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Figure 4 | Segmentation example results. Left column: original images; right
column: segmentation results. (a) Bone-osteoclast interaction (osteoclasts:
green; bone: blue; interacting osteoclasts: red). (b) Dendritic cells (DCs,
green/red) and fiber network (blue) in lymph nodes (white: interface area).
Analysis of the whole 3D data set reveals that 22% of the DC surface is
attached to fibers. (c) T-B-cell interaction in lymph nodes (T cells: green/red;
B cells: blue). Scale bars = 10 pm. All animal procedures used in this study
have been approved by the Animal Care and Use Committee, NIAID, NIH.

ANTICIPATED RESULTS

Analysis of interactions of osteoclasts and bone tissue

In the first and main example application we show here, the
interacting components of interest are bone tissue and
osteoclasts (for illustrations see Figs. 1, 3 and 4a). The extent
of the interface area between osteoclasts and bone provides a
measure of osteoclast activity. Generated by fusion of multiple
monocyte-derived precursor cells, osteoclasts in their mature
state resorb bone tissue, thereby acting as important
components for bone and calcium homoeostasis'’. To quantify
the influence of pathological conditions, therapeutic
interventions or experimental conditions on bone metabolism,
previous studies have relied on methods such as bone
densitometry or the use of manual or semi-automated image
analyses’~% 18 based on a bone histomorphometry standard
developed by Parfitt et al.1°. Recent data from our laboratory
suggested that the lipid mediator S1P and its receptor S1P,
might have important roles in regulating osteoclast generation
by controlling the rate of osteoclast precursor detachment from
the bone surface before mature osteoclast formation'2. To
assess the influence of the immunomodulatory drug FTY720

(a blocker of S1P/S1P, function) on bone metabolism, we
developed this protocol to analyze microscopy images of
osteoclasts interacting with bone tissue and quantified the
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osteoclast attachment ratio, which is defined as the ratio of the interface area between osteoclasts and bone tissue and the

total bone surface.

We found that this ratio changes from ~0.3 in control to 0.6 in ovariectomized mice that develop osteopenia due to unba-
lanced osteoclast activity and that treatment of these animals with FTY720 reduces the osteoclast attachment to bone almost
to normal levels (~0.35, P = 0.0006). Evaluation of the influence of S1P, function on osteoclast function revealed a decrease
in the osteoclast attachment ratio from ~ 0.6 in wild-type to ~0.44 in S1P;~/~ knockout mutants (P = 0.0003). (For further

details on the experimental design and biological implications of the actual experiments, see reference 12.)

Additional example data

Although the bone-osteoclast application deals with the interaction of relatively large cells with large tissue structures, the
protocol can also be used to analyze interaction behavior when the relevant dimensions of the biological objects are much
smaller. Examples are image data showing dendritic cell-fibroblast reticular network attachment and T-B lymphocyte
interaction. Typical results that can be expected from analyzing such data are shown in Figure 4.

Note: Supplementary information is available via the HTML version of this article.
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Abstract

interfeukin=7 (IL-7) is required for lymphocyte development and homeostasis: although the actual sites of iL-7 production
have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP
in_the [I7 locus. The construct lacked a signal peptide and ECFP. (enhanced. cyan fluorescent protein ) accumulated inside
IL-7-producing. stromal. cells in thoracic thymus, cervical thymus and: bone marrow. In thymus, an extensive reticular
network of IL-7-containing processes extended from cortical and medullary epithelial cells; closely contacting thymocytes,
Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with |L-7-producing cells as
we demonstrate by intravital imaging. '
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Introduction These 1l7 mRNA-expressing tissues include human and mouse

thymus and spleen [6,7], mouse kidney [6], mouse fctal thymus

Interleukin-7 (IL-7) is required for T cell development and survival
(reviewed in Khaled and Durum [1}) as first appreciated from the
severe lymphopenia observed in IL7~/~ and IL-7R ™/~ mice [2,3],
then in comparable deficiencies in humans found to lack components
of the IL-7 receptor [4] (reviewed in Puel and Leonard [5]).

Although IL-7 plays a critical role in the thymus and peripheral T
cell homeostasis, stromal cells producing IL-7 have never been
precisely identified. This was mainly due to the low abundance of
message and protein (as we demonstrate in this study). Since IL-7
was first described in 1988, a number of studies have detected 1i7
message in various tissues using Northern blot analysis or RT-PCR.

@ PLoS ONE | www.plosone.org

[8-11}; mouse fetal intestine and liver [11,12] and adult human
liver [13]. In our own lab, we have verified the presence of II7
mRNA by RT-PCR from homogenized mouse tissue including
thymus, spleen, lymph nodes and bone marrow (R.I. Mazzucchelli,
unpublished observations). RT-PCR has also been used to identify
117 mRNA in specific cell populations including those derived from
human tonsillar germinal centers [14], fetal thymus stromal cells
{15], mouse bone marrow stromal cells [16], mouse and human
keratinocytes [17-20], human. intestinal epithelial cells [21,22],
human follicular dendritic cells and vascular cells [23], human
mature peripheral dendritic cells [14,24] and human platelets [25].

November 2009 | Volume 4 | Issue 11 | e7637



There are a few reports identifying sites of /I7 mRNA
production using in situ hybridization which indicate transcription
in human postnatal thymus [26] and mouse embryonic, postnatal
and adult thymus [27,28], mouse and human keratinocytes [17]
and human intestinal mucosa [21]. In mouse thymus, /7 mRNA
expression was reported in one study to decline in adulthood to
below the level of detection by in situ hybridization [28]. In
another study [27], it was reported that the adult thymus sections
required 6 weeks of exposure to the probe to develop a clear
signal. Yet despite IL-7 being virtually undetectably by in situ
hybridization in the adult, it is clear that the adult mouse thymus
produces biologically significant IL-7 based on thymic reconstitu-
tion experiments that show a dramatic difference between
IL-7"/~ compared to wild type thymus.

The production of /[7 mRNA does not guarantee. that a cell
produces the protein because posttranscriptional controls can
block mRNA translation. This is the case for IL-15, a cytokine
related to IL-7 and with similar homeostatic activities. Production
of 1L-15 is regulated not only by transcription and mRNA
stability, like most cytokines, but also at the translation level
(reviewed by Tagaya et al. [29] The 5’ untranslated region of 1115
mRNA contains 10 ATG sequences which strongly inhibit
translation. Similarly, the 5’ untranslated region of murine /7
mRNA contains 8 ATG sequences and has also been shown to
greatly inhibit translation in Cos-7 cells [6]./In our laboratory, we
analyzed 20 stromal cell lines from mouse thymus, borie marrow
and spleen; all- expressing //7-mRNA, but only two' produced
enough ‘protein to” be- detectable” by ' ELISA ‘or” bisassay ‘(R.L
Mazzucchelli; ‘unpublished “observations) suggesting  that there
could be translational inhibition of IL-7 production.

Immunohistochemical detection of IL-7 protein in human tissue
has been reported by several groups. Although not reported in
human thymus, immunohistochemical reactions have been seen in
healthy human intestinal epithelial cells [21], human follicular
dendritic cells[23], human Schistosoma mansoni infected skin- [20],
human Warthin’s tumor [30], healthy human liver {13] and lymph
nodes of AIDS patients: [31]. The specificity of such staining can
be more easily assessed using mouse tissues because. of the
availability: of IL-7~/" mice. Thére are some early reports:of
positive immunohistochemical reactions for murine -7 in adult
bone marrow [32], fetal liver tissue [33], embryonic [9,34] and
adult thymus [33], all preceding the availability of IL-77/" tissues
to verify specificity. An experienced veterinary pathology labora-
tory at NCI tested six different commercial and non-commercial
anti-IL-7 - monoclonal and polyclonal antibodies, following pub-
lished protocols and optimizing our own: protocols. -No- specific

IL-7 Producing Cells

reactions. were found in any mouse lymphoid or non-lymphoid
tissues, some of those data are shown in the results.

Because the identification of IL-7-producing cells has been so
difficult, we have developed a novel strategy to amplify the signal
from these cells and allow direct visualization of such cells in tissues.
A bacterial artificial chromosome was modified to introduce a
fluorescent reporter gene into the JI7 locus that should be trapped
inside the producing cells. Transgenic mice prepared using this
reporter construct enabled, for the first time, identification of the
cells that produce IL-7 in thymus and bone marrow.

Results

iL-7 expression in thymus is below the level of detection
by immunochistochemistry and in situ hybridization

We and others (personal communications: D. Klug, NCI; C.
Mackall, NCL;, C. Willis, Amgen) have tested a number of
polyclonal and monoclonal anti-IL-7 antibodies and failed to
observe a positive reaction in thymic tissue (Table 1). Some of
these antibodies are effective in western blotting or blocking the
biological activity of IL-7. Immunohistochemical methods, used
extensively in our institute, were applied to thymic tissue from
C57BL/6, Rag2™’", and as a positive control, mice overexpress-
ing IL-7 under control of the K14 promoter. Thymus tissue from
IL-7777 mice was used as a negative control. Several protocols for
tissue preparation were evaluated that showed staining with the
positive control (transgenic overexpression of IL-7), but all were
consistently negative with normal "thymius, except two that
apparently gave non-specific staining based on a signal from
IL-7"/" thymic material.

Because mRINA could be more readily detectable than protein if
there were impediments to translation in case IL-7 synthesis were
subjected to translational or post-translational control, we
examined - expression of [[7' mRNA in the thymus by in situ
hybridization. Three different set of probes were synthesized and
tested on both frozen or paraffin embedded tissue. . The same
mouse strains (C57BL/6; Rag2™’ ™ and K14) that failed to show
detectable 11-7 by immunohistochemistry also. failed to-give a
signal for I7 mRNA by in situ hybridization (data niot shown).

Because two routine laboratory techniques, immunohistochem-
istry and in'situ hybridization, failed to localize IL-7 production in
thymus, we quantified /7 mRNA expression. in thymus by real
time PCR. Total mRNA was extracted from thymi harvested from
C57BL/6, Rag2™"~ and K14 mice and immediately placed into
RNAlater_to protect the. mRNA from. degradation. Following
RNA-extraction, RT-real time PCR: was performed to compare

Table 1. Immunohistochemistry fails to detect IL-7 in murine thymus.

Antibody Notes Results
1 Rabbit Polyclonal IgG! Epitope -mapping at the N:terminus Negative
2 Goat Polyclonal 19G? Epitope mapping at the C-terminus Negative
3 Goat Polyclonal 1G> Purified by affinity chromatography Negative
4 Monoclonal Rat IgG* Purified by affinity chromatography Negative
5 Rabhit Polyclonal 1gG° Purified by. affinity chromatography and biotinylated Negative
6 Manoclonal Mouse IgG°® Effective blocking in vivo and in vitro Negative

3-R&D, 4-R&D, 5-Peprotech, 6-Amgen.
doi:10.1371/journal.pone.0007637.4001

@ PLoS ONE | www.plosone.org

Several commercial and non-commercial anti-IL-7 antibodies were tested at various concentration and fixation conditions and evaluated by a veterinary pathologist,
None of them showed positive staining of normal thymus although several reacted non-specifically with an IL7™/~ mouse tissue. Sources: 1-Santa Cruz, 2-Santa Cruz,
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the expression of /7 mRINA to the housekeeping genes Gapdh and aimed to physically purify subsets of thymic stromal cells and
18 5. Data in Figure 1A show that mRNA expression of /[7 in the quantitate their content of /I7 mRINA. Table 2 lists the stromal cell
whole thymus was 1-2 orders of magnitude lower than Gapdh and subsets known to be present in thymus (dendritic cells, myeloid-
4-5 orders of magnitude lower than /8 s mRNA. This extremely  derived cells, cortical epithelial cells, medullar epithelial cells,

low level of /I7 mRINA expression in thymus could account for the fibroblasts and endothelial cells) and the antibodies used to isolate
failure to detect it by in situ hybridization, and in turn the failure thern. After cell sorting, mRNA was extracted, reverse transcribed
to detect the protein by immunohistochemistry, although other and an absolute quantification for /17 expression was performed by
technical explanations could also account for it, if for example real time PCR. The amount of /7 mRNA was very low
none of the six anti-IL-7 antibodies are suitable for immunohis- (Figure 1B), fewer than one molecule per cell in cortical and
tochemistry. medullar epithelial cells, whereas fibroblasts and endothelial cells
expressed about half a molecule per cell, and dendritic and

Cell sorting of mouse stromal cell subsets myeloid cells showed virtually no signal. Because several thymic
Because visualization of IL-7 producing cells in thymus was not stromal subsets expressed J[7 mRNA, this approach did not reveal
achievable by immunohistochemistry or in situ hybridization we a single likely source of IL-7 protein; moreover, IL-7 could be
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Figure 1. I7 mRNA expression in different mouse strains and in thymic stromal cell subtypes. A. Thymi from C57BL/6, Rag2™™ and

transgenic (TG) mice expressing IL-7 under control of the K14 promoter were analyzed for levels of Il7 and Gapdh expression normalized to 18 5. Wild
type and even the transgenic mice expressed very low relative levels of /7 mRNA, while the Rag2 ™/~ showed somewhat more, presumably because
the thymus is enriched for stromal cells. Gapdh was expressed at a comparable level among ali the strains. Data are the mean of three mice, no
standard deviations are shown because ratios were used in the calculations. B: Quantification of #i7 mRNA molecules in' thymic stromal cells, Stromal
cell subsets were sorted using specific surface markers (Table 1B). RNA was extracted and absolute real time PCR quantification was performed. /7
mRNA expression was normalized to' Hprt: mRNA"expression for each subset. The data shown is representative of at least 2 separations for each
subset. C, BAC construct for the IL7promECFP transgenic mouse. The wild type murine /7 gene is represented in the upper part of the figure. A BAC
containing the mouse //7 gene (lower part of the figure) was modified and used to create the transgenic mouse. The exon 1 sequence, encoding the
signal peptide was replaced with the Ecfp cDNA sequence starting after the ATG start site. The production of ECFP would thus be driven by the il7
promoter in IL-7 producing cells. Elimination of the signal peptide was intended to cause ECFP to accumulate inside IL-7 producing cells, enhancing
visualization.

doi:10.1371/journal.pone.0007637.g001
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Table 2. Specific cell markers for thymic stromal cell subsets.

IL-7 Producing Cells

Stromal Cell Subset CD45.2 CD11c

EpCAM Ly51 MTS-15 cD31

G8.8a CDR1 MTS-12

Dendiritic Cells + high
Myeloid-derived Celis + Low/—
Cortical Epithelial Celis -
Medullary Epithelial Cells ~
Fibroblasts -

Endothelial Cells -

- +

- - +

immunohistochemistry as shown in Figure 4.
doi:10.1371/journal. pone.0007637.t002

regulated translationally, like the related cytokine IL-15 [29]. For
these reasons, the production of I7 mRNA by a cell type would
not prove that the cell made the protein.

Visualization of IL-7 expression by IL7promECFP BAC
transgenic mouse

To visualize IL-7 producing cells, we created a BAC transgenic
mouse expressing a cyan fluorescent protein (ECFP) under the
control of the /[7 promoter and any other cis regulatory elements
contained in a BAC. Using rccombineering techniques, we
mserted the ECFP ¢cDNA sequence immediately after the ATG
start site of 17, replacing exon 1 (Figure 1C and S1). The large 5’
untranslated region was retained since this had been shown to
inhibit translation of /7, and we aimed to perturb natural
regulation as little as possible. Since exon 1 encodes part of the
signal peptide for IL-7, elimination of this sequence should cause
ECFP to accumulate inside producing cells and enhance
visualization. In addition, the splice donor GT sequence from
intron 1 was deleted to prevent interference from splicing. Three
founder lines of mice were produced and all showed similar
expression patterns as will be discussed. The fluorescence emission
of ECFP from tissues was relatively weak using the setup on our
fluorescent microscope (although it was very bright in the two
photon microscope to be discussed later). The signal was enhanced
using an antibody against ECFP followed by a fluorescent
secondary antibody to generate the images shown-no signal was
detected in control tissues from non-transgenic mice.

ECTP expression was detected in stromal cells in thymus and
bone marrow (Figures 2, 3, 4 and 5). Moreover, cervical thymus
showed readily detectable levels of ECFP expression (Figure 6). In
the thoracic thymus, ECFP positive cells were present in both
cortex and medulla, although the patternn of expression was
different (Figure 2A). In the medulla; the cell bodies containing
ECFP were relatively infrequent, however an extensive network of
processes extended from the cell bodies and most thymocytes were
in close contact to such a process. Inthe cortex, ECFP- positive
cells appeared:to envelop thymocytes, like a basket of fruit:

ECFP-positive cells were not visible in either spleen or lymph
nodes of all three BAC transgenic strains - this. negative finding
was, verified using several fluorescence microscopy systems.. We
also did: not. observe. ECFP-positive  cells-in- any - other: tissuies
examined. incliding gut, lung; skin and brain; platelets isolated
from blood were also negative. Thus; although most peripheral T
cells require IL-7 for survival, we could not observe IL-7
production in the secondary lymphoid organs. Quantitative
PCR was used to compare reporter expression with that of

@ PLoS ONE | www.plosone.org

These markers were chosen to separate each specific stromal cell subtype by cell sorting (adapted from Gray et al. [48]). The same markers were also used in

endogenous /7 (data not shown). The results indicate that reporter
transcripts were well expressed in thymus and bone marrow where
we had visualized the reporter protein. However, the reporter was
only very slightly expressed in spleen and lymph node compared to
117. The basis of this discreparicy will be discussed.

Cortical and medullar epithelial cells produce IL-7 in
thymus

Thymic tissue from IL7promECFP BAC transgenic mice was
stained using the antibodies specific for “stromal cell subsets,
previously used for cell sorting. Ly51 (CDRI) is a specific marker
for cortical epithelial cells. Double staining of thymic tissue using
anti-EGFP Ab and anti-Ly51 Ab revealed a co-localization of ECFP
and Ly51 signal (Figure 3A, left panel and Figure 3B) identifying
cortical epithelial cells as IL-7 producing cells. Staining with anti-
EpCAM (G8.8a) Ab, a marker specific for both cortical and
medullar epithelial cells, shows that some of the EpCAM positive
cells in the medullar region are also ECFP positive, suggesting that
medullar epithelial cells also produce 1L-7 (Figure 3A, right panel),

The expression of IL-7 in cortical and medullar epithelial cells
was confirmed by staining the thymic tissue with a panel of anti-
keratin antibodies. In particular, ECFP co-localized with keratin-8
and keratin-14, two prominent cortical and medullar markers,
respectively (Figure 4A and 4B). Co-localization is also present for
ECFP and keratin-5, a marker mainly expressed in medulla, but
also present in cortical cells (Figure 4A).

In thymus; fibroblast, eridothelial cells, dendritic and myeloid-
derived cells did not express ECFP since there was no co-localization
with MTS-15, €D31, CD45.2 or CD11c, respectively (Figure S2).

Recently, cervical thymus was, identified and. characterized in
mice [35,36]. The tissue organization is quite reminiscent of the
thoracic thymus arnd the cervical thymus has been shown to
support T-cell development. Since cervical thymus plays a role in
T-cell differentiation, we have analyzed the expression of IL-7 and
found that IL-7 is present in this ectopic thymus. As seen for
thoracic. thymus,. expression- of IL-7.is more evident in cortex
compared to medulla (Figure 6).

Borie marrow also contained ECFP-positive cells as noted above
(Figure 5). The shape of these cells is reminiscent of epithelial cells
in thymus, but further characterization was not possible due to the
lack of specific markers for bone marrow stromal cell subsets.

Central memory T cells interact with IL-7 producing cells

in bone marrow
The fluorescence of IL-7-producing cells could permit visualiza-
tion of their interaction with T cells using intravital microscopy with

November 2009 | Volume 4 | Issue 11 | e7637
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Figure 2. IL-7 is expressed in thymus. A. Expression of ECFP (or IL-7) by stromal cells in thymus is indicated by red fluorescence in the upper
panel. The lower panel shows thymocytes by H&E staining on a sequential slide. The lines separate cortex (CO) from medulla (ME) in both pictures.
The expression of IL-7 is higher in cortex compared to medulla and the pattern of expression is different between the two compartments. In the
cortex, some IL-7 producing cells have a “basket-like” shape; in medulla the IL-7 producing cells are more dispersed and lacked the basket-like shape
(magnification 200x). B. At higher magnification (1000x) it is possible to appreciate how the bodies of ECFP-positive cells are very infrequent
compared to hematopoietic cells, but there are extensive reticular processes extending throughout the tissue. These reticular processes contain the
ECFP protein and are in close contact with many thymocytes whose nuclei are visualized by DAPI (blue staining).

doi:10.1371/journal.pone.0007637.g002

two photon imaging. The thymus is not amenable to intravital
microscopy because in the living mouse, lies over the beating heart
and it cannot be isolated from the thoracic cavity. Bone marrow, on
the other hand, can be imaged in the skull of the living mouse. It has
been reported that central memory T cells (TCMs) express 1L-7
receptor and require it for survival [37]. Since TCMs home to bone
marrow [38], we asked whether these T cells might physically
associate with IL-7-producing cells. TCMs were generated in vitro,
labeled with CFSE and intravenously injected into ECFP positive
mice. Intravital microscopy showed that TCMs homed to bone
marrow as previously described. A number of TCMs showed stable
interactions with IL-7 producing cells (see supplemental Movie S1
and Movie S2 which shows circles around several interactions), and
analysis indicated approximately a 2.85 preference for the IL-7-
producing cells (see supplemental Table S1). This suggests that IL-7
may be recognized during close physical contact between T cells
and 1L-7 producing cells.

This apparent attraction of TCMs to IL-7-expressing cells could
be mediated by IL-7 itself. To test this possibility, we generated mice
that were deficient in IL-7 but expressed the reporter. These mice
were injected with CFSE labeled TCM cells and we monitored the
number of cells that were present in bone marrow 24 hour later.
The results showed no decrease of TCMs that initially entered in
IL-7"/" compared to control mice, in fact the percentage was
somewhat higher possibly because they lacked endogenous CD8
cells (Figure S3A and S3B). This suggests that IL-7 itself was not the
attractant guiding TCMs to the IL-7-producing cell.

If the IL-7-producing cells also expressed a chemokine that
attracted TCMs, these cells express CXCR4 and can be recruited
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and retained into bone marrow by CXCLI12 [38]. However,
injection of the CXCR4 antagonist AMD3100 into IL7-ECFP mice
did block the early entry of TCM cells (Figure S3A and S3B) and
immunofluorescence (data not shown). These data suggest that a
ligand other than IL-7 and CXCL12 may be involved in guiding
TCMs to the IL-7-producing stromal cells in bone marrow.

Discussion

IL-7 is essential for T cell development and homeostasis;
however the cells that produce IL-7 have never been directly
visualized by conventional immunohistochemistry due to the low
level of expression. We employed a BAC transgenic strategy for
detecting cells that produced ECFP from the /7 locus. The ECFP
reporter construct was inserted in a large BAC, over 200 kbp in
length, to insure fidelity of expression by the normal tissue specific
regulatory elements. The IL-7-driven ECFP lacked a signal
peptide resulting in accumulation in the cytosol, thercby cnabling
the visualizing of IL-7 producing cells. ECFP from the BAC did
not interfere with IL-7 production from the endogenous gene, and
thymic development appeared normal. Cells expressing ECFP
were detected in thoracic thymus, cervical thymus and bone
marrow.

In thymus, cortical epithelial cells contained the highest level
and showed extensive dendritic branches containing ECFP in a
reticular pattern. Since most cortical thymocytes were in close
contact with an IL-7-containing branch, it suggested a short range,
paracrine delivery of IL-7, possibly on the surface of the producing
cell or nearby extracellular matrix. Some of these cortical
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Figure 3. Cortical and medullary epithelial cells express IL-7 in thymus. A. Colocalization of ECFP-positive cells (red staining) with Ly51 and
G8.8a (green staining) indicates the cortical cells and medullary epithelial cells, respectively, are responsible for production of IL-7 in thymus. H&E
staining shows thymocyte distribution between cortex and medulla. Single color staining show the expression of ECFP (counterstained red), cortical
Ly51 positive cells or medullary G8.8a positive cells (green), nuclei visualization by DAPI (blue). In the merged figures, the arrows indicate some cells
with co-localization of red and green (yellow staining). Magnification 100 x. B. Detail of the body of two cortical epithelial cells (magnification 400x).
The yellow staining in the merged figure visualized the co-localization between ECFP (counterstained red) and the cortical marker Ly51 (green).
doi:10.1371/journal.pone.0007637.g003
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Figure 4. Cortical and medullary cell expression of IL-7 in thymic epithelial cells is confirmed by staining with different anti-keratin
antibodies. A. ECFP (counterstained green) extensively co-localized with keratin-8 (red), a prominent cortical cell marker. To a less extent, co-
localization is also present between ECFP (green) and keratin-5 (blue), a marker expressed to a much higher level on medullary epithelial cells than on
cortical cells. Magnification 250 (left column) and 500 x (right column) are shown. B. Co-localization between ECFP (green) and keratin-14 (blue), a
prominent marker for medullary cells is shown in two different set of figures at different magnification (250, left column and 500, right column).
Arrows in the merged figure highlight IL-7 producing cells positive for the keratin-14 medullary marker.

doi:10.1371/journal.pone.0007637.g004
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Figure 5. Bone marrow contains IL-7-producing cells. A. A section of femur shows that ECFP (counterstained red) is produced in bone marrow
by stromal cells concentrated around vessels. The lower panel shows H&E staining of the same section. Magnification 100x. B. As also seen in
thymus, bone marrow IL-7 producing cells expressed long dendrites that make extensive contacts with hematopoietic cells. Magnification 1000 x.

doi:10.1371/journal.pone.0007637.g005

epithelial cells had a “basket-like” shape and appeared to envelop
a number of thymocytes. Medullar epithelial cells also contained
ECFP, but the amount was less than in the cortex. The cervical
thymus, long noted in man, has only recently been reported in
mouse [35,36]. The architecture of the cervical thymus also
features cortical and medullar regions, and like the thoracic
thymus, the production of ECFP was higher in the cortex.

Central memory T cells require IL-7 (reviewed in Bradley et al.
[39]) and accumulate in bone marrow [38], and we show here that
they can interact with IL-7 producers. IL-7 could participate in
localizing TCMs in bone marrow because it has been shown to
induce T cell adhesion by activating integrins [34,40]. The initial
migration of OT-1 central memory cells to bone marrow was not
reduced by IL-7 deletion (supplementary Figures S3A and S3B).
Based on this experiment, we conclude that IL-7 is not
chemotactic for these cells. The association of central memory
cells with IL-7-producing cells is therefore more likely to be due to
some other attractant that is also produced by these cells. We
considered SDF-1 a candidate because central memory cells
express its receptor, CXCR4, and SDF-1 is expressed in bone
marrow. However an antagonist against CXCR4 did not interfere
with this migration to bone marrow (supplementary Figures S3A
and S3B). It therefore remains an important open question as to
how central memory cells are attracted to IL-7-producing cells,
and we hope that gene profiling the latter cells will offer some clues
to this mechanism.

In the literature, the stromal cell types in bone marrow have not
been characterized as extensively as those in thymus. One
candidate for the IL-7 producing cell was the osteoblast which
had been reported to produce IL-7 after culture in parathyroid
hormone [41]. However, staining marrow sections from the
IL7promECFP reporter mouse with antibodies against markers
reported for osteoblasts (osteocalcin, osteopontin or SDF-1) failed
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to give specific staining as determined by an experienced
immunohistochemistry service at NCL. These cells appear to be
fragile, as is also the case with the thymic ECFP-expressing cells,
most of which disintegrated when cell suspensions were made,
despite the use of gentle enzymatic dissociation methods. In the
future we hope to use laser capture to characterize these intriguing
cells.

There was a lack of reporter signal in spleen, lymph node, gut,
lung and skin, despite the established IL-7 requirement for mature
T cells found in those sites. Naive CD8 T cells require IL-7 and
from other studies [42,43] and our own (Li et al. [44] and others
not shown), this IL-7 encounter must occur within about four days
following transfer into a recipient mouse and homing into
lymphoid organs; without IL-7, naive CD8 cells undergo cell
cycle arrest and die. Unfortunately, our reporter was not expressed
in these tissues when compared to expression of the endogenous
17 gene. This lack of expression (outside thymus and bone
marrow) was not due to effects of the BAC integration site in the
mouse genome since three different founders showed similar
expression patterns. It was also not due to the placement of the
reporter within the /7 gene, since insertion at either the 3’ or 5’
regions showed a similar mRINA expression pattern (data not
shown). It was not due to toxicity of the reporter, since the
expression of the endogenous //7 gene was not perturbed. One
possibility is that the BAC contains the regulatory elements for
expression in some, but not all cell types. If a regulatory element
lies outside the BAC (see map in supplementary Figure Sl), it
would be over 80 kb upstream or downstream of the gene-a few
genes have been reported with such distant sites, and although
very unusual, /I7 may be one. Another possibility is that the
reporter RNA is unstable in some cells.

Having identified the principal thymic and bone marrow cells
producing IL-7, a number of questions can now be addressed,

November 2009 | Volume 4 | Issue 11 | e7637



£
£
S
)
=
c
[\
o

Figure 6. Cervical thymus contains IL-7-producing cells. H&E
staining shows the cortical (CO) and medullary (ME) organization of the
cervical thymus. ECFP (counterstained red) is mainly expressed in cortex
by stromal cells (anti-pan keratin Ab, green staining). The wide
spectrum anti-keratin antibody stains keratin-8 and keratin-5 among
others, showing stromal cells present both in cortex and medulla.
Magnification 200x. T, thyroid; PT, parathyroid.
doi:10.1371/journal.pone.0007637.g006
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including their developmental origin, their fate in senescence, and
their response to immune modulators. After IL-7 is released from
these cells, it is proposed that its rate of consumption by T cells
determines the size of the T cell pool (reviewed in Mazzucchelli
and Durum [45]). However, to evaluate this concept of IL-7
consumption, other animal models should be developed that both
detect IL-7 in peripheral lymphoid tissue, and can sufficiently
amplify the signal from secreted IL-7 to permit visualization.

Materials and Methods

Mice

C57BL/6 mice were purchased from the Animal Production
Area, NCI-FCRDC (Frederick, MD). Rag2™’~ were originally
purchased from The Jackson Laboratory (Bar Harbor, MN, USA)
and maintained by homozygous breeding at NCI-I'rederick, MD.
Three strains of IL-7-promoter-ECFP (IL7promECFP) mice have
been produced at NCI, Frederick MD and homozygous strains
have been selected and maintained at NCI-I'rederick, MD.

Transgenic mice expressing an IL-7 cDNA under the control of
the human keratin 14 (K14) [46] promoter were maintained in
specific pathogen free (SPI) conditions at the animal facility of the
Department of Dermatology, Brigham and Women’s Hospital,
Boston, MA. Tissues from these animals were removed and
processed for histopathology or RNA extraction promptly after
euthanasia and shipped overnight on dry packs or dry ice to our
facilities.

OT-1xRAG ™/~ (C57BL/6-Tg(OT-I)-RAGI™™™™) [47] mice
were purchased from Taconic Farms (Germantown, NY, USA)
and maintained by homozygous breeding at NCI-Frederick, MD.

NCI-Frederick is accredited by AAALAC International and
follows the Public Health Service Policy for the Care and Use of
Laboratory Animals. Animal care was provided in accordance
with the procedures outlined in the Guide for Care and Use of
Laboratory Animals (National Research Council; 1996; National
Academy Press; Washington, D.C.).

117 in situ hybridization

In situ hybridization (ISH) assays were developed that were
specific for murine /7 and glyceraldehyde-3-phosphate dehydro-
genase (Gapdh) and used to define temporal and special expression
patterns in optimally processed adult mouse thymus and lymph
node tissue. Sequence verified riboprobe generation templates
corresponding to bps 884-1238 of Gapdh (Accession #
NM_001001303) and bps 294-705, 792-1185 and 294-1185 of
117 (Acc # NM_008371) were produced via a PCR based strategy
that utilized forward primers flanked by the T3 promoter and
reverse primers flanked by the T7 promoter. Corresponding
riboprobe pairs (sense and antisense) were then synthesized
(Megascript high yield in vitro transcription kit, Ambion), purified
(MEGACIear purification kit, Ambion), resuspended at 100 ng/pl
in RNA storage solution (Ambion) and held at —80°C until use.
Probe size and integrity have subsequently been confirmed via
Agilent Bioanalyzer 2100 NanoChip analyses (data not shown). Due
to anticipated very low level expression of //7 mRNA, HEK293
human cell line transfected with a high-level Z/7 mRINA expression
construct (pECFP-N1/IL-7 or pEYFP-N1/IL-7) were prepared.
Untransfected cells, transfected cells and mouse thymi and lymph
nodes were harvested and fixed for 24 hrs at 4°C in freshly prepared
4% paraformaldehyde (PFA) in PBS then processed into paraffin
blocks. Additional fixed tissue was cryoprotected in 20% sucrose at
4°C for 24 hrs and then embedded in OCT to generate frozen
tissue blocks. Ten micron paraffin or frozen sections were then
placed onto Super-Frost Plus glass microscope slides (Fisher
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Scientific) and held at —20°C until ISH. Specificity of each probe
was verified in a series of pilot ISH (method described in detail
below) on paraffin sections of the transfected and untransfected
HEK?293 cells (data not shown). Within this, previous work had
indicated that Gapdh mRNA is readily detected in HEK 293 cells by
chromogenic in situ hybridization (unpublished observation).
Detection of the corresponding mRINA by ISH is therefore a useful
positive control that indicates successful tissue fixation, pre-
treatment and in situ hybridizations.

Immediately prior to ISH, representative sections were removed
from —20°C, dried at 60°C for 1 hr, de-paraffinized and re-
hydrated through graded ethanols into 1X Phosphate Buffered
Saline with 0.1% Tween 20 (PBST). Tissue was then permeabi-
lized with 10 pg/ml Proteinase K (Roche) in PBST for 10 min,
washed twice in PBST for 2 min, post-fixed in fresh 4% PFA for
10 min, washed twice in PBST for 2 min, acetylated in 0.1 M
triethanolamine (Sigma) containing 0.25% fresh acetic anhydride
(Sigma) for 30 min, and washed three times in PBST for 10 min.
For frozen section ISH, frozen tissue sections were submerged in
room temperature 4% PFA PBS, pH 9.5 for 1 hr, washed twice in
PBS pH 7.4 for 3 min then acetylated as above. Prior to
hybridization, sections were pre-hybridized at 65°C for 1.5 hrs
in 250 pl of hybridization buffer (50% distilled formamide, 5X
SSC, 1% SDS, 50 pg/ml yeast tRNA, 50 pg/ml heparin sodium
salt) then transferred into 250 pL of hybridization buffer
containing 0.5 ng/pl of probe under Cover Well™ hybridization
chambers (GraceBiolabs, Bend, OR) at 65°C for 18 hrs. Unbound
probe was removed by washing like slides sorted by individual
probe twice in 1X SSC for 15 min at room temperature, followed
by 0.5X SSC for 60 min, at 65°C, and 0.5X SSC for 5 min at
room temperature. Specific hybridization was then visualized via
Digoxigenin specific IHC. For IHC, hybridized slides were
equilibrated in maleic acid buffer, pH 7.5 (100 mM maleic acid,
150 mM NaCl, and 0.1% Tween 20) and non-specific antibody
binding was blocked for 2 hrs in maleic acid buffer containing 1%
non-fat dry milk. Equilibrated slides were then incubated in a
1:4,000 dilution of sheep anti-digoxigenin F(ab), alkaline phos-
phatase antibody (Roche) in blocking buffer overnight at 4°C.
Unbound antibody was removed by extensive washing in maleic
acid buffer for 15 min. Sections were next equilibrated in
chromogenic buffer (100 mM Sodium Chloride, 100 mM Tris
(Sigima, pH 9.5), 50 mM Magnesium Chloride Hexahydrate and
0.1% Tween 20) then exposed to 250 pl of chromogenic substrate
{BM Purple AP Substrate, Roche) for times ranging from 1 day to
one week with a daily change of substrate. Following sufficient
deposition of blue/purple signal, slides were rinsed with water,
counter-stained with filtered Nuclear Fast Red Stain (0.1% NFR
in 5% aluminum sulfate, Kernechtrot, Germany), dehydrated
through ‘graded alcohols, cleared in xylene, and cover slipped in
Permount (Fisher Scientific). A positive result is indicated by the
preserice of blue/purple precipitate on a pink/red background and
amount of signal generated per unit of time can be used to
estimate abundance of a targeted transcript. Using this approach,
highly abundant transcripts (e.g. Gapdh in tissue or cells or /17 in
pECIFP-N1/IL-7 "and "pEYFP-N1/IL-7 transfected cells) are
readily’ detected with 1 day (or less) of chromogenic exposure.
Failure to detect signal after 7 days in combination with
anticipated signals within technical controls is consistent with very
low or absent mRNA expression and indicated by absence of
blue/purple color on a pink/red background.

RNA extraction from whole thymus and real time RT-PCR

C57BL/6, Rag2™’™ and K14 mouse thymi were harvested into
RNA later (Ambion) and DNA-free total RNA was isolated using
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Triazol reagent (Invitrogen) via a modification to the provided
protocol. Briefly, following: addition of chloroform ‘and  phase
separation, 50X DNase I buffer (I M Tris; pH 7.0 and 100 mM
MgCly) was added to each aqueous phase to 1X final. One pl of
Ambion DNase I (2 U/ul) was then added and incubated at RT
for 15 min. Following completion - of the standard protocol,
concentration and purity of RNA yield was established by
spectrophotometry (NanoDrep, NanoDrop Technologies,  Wil-
mington, DE, USA) and quality confirmed by capillary electro-
phoresis (Agilent Bioanalyzer 2100 NanoChip).

Two microgram aliquots of ‘each total RNA ' stock” were
converted into cDNA:via hex primed reverse transcription
(Thermoscript RT kit, Invitrogen). Each reaction was diluted
with TE to produce a cDNA stock with a final volume of 100 pl
and aliquots of each stock were then analyzed for relative amounts
of /7, Gapdh, and 185 ribosomal RNA via: Tagman Gene
expression  analyses (Applied  Biosystems) using 2 Stratagene
MX3000F thermocyler running MxPro software (ver 3.0). Ct
values generated from each sample with the /8 s specific probe set
were used to normalize expression of the two target genes (1/7 and
Gapdh) using a ACt method with correction for variation in
amplification efficiency. Normalized ratios. were ‘then used to
determine the variance in target gene expression versus wild fype,
and the variance was then used to approximately calculate the
corresponding ratio of each transcript to the other.

Cell preparation from thymus and cell sorting

Single cell suspensions were prepared from thymic  tissie
following published procedures [48,49]. In brief, 10 thymi from
C57BL/6 mice were harvested, punched with a scalpel,
transferred to a beaker and stirred in 50 ml of RPMI 1640
{(Mediatech Inc., Herndon, VA, USA) at 4°C for 30 min to
remove the majority of the thymocytes. The resulting fragments
were then digested in a series of three incubations in 5 ml of
0.125% (w/v) collagenase D/DNase I (Roche) with 0.1% (w/v)
DNase I (Roche) in RPMI-1640 followed by 2 single digestion in
5 ml of 0.125% collagenase/dispase (Roche) with 0.1% (w/v)
DNase I in RPMI-1640. Digestions were performed at 37°C for
15 min in an oven in tubes placed on the rotisserie for gentle
agitation. Cells were collected after each digestion once thymic
fragments had settled, pooled and kept on ice. After washing in
PBS, cells were filtered through a 100 gm mesh and courited.
Before staining, cells were depleted of hematopoietic cells using
MACS CD45 MicroBeads (Miltenyi Biotec, Auburn, CA, USA)
and autoMACS separation columns. After enrichment, cells were
labeled using different combinations of the following antibodies:
APC-CD45.2 (eBioscience), PE-CD11¢ (clone HL3, BD Pharmin-
gen, San Jose, CA, USA), EpCAM (clone G8.8a) followed by
secondary staining with PE-Cy5-anti-Rat IgG, FITC-Ly51{clone
6C3, BD Pharmingen), MTS-15 followed by secondary staining
with FITC-ant-Rat IgG, and MTS-12 (ant CD31) followed by
secondary staining with PE-ant-Rat IgG. Cell sorting was
performed using a MoFlow Cytometer and cells were collected
in RPMI-1640, washed and resuspended in lysing  solution
(RNAqueous-Micro Kit, Ambion, Austin, TX, USA).

RNA extraction from sorted stromal cells and absolute
quantification: of /7 mRNA by real time RT-PCR

RNA was-extracted using’ RNAqueous-Micro Kit (Ambion)
following manufacturer’s protacol. After extraction, 100 ng of
RNA were retrotranscribed using Superscript III First-Strand
Synthesis Systern (Invitrogen, Carlsbad, CA, USA) and following
manufacturer’s instructions.
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Specific primers for real time PCR quantification of /7 mRNA
were designed using Primer Express software (Applied Biosystems,
Forster City CA, USA) and optimized for amplification and
minimal primer dimer formations. Primers and probes were
designed over a conserved region of the genome and synthesized
by Applied Biosystems. Accurate quantification of /7 mRINA was
accomplished using a plasmid pcDNA3 vector containing the
murine /I7 ¢cDNA (a gift from J. Bream, Johns Hopkins
University). DNA sequencing from both the 5 and 3’ ends
verified the identity. The real time PCR assays for /7 plasmid
DNA/cDNA were carried out in 10 pl reactions using 7 specific
primers with TagMan Universal master mix and run on the ABI
Prism 7900 (Applied Biosystems, Forster City CA, USA) (50°C for
2 min, 95°C for 10 min followed by 45 cycles at 95°C for 15 sec,
60°C for 30 sec). The murine glyceraldehyde-3-phoshate dehy-
drogenase (Gapdh) plasmid DNA used as a standard was purchased
from Serologicals (Gaithersburg, MD, USA). The real time PCR
assay for Gapdh plasmid DNA was carried out in 10 pl reactions
using the murine Gapdh control kit (Applied Biosystems) and run as
described above. A standard curve was generated by plotting the
logo target dilution, of murine Gapdh control template and murine
Ii7 on the X-axis against the cycle threshold (C,) value from serial
dilutions (6 log dynamic range) of murine Gapdh and 1I7 target
DNA on the Y axis. Sensitivity and linear dynamic range were
chiecked on the serial dilutions (10-10° copies/reaction) of /7 and
Gapdh plasmid DNA (a standard curve equation Y =—Mx+b is
applied to identify the number of molecules of Gapdh and I7
present in unknown samples). The 7 PCR efficiency was 0.968
with a slope of —3.2, while the Gapdh PCR efficiency was 0.975
and the slope was —3.3. The [I7 mRNA expression was then
normalized to the Gapdh expression values of the same unknown
samples to quantify the absolute expression of all samples in the
experiment.

Construction of the IL7promECFP mice by BAC
recombineering

A bacterial artificial chromosome (BAC) containing the mouse
1i7 gene (RP23-3217, clone length 228391 bps) was obtained from
Invitrogen. BAC DNA was purified using the Nucleobond BAC
kit (Clontech) according to manufacturer’s instructions and
characterized by Spel fingerprinting.

The construction of the IL7-ECFP-BAC was done using galK
selection as described by Warming_ et al. [50]. Briefly, a. galK
cassette with homology to the first translated exon of /7 {exon 1)
was amplified using Expand High Fidelity (Roche), pgalKas
template, and the following primers (ATG starting site of /l7 is' in
bold, sequences priming the pgalK plasmid are underlined):

IL7->galK F: 5'-CCT GCT - GCA GTC CCA GTC ATC
ATG ACT ACA CCC ACC TCC CGC AGA CCATGC CTG
TTG ACA ATT AAT CAT CGG CA-3’ and IL7->galK R: 5~
TCC CCG GCG CGC TAG GCG CAC CTA CTT GTG CGC
ACC AGA GAG CAG CGC TTT CAG CAC TGT CCT GCT
CCT T-3'. PCR conditions. were 94°C 15 sec, 60°C 30 sec and
72°C 1 min for 25 cycles. The PCR reaction was treated with
Dpnl and gel purified. Purified PCR product was transformed into
heat-shocked and electrocompetent SW102 containing RP23-3217
and Gal' colonies were selected as described. Insertion of galk
resulted in a deletion of the remainder of exon 1 as well as deletion
of the splice donor of intron 1. Next, the galK cassette was replaced
with a PCR product containing homology arms identical to the
homology arms used in the first step, amplified from pECFP-1
(Clontech) using the following primers and PCR conditions as
described above: galK->ECFP F: 5'-CCT GCT GCA GTC CCA
GTC ATC ATG ACT ACA CCC ACC TCC CGC AGA CCA
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TGG TGA GCA AGG GCG AGG A-3" and galK->ECFP R: 5'-
TCC CCG GCG CGC TAG GCG CAC CTA CTT GTG CGC
ACC AGA GAG CAG CGC TTG CCT TAA GAT ACA TTG
ATG AGT TTG GA. This PCR reaction product was Dpnl-
treated, gel-purified, and transformed into SW102 Gal® cells and
DOG resistant colonies were selected as described {50]. One out
of 10 analyzed BAC clones was correctly targeted after galK
counter selection, and the modified area of the BAC was
confirmed by direct BAC sequencing of large-prep BAC DNA
using ABI PRISM BigDye Terminators (Applied Biosystems). The
IL-7-ECFP BAC construct was linearized with PiScel (New
England Biolabs) and microinjected into fertilized ova of C57BL/6
females at the pronuclear stage. Mice were screened for acquisition
of the transgene by Southern Blot Analysis of DNA obtained from
tail biopsies using standard procedures. Genomic DNA was
digested with Bglll and analyzed with a 299 bp probe amplified
from the RP23-3217 BAC. The wild type band is 2.6 kb and the
transgenic band is 3.6 kb.

Genotyping and selection of homozygous IL7promECFP
transgenic mice

Genomic DNA from mouse tail biopsies was extracted by
ethanol precipitation after digestion in digestion buffer (50 mM
Tris-HCI, pH 8, 100 mM EDTA; 100 mM NaCl, 1% SDS) with
500 pig Proteinase K {(Roche Applied Science, Indianapolis, IN,
USA) overnight at 55°C and resuspended in 100 pl of 0.1X SSC
buffer. Approximately 10 ng of this DNA was analyzed in a 20 pl
SYBR green PCR reaction containing 1X Brilliant SYBR Green
QPCR Master Mix (Stratagene), 30 nM ROX passive reference
dye; and 300 nM each primer. The ECFP transgene was assayed
using- “specific primers, and differences~in input DNA were
normalized using an endogenous reference gene, Folhl, in separate
wells. Primer sequences used were CFP-F 5-ATG CCA CCT
ACG GCA AGC TG-3', CFP-R 5"-TTC TGC TGG TAG TGG
TCG GCG-3', FolHI-F 5'-CCA AGC AGC CAC AAC AAG
TA-3" and FolH1-R 5'-TCC ATA GGG ATT TTG TGA TTC
TG-3". Real time PCR was performied in triplicate on a MX3000P
Stratagene (Cedar Creek, TX, USA) instrument running an initial
enzyme activating step of 95°C for 10 min; followed by 45 cycles
of denaturation at 95°C for 30 sec, annealing at 60°C for 30 sec,
and extension at 72°C' for* 30 sec. Normalized data was then
analyzed using the —2**“* method to determine relative fold
change compared against a known hemizygous animal (calibrator).

Immunohistochemistry and immunohistology

All tissue samples were fixed in 4% PTFA for approximately
16 hrs at 4°C, then transferred to 20% sucrose and incubated for
another 16 hrs at 4°C. Finally, tissues were blotted to remove
excess sucrose, frozen into OCT compound (Sakura, 4583), and
held at —80°C: until sectioning. Seven [m sections were cut using
a cryostat and stored at —80°C until the day of staining.

For IL-7 immunohistochemistry, sections were warmed to room
temperature for approximately 60 min, then rinsed in IX PBS for
3 changes, 3 min each. Antigen retrieval was performed using a
citrate based buffer pH 6 (Biogenex, HK086-9K) in Milestone
RHS-1 microwave processor for 10 min to reach 100°C; followed
by 10 min at 100°C. Peroxide block was applied at 0.6% in 0.1%
saponin (Sigma; S4521)/1X PBS (wash buffer) at room temper-
ature for 15 min followed by rinsing in wash buffer 3 times, 3 min
each. Anti-mouse IL-7 antibodies (rabbit polyclonal IgG™ from
Santa Cruz, goat polyclonal IgG from Santa Cruz and R&D,
monoclonal rat IgGy, from R&D, biotinylated rabbit polyclonal
IgG from PeproTech, monoclonal mouse IgG from Amgen) were
applied at different dilutions, in wash buffer, at room temperature
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for at least 60 min. Samples were then rinsed using wash buffer 3
times, 3 min each. Avidin-Biotin Complex reagent was applied
(ABC, Vector) following manufacturer’s instructions diluted in
wash buffer, and incubated at room temperature for 30 min,
followed by another rinse for 3 times, 3 min each with 1X PBS.
Slides were then developed in DAB (Sigma, D5905-100TAB),
counterstained, dehydrated, and cover slipped.

For ECFP-target cell identification and co-localization, tissue
sections were warmed to room temperature for-approximately
60 min, placed in acetone for 10 min at room temperature, and
then dried at room temperature for approximately 5 min. Sections
were re-hydrated in 1X PBS for 10 min followed by application of
2% normal goat serum/PBS (Vector, S-1000) for 20 min at room
temperature. Serum in excess was removed (not rinsed) and
primary antibodies were applied for 60 min at 37°C (unless
differently specified) as a cocktail diluted in 0.1% BSA/1X PBS.
For examining ECFP expression, anti-GFP (Abcam) was used at a
1:1000 dilution. Other antibodies were used at the following
dilutions: FITC-anti-Ly51 (BD Pharmingen) at 1:1000; anti-G8.8a
(gift from Gray D.) at 1:1000; anti-MTS-15 (gift from Gray D.)
1:20; biotinylated-CD45.2 (eBioscience) at 1:500; FITC-CD11c at
1:1000; CD31 (Santa Cruz) at 1:200 O/N at 4°C. The sections
were then rinsed in 1X PBS for 10 min and corresponding
secondary antibodies were applied as a cocktail, diluted 1:300 in
1% BSA/1X PBS, for 30 min at room temperature. The following
secondary antibodies have been used: donkey anti-rabbit 488
(Molecular Probes), goat anti-rabbit 546, and biotinylated goat
anti-rabbit (Vector) followed by streptavidin conjugated Alexa-546
{Molecular Probes) for anti-GFP; goat anti-rabbit 488 (Molecular
Probes) for G8.8a; goat anti-rat 546 (Molecular Probes) for MTS-
15; streptavidin conjugated Alexa 546 (Molecular Probes). for
CD45.2; donkey anti-goat 546 (Molecular Probes) for CD31.
Slides were rinsed in 1X PBS for 10 min, wiped dry, and cover
slipped with Prolong Gold (Molecular Probes).

All samples were visualized with a Nikon Eclipse 80i microscope
under consistent illumination and exposure conditions for each
respective stain. Brightfield images were captured using Nikon
DXMI200F digital camera and Nikon ACT-1 software. Fluores-
cent images were obtained using. Exfo X-Cite 120 excitation,
Nikon UV-2E/C, B-2E/C and G-2E/C filter cubes, Qjmaging
Retiga 2000R digital camera, and Media Cybernetics Image-Pro
plus v5.1 software.

For anti-keratin staining, intact thymic lobes were fixed. by
immersion in 4% PFA, cryoprotected with phosphate buffered
saline containing  30% (w/v) sucrose. Samples were then
embedded in OCT (Sakura Finetek U.S.A., Inc., Torrance, CA,
USA), frozen, and then sectioned at 5-7 pm with-a cryostat.
Sections were collected on SuperfrostPlus slides (Fisher Scientific,
Pittsburg, PA, USA). After drying overnight, sections were
hydrated in PBS and then incubated in a mixture of primary
antibodies. To Tromal hybridoma supernatant (Developmental
Studies Hybridoma Bank, University of Iowa; dshb.biology.uiowa.
edu/), was added goat anti-green fluorescent protein (Rockland,
Gilbertsville, PA, USA), and different rabbit antibodies, either
anti-keratin 5, anti-keratin-8 or anti-keratin 14 (all from Covance,
Berkley, CA, USA). Controls consisted of mixtures of normal goat,
rabbit, and rat IgGs diluted to equivalent concentration, Primary
antibodies were applied for 1 hr at room temperature. After
repeated washes in PBS, slides were incubated with a mixture of
conjugated secondary antibodies diluted in PBS containing
10 mg/ml bovine serum albumin and 10% (v/v) normal donkey
serum. Secondary antibodies were donkey anti-goat IgG Alexa
488, donkey anti-rabbit IgG Alexa 555, and chicken anti rat IgG
Alexa 647 (all from Invitrogen-Molecular Probes, Eugene, OR,
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USA). Following incubation for 1 hr. protected from light, the
slides were repeatedly washed with PBS, then incubated in 10 mM
acetate buffer, pH 6, containing ! mM CuSO; for 10 min before
a final wash in PBS. Coverslips were mounted with Fluoromount
G (SouthernBiotech, Birmingham, AL, USA). Sections were
viewed with a Leica microscope equipped with a digital camera
(Orca-ER, Hamamatsu Photonic Systems, Bridgewater, NJ, USA)
to collect images. Resulting monochrome images were converted
to RGB images with Photoshop (Adobe, San Jose CA, USA).

Intravital multiphoton microscopy

Lymphocytes were isolated from OT-IXRAG™’™ mice and
differentiated into central memory T-cells (TCMs) by stimulation
with OVA peptide (SIINFEKL, a generous gift T.Mitchell,
U.Louisville) followed by culture in the presence of IL-15 for 5
to 7 days [38]. Differentiation of cells into TCMs was evaluated by
FACS analysis for CD8, CD44, CD62L, CDI22 and GCR7
expression. Intravital microscopy of mouse bone marrow was
performed using a protocol modified from a previous report [38].
Twenty-four hrs after Lv. injection of CFSE-labeled TCMs, mice
were anesthetized with isoflurane (Baxter, 2.5% vaporized in an
80:20 mixture of Oy and air), and the hair in the neck and scalp
was removed with hair removal lotion (Nair, Carter Products,
NY). The frontoparietal skull was exposed and the mouse head
was immobilized in a custom stereotactic holder. The imaging
system was an LSM510 NLO Meta (Carl Zeiss, Jena, Germany)
driven by a Chameleon femtosecond pulsed laser (Coherent Inc.,
Santa Clara, CA) tuned to 880 nm, and an inverted microscope
{Axiovert 200; Carl Zeiss) equipped with a 40X water immersion
objective (Achroplan IR, NA 0.8; Carl Zeiss). The microscope was
enclosed in an environmental chamber in which anesthetized mice
were warmed by heated air. Fluorescent cells were detected using
a bandpass emission filter at 480/40 nm (for ECFP) or 525/50 nm
{for CFSE). Vessels were visualized after i.v, injection of 70 kDa
Texas Red conjugated-dextran (620/60 nm filter). Image stacks
were collected with a 3 pm vertical step size at a depth of 100~
150 pm below the skull bone surface. For 3D videos, 4 sequential
image stacks were acquired at 3 mm z spacing to covera volume
of 154 umx154 pmx9.0 pm with a1 min interval between
repetitive image stack collections. Imaging data were processed
with Imaris (Bitplane, Zurich; Switzerland).

Supporting Information

Figure 81 Map of BAC used to generate transgenic mice. This
BAG was selected because the 117 gene was flanked by large spans
that were likely to contain the regulatory elements.

Found at: doi:10.1371/journal pone.0007637.5001 - (0.10 MB
TIF)

Figure 82° No IL-7 expression in non-epithelial cells in thymus.
IL-7 is ‘not expressed by myeloid-derived cells, dendritic cells,
fibroblasts or endothelial cells in thymus since no co-localization of
ECFP (red) with CD45.2, CD11c, MTS-15 or CD31, respectively
(green) was observed. DAPI (blue) identifies cell nuclei. Magnifi-
cation 100X.

Found "at: doi:10.1371/journal.porie.0007637.5002 (6.02 MB
TIF)

Figure 83 OT-1-TCM migration to bone marrow: Lack of
effect of CXCR4 block or 117 deletion. Central memory cells were
generated by in vitro culture of OT-1 cells as described. Cells were
labeled with CFSE and injected into wild type mice that were
previously injected with HBSS (as a control) or with the CXCR4
antagonist AMD3100 and compared with IL-7—/— recipients.
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Twenty-four hours later, bone marrow was harvested from the
long bones, stained with anti-CD8 and analyzed by flow
cytometry. A. Three individual recipients are shown for each
treatment. No inhibition of migration of OT-1-TCM cells resulted
from blocking CXCR4 or deleting 117. Note that the IL-7—/—
recipient lacked endogenous CD8 cells. B. The data is shown in
numerical form representing the total number of OT-1-TCM cells
recovered per individual mouse.

Found at: doi:10.1371/journal pone.0007637.s003 (1.14 MB
TIF)

Table S$1 OT-1-TCM association with ECFP producers. Data
are corrected by removing OT-1 whose center overlies a stromal
cell (probable spill-over artifact).

Found at: doi:10.1371/journal.pone.0007637.s004 (0.03 MB
DOC)

Movie S1 Central memory cells (TCMs) were obtained by in
vitro differentiation of T cells from OT-1xRAG—/— mice. TCMs
were labeled with CFSE and injected intravenously twice (—24 hr
and —2 hr) into IL7promECFP mice. Bone marrow was
visualized by intravital microscopy. CFSE labeled TCMs (green)
exit the blood stream (red) and some interactions with ECFP
producing cells (blue) were observed. The video spans a 40 minute
time,
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