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Brain aging is prerequisite and high risk for AD
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Fig. 3. Brain aging is a preroquisite and high risk ficror for AD. During the aging process, normal aging induces NET formation without the
deposition of AS, keading 10 brain uging ond mild copnitive impairment, tsn AD, the aging process i activated such that A aceelerates aging,
leading to dementia through the spread of NFTs10 fimbic arcas and neacontex. According 1o this scenario, Aj¥ is sesponsible fisr causing dementia

i AD, and NFTs vefiect the clinical coursz of AD,

ing factor may induce pathological changes in 1au in
entorhinal cortex, leading to memory impairment. In
AD, AS may wigger pathological changes in tau in the
limbic system and neocortex, leading to dementia. In
clinically diagnosed AD, climinating A aggregation
may be insufficient 1o block the progression of cogni-
tive impairment in AD, because A may have already
initiated the tau aggregation cascade,
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. Abstract

Background: During intramembrane proteolysis of PAPP by presenilin (PS)/y-secretase,
g-cleavages at the membrane-cytoplasmic border precede y-cleavages at the middle of
the transmembrane domain. Generation ratios of AB42, a critical molecule for
Alzheimer disease (AD) pathogenesis, and the major AB40 species may be associated
with €48 and £49 cleavages, respectively. Medicines to down-regulate AP42 production
have been investigated by many pharmaceutical companies.  Therefore, the
g-cleavages, rather than the y-cleavage, may be more effective upstream targets for
decreasing the relative generation of AB42. Thus, one may evaluate compounds by
analyzing the generation ratio of the AICD species (g-cleavage-derived), instead of that
of Ap42,

Methods: Cell-free y-secretase assays were performed to observe de novo AICD
production. Immunoprecipitatioh/MALDI-TOF MS analysis was performed to detect the
N-termini of AICD species. AP and AICD species were measured by ELISA and
immunoblotting techniques.

Results: Effects on the e-cleavage by AD-associated pathological mutations around the
g-cleavage sites (7.e., BAPP V642I, L648P and K649N), were analyzed. The V642l and
L648P mutations caused an increase in the relative ratio of €48 cleavage as expected
from previous reports. Cells expressing the K649N mutant, however, underwent a
major e-cleavage at the €51 site. These results suggest that €51, as well as £48 cleavage,
is associated with AB42 production. Only AICDsg51, though, and not AB42 production,
dramatically changed with modifications to the cell-free assay conditions.
Intefestingly, the increase in the relative ratio of the £51 cleavage by the K649N

. mutation was not cancelled by these changes.

Conclusion: Our current data indicate that the generation ratio of AICDg51 and AB42 do
not always change in parallel. Thus, to identify compounds that decrease the relative
ratio of AP42 generation, measurement of the relative level of Ap42-related AICD
species (i.e.,, AICDg48 and AICDe51) might not be useful. Further studies to reveal
how the e-cleavage precision is decided are necessary before it will be possible to develop

drugs targeting e-cleavage as a means for decreasing AB42 production.

Key words: Alzheimer Disease, BAPP, y-cleavage, e-cleavage, presenilin/y-secretase,

"dual-cleavage" mechanism, AICDz51
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INTRODUCTION

The transmembrane domain of PB-Amyloid Protein Precursor (BAPP) is
proteolysed by presenilin (PS)/y-secretase !. Analysis of the resultant products has
revealed that the proteolysis proceeds by at least two-distinet cleavages. The
“g-cleavage” liberates its intracellular domain (ie., AICD) into the cytoplasm, while the
“y-cleavage” releases Alzheimer disease (AD)-associated Amyloid B-protein (AB) 2.

There are some variations in both the y- and g-cleavages of BAPP 68, The
major N-termini of AICD species consist of leucine-49, valine-50 and leucine-52
(AB-numbering), while the major C-termini of AP species are comprised of valine-40 and
alanine-42. (Figure 1A) 6. Among these, highly aggregatable AB42 is the major
component of senile plaques in AD brains 9.

Are there any relationships between the ¢- and y-cleavages? How do these
cleavages occur? Thara and colleagues have tried to address these questions and
recently revealed that g-cleavage precedes y-cleavage in in vitro y-secretase assays 10,
BAPP-CTF stubs, BAPP membrane-tethered remnants following B-cleavage, first
undergo g-cleavage 19, The e-cleavage liberates AICD from the membrane and
produces a membrane-bound 48/49 amino-acid-long AP species that undergoes further
C-terminal truncation by PS/y-secretase 1. Stepwise cleavages remove every three
amino-acid residues from the C-terminus of the long AP species, which finally secretes
AB40/42 1214, For example, mutant PS causes increased both €48 and y42 cleavages 8.
Thus, the y-cleavage seems to occur in an e-cleavage-dependent manner 0. Moreover,
these results indicate that the production process for pathological AB42 is distinct from
that of AB40 15, That is, the major g49 cleavage causes the production of AB40, while a
minor £48 cleavage causes production of pathological Ap42 14,

Modulation of y-secretase function to specifically inhibit AB42 production is one
of the promising strategies for developing drugs to modify the disease course of AD 16,
Given the possible correlation between the g- and y-cleavages, we think that targeting
the up-stream e-cleavages will be a novel and more efficient method for developing
Ap42-lowering drugs. To test if precision of the g-cleavage can be used as a novel target
for drug development, we investigated the g-cleavage pathway, particularly €51 cleavage,

which has previously not been well-characterized 7.
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RESULTS
The BAPP K649N Belgian mutant increased both the relative ratio of AICDe51 and
AP42 production in a cell-free y-secretase assay.

To test if the €51 cleavage precedes the y42 cleavage, we analyzed the effects of
three BAPP mutants (V642I 17, L648P 18, and K649N 19) around the e-site. The L648P
and K649N mutants (BAPP695 numbering) are located downstream of the g51 site, and
the V6421 mutant is located upstream of the €48 site (Figure 1A). Each of the three
mutants is familial AD-associated and, therefore, increases the relative ratio of Ap42
production. We raised K293 cells stably expressing each of the mutants, prepared the
crude membrane fractions 20 and performed the cell-free y-secretase assays 721,

As shown in Figure 1B, the K649N BAPP mutant caused marked increase in
the relative ratio of AICDe51 production. However, the other two mutants caused
completely different effects on the cleavage. The L648P mutant produced a barely
detectable level of AICDeb1, while in the V6421 mutant cells, the ratio of AICDe51
production was comparable to that of wild-type (wt) expressing cells. It is of note that,
instead of increased AICDe51 production, these V642I and L648P mutants
substitutively increased the relative ratio of AICDg48 production. Next we measured
AP species secretion by the stable cells in conditioned media using ELISA (Figure 1C).
As expected, we observed a significant increase in the ratio of AB42 to total AP secretion
in the conditioned medium of the mutant cells. This data indicates that the K649N
mutant increased the ratio of ApP42 production through up-regulation of the g51
cleavage, while the V6421 and 1.648P mutants increased AB42 production through the
£48 cleavage. Based on these results, we suggest that not only the €48 but also the €51
cleavage precedes AB42 production, possibly by sequential three amino-acid C-terminal

truncation 14 (Figure 1D).

Incubation in higher pH does not cancel the K649N BAPP mutant effects.

We previously found that the precision of e-cleavage changes depending on the
buffer pH 721, The relative ratio of AICDe51 production is the most sensitive to such
changes. Therefore, we next determined whether the relative ratio of AICDe51 and/or
AB42 production by the K649N mutant is affected by changing the buffer pH during the
cell-free assay. As expected, incubation in the higher pH (pH 7.4 vs pH 6.0) buffer
decreased the relative ratio of AICD851 generation in both the K649N mutant and wt
BAPP membrane fraction. However, the pH effect was not so strong as to cancel the
AICDe51 up-regulation effect by the K649N mutant (Figure 2A). We further analyzed
the pH effects on the increase in the relative ratio of AB42 production by the mutant
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(Figure 2B). Surprisingly, the assay pH elevation did not cause any changes in the
relative ratio of AB42 generation. Therefore, unlike the effects of the K649N mutant
on the e51- and y42-cleavages, the elevation of the buffer pH causes a decrease in the
relative ratio of AICDg51 production but does not cause any changes in AB42 production.
The data suggests that two distinct mechanisms may contribute to the determination of

the relative ratio of AICDe51 production.

Alkali pre-treatment of the crude membrane fraction cancels the effect of higher pH
cell-free incubation on s-cleavage.

Since the €51 cleavage occurs at the membrane-cytosol interface, we considered
that membrane-bound substances might induce the pH-dependent effects on AICDe51
production. Many substances detach from the membrane upon treatment with alkali
solution 22. To test this theory, we washed the wt PAPP membrane fraction in a pH 11
solution (see "Materials and Methods") then conducted the cell-free assay at pH 6.0.
The relative ratio of AICDe51 production markedly decreased (Figure 3A), while that of
the AB42 did not (Figure 3B). The phenomena are reminiscent of the effects of raising
the pH of the incubation buffer (see Figure 2). Thus, we further considered that the
decrease in the AICDg51 production resulting from the use of a higher incubation buffer
pH might also be due to detachment of substances from the membrane. When the
membrane fraction was incubated in a pH 7.4 buffer after alkali treatment, we could no
longer observe the pH-dependent incubation buffer effects on the AICDg51 ratio (Figure
3C). Collectively, though incubation at lower pH buffer increased in the AICDe51 ratio
(Figure 2A), the effects was cancelled by the alkali pre-treatment (Figure 3A). These
results suggest that substances removed by the alkali treatment might induce the

changes in the relative ratio of AICDeg51 production.

Alkali pre-treatment of the crude membrane fraction did not cancel the effects of the
K649N mutant on the e-cleavage.

As shown in Figure 1, the K649N BAPP mutation causes up-regulation of both
the AICDe51 and AB42 ratio, while alkali pre-treatment causes down-regulation of only
the AICDe51 ratio (Figure 3). These data indicate that changes in the AICDe51 ratio
caused by the mutation and by the treatment occur by two distinct processes. A
further experiment was conducted to confirm whether the K649N mutation cause a
change in the relative ratio of AICDe51 production through the effect of the alkali
treatment (Figure 4A). Following treatment of the K649N mutant membrane fraction

in the alkali solution, the cell-free assay was performed at pH 6.0. As shown in Figure
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4A, even after the alkali treatment, the K649N mutant membrane produced a relatively
higher level of AICDe51 than that of the wt fraction (Figure 3A). Moreover, the
elevated AP42 ratio was not changed by the pre-treatment (Figure 4B).
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DISCUSSION

In the present study we determined that there are at least two factors that
change the precision of e-cleavage: (i) a process induced by a pathological BAPP
mutation and (ii) another process induced by possibly unidentified substances removed
from the membrane fraction by alkali pre-treatment. In the case of BAPP mutations,
the relative ratio of €51 and €48 production increases in parallel with the ratio of
AD-associated AB42.

It has been reported that e-cleavage precedes y-cleavage and y-cleavage seems
to occur in an e-cleavage-dependent manner 1, Considering these reports and our own
preliminary results, it seemed possible that measurement of the relative ratio of
AICDe48/AICDe51 production might help develop AB42-lowering anti-AD drugs.
Further study revealed, however, that the relative level of AICDe51 production is
drastically affected by the removal of unidentified substances from the membrane as a
result of alkali pre-treatment. Interestingly, the alkali pre-treatment did not cause
any changes in the relative ratio of AB42 generation. These results indicate that
changes in the precision of e-cleavage do not always cause parallel alterations in the
precision of y-cleavage, even though e-cleavage occurs upstream of the y-cleavage.
Therefore, although measuring the levels of AICD species is a potentially attractive new
target for developing AP42 lowering compounds, challenges still must be overcome
before screening methods for such compounds can be established. For example, the
paradoxical mechanism discussed above must first be understbod before an assay in
which the e-cleavage precision accurately reflects the y-cleavage precision can be
developed.

How does alkali pre-treatment result in a decreased ratio of AICDeb51
production? One may consider the presence of unknown substances which (i)
transiently associate with the PS/y-secretase and affect its intramembrane cleavage
precision, or (i) truncate a couple of N-terminal amino-acid residues of AICD produced
by the e-cleavage. The second possibility is reminiscent of ACE activity to truncate the
C-terminus of AB42 28, Of course, the possibility that alkali pre-treatment might

change the character of PS/y-secretase itself also cannot be excluded.

CONCLUSION
Our current data suggest that the precision of g-cleavage do not always
changes in parallel with the precision of y-cleavage, even though e-cleavage occurs
upstream of the y-cleavage. Thus, to measure the levels of AICD species might be an

attractive new target for developing AB42 lowering compounds, there still remain some
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challenges.
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MATERIALS AND METHODS
Cell culture and cDNA constructs ‘
cDNAs of BAPP V642I, L648P and K649N mutants were generated by PCR-based
mutagenesis using a Quickchange mutagensis kit (Stratagene) or KOD plus (Toyobo)
with wt BAPP695 cDNA as a template. K293 cells were transfected and cultured as

previously described 24.

Membrane preparation

The crude membrane fraction was prepared as previously described with a slight
modification 721, In the present study, the homogenization buffer contained 0.25 M
sucrose and 50 mM HEPES (pH 7.4) containing a protease inhibitor cocktail (Roche).
To prepare the alkaline pre-treated membrane, the membrane fraction was suspended
in a 50 mM bicarbonate buffer (pH 11.0) and incubated at 4 °C for 1 h. The suspension
was then centrifuged at 100,000 x g for 1 h followed by washing once with a 50 mM Mes
buffer (pH 6.0).

Cell-free y-secretase agsay ‘

The cell-free y-secretase assay was performed as previously described with a
modification 721, The reaction buffer in the present study contained a 150 mM citrate
buffer (pH 6.0), 50 mM MES (pH 6.0), 167 mM NaCl and a protease inhibitor mixture
comprised a 5x complete protease inhibitor cocktail (Roche), 0.5 mM DIFP (WAKO), 1
pg/ml TLCK (Sigma-Aldrich), 10 pg/ml antipain (Peptide Institute), 10 pg/ml leupeptin
(Peptide Institute), 5 mM 1,5 phenanthroline (Sigma-Aldrich), 10 pM amastatin
(Peptide Institute), 10 pM bestatin (WAKO), 1 uM thiorphan (Sigma-Aldrich), 10 pM
phosphoramidon (Peptide Institute) and 1 uM pepstatin A (Peptide Institute). To
prepare the pH 7.4 buffer, 50 mM HEPES (pH 7.4) was used instead of the citrate and
MES buffers.

Immunoprecipitation/MALDI MS (IP-MS) analysis
IP-MS analysis followed by cell-free incubation was carried out as previously described
721,25, The heights of the MS peaks and molecular weights were calibrated using

angiotensin and bovine insulin B-chain as standards (Sigma-Aldrich).

ELISA analysis for A
APB40 and AB42 levels in conditioned media were quantified by ELISA (WAKO).
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Immunoblotting of AB
SDS-solubilized proteins were separated by SDS-PAGE using an 8 M Urea gel 24 and
transferred to a nitrocellulose membrane. Immuncblotting of AR species using 82E1

(IBL) was performed as previously described 26,
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FIGURE LEGENDS
Figure 1. Effect of familial AD-associated BAPP mutations around the e-cleavage site.
A, Schematic diagram of intramembrane cleavage sites of BAPP and the familial AD
mutations used in the present study. The amino acid sequence around the juxta
membrane region of human BAPP is described (AP numbering). Filled inverted
triangles indicate the cleavage sites. Substituted amino acids of the familial AD
mutations are indicated in open rectangles. The site of each mutant is also indicated
using APP695 numbering.
B, Mass spectra of de novo AICD species in the cell-free assay. Crude membrane
fractions obtained from wt BAPP and the indicated BAPP mutant cells were used.
C, Relative secreted AB42 to AB40 ratio in the conditioned media of wt BAPP and the
indicated PAPP mutant cells. The asterisks indicate statistical significance (*P<0.05,
**P<(0.001, one-way analysis of variance (ANOVA) and Tukey-Kramer method). Error
bars indicate standard error of the mean (SEM).
D, Hypothesis for explaining increased y42 cleavage in each mutant BAPP (upper
panels) and differential production of AB40 and Ap42 (lower panels).

Figure 2. Effect of cell-free incubation pH levels on the precision of e/y-cleavages.

A, Mass spectra of AICD generated in the cell-free assay performed at the indicated pH
(upper and middle panels). Peak heights of AICDe49 and €51 were measured and the
ratios of AICDed9 to €51 were calculated (lower panel). The asterisks indicate
statistical significance (¥*P<0.05, **P<0.001, one-way ANOVA and Tukey-Kramer
method). Error bars indicate SEM.

B, Levels of Ap generated at the indicated pH. Levels of AB40 and 42 were measured
by western blotting and the AP42 to 40 ratios calculated. The asterisks indicate

statistical significance. Error bars show SEM.

Figure 3. Effect of alkali pre-treatment on the precision of e/y-cleavages of wt BAPP.

A, Mass spectra of AICD generated in the cell-free assay with and without alkali
pre-treatment. Peak heights of AICDg49 and e51 were measured and the AICDe49 to
51 ratios calculated. The asterisk indicates statistical significance (*P<0.05, paired
t-test). Error bars indicate SEM.

B, Levels of Ap generated in the cell-free assay following alkali pre-treatment. Levels
of AB40 and 42 were measured by western blotting with and without alkali
pre-treatment and the AB42 to 40 ratios calculated. ‘

C, Mass spectra of AICD generated in the cell-free assay at tHe indicated pH following
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alkali pre-treatment.

Figure 4. Effect of alkali pre-treatment on the precision of e/y-cleavages of BAPP
K649N Belgian mutant.

A, Mass spectra of AICD generated in the cell-free assay with and without alkali
pre-treatment.

B, Levels of AB generated in the cell-free assay following alkali pre-treatment.

Table 1. Molecular species of AICD generated in the cell-free assay.

m/z
AICD species Calculated observed [M+H]
[M+H] mean SD
wt 5677.79 5678.38 0.64
AICDeb1
V6421 5677.79 5678.30 0.70
(52-99)
K649N 5663.74 5663.96 0.23
wt 5907.9 5908.35 0.29
AICDe49 V6421 5907.9 5908.49 0.21
(50-99) L648P 5891.87 5892.48 0.20
K649N 5893.84 5894.10 0.27
wt 6020.98 6021.36 0.40
AICDe48 V6421 6020.98 6021.59 0.42
(49-99) L648P 6004.96 6005.59 0.33
K649N 6006.93 6007.51 0.17
AICDe52
. K649N 5550.65 5551.01 0.27
(53-99)
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