formation of nodules. Histologically, it suppressed induction
of hyperplasia almost completely, but infiltration of mono-
nuclear and polymorphonuclear cells remained (Fig. 5B).
Importantly, the number of HP colonized in the stomach
was not affected by the CsA treatment (Supplementary
Fig. $6). The expression levels of inflammatory cell markers
(Cd3g Cdi4, and Ela2) were not reduced, indicating that the

number of inflammatory cells normalized against other cells
was not affected. However, the expression of three inflam-
mation-related genes (Cxcl2, Il1b, and Nos2), whose expres-
sion paralleled methylation induction in the temporal
analysis, was significantly reduced by the CsA treatment
(Fig. 5C).

The DNA methylation levels of the 10 CGIs were markedly
reduced in GECs of CsA-treated gerbils (0% to 28% of meth-
ylation levels of GECs from HP-infected gerbil without the
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CsA treatment; Fig. 5D; Supplementary Fig. S7). These results
showed that the CsA treatment suppressed inflammatory
responses but not HP colonization, and that the suppression
of inflammatory responses markedly repressed methylation

induction.
Expression analysis of genes with promoter methylation
in HP-infected GECs. HG2, SC3, and SD2 were located in the

promoter regions of Gpr37, Rnfl52, and Nptx2, respectively.
Promoter CGIs are generally resistant to DNA methylation
(29), and only when genes are transcribed at low levels are
they susceptible to DNA methylation (30-32). To confirm
the low expression and the effect of methylation on gene ex-
pression, we analyzed their expression levels in GECs isolated
from gerbils with and without HP infection (10 and 50 weeks
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Figure 4. Changes in inflammation after HP infection and its eradication. A, histologic changes in gastric mucosa before and after HP eradication.
Sections were stained with hematoxylin, eosin, and Alcian blue. Infiltration of numerous mononuclear cells (amrowheads) and polymorphonuclear cells
(arrows) did not change at 1 wk after eradication but markedly decreased at 10 and 20 wk. However, the presence of fibrosis and heterotopic proliferative
glands (*) did not differ. B, temporal profiles of expression of inflammatory cell markers and inflammation-related genes. Red, green, and blue lines,
gerbils with continued infection, gerbils with eradication, and those without any HP infection, respectively. C, numbers of HP in the gerbil stomach.
Real-time PCR of HP-specific DNA using DNA extracted from gastric tissues containing mucus was done. Values are shown as mean + SD. t, P < 0.05,
compared with noninfected gerbils; *, P < 0.05, compared with the expression level before eradication.
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