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THE DEVELOPMENT AND CLINICAL USE OF A BEAM ON-LINE PET SYSTEM
MOUNTED ON A ROTATING GANTRY PORT IN PROTON THERAPY
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Purpose: To verify the us'efuiness of our developed beam ON-LINE positron emission tomography (PET) system
mounted on a rotating gantry port (BOLPs-RGp} for dose~volume delivery-guided proton therapy (DGPT).
Methods and Materials: In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a pla-

nar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system.
Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and
brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately

after the proton irradiation.

Results: The daily measured activify images acquired by the BOLPs-RGp showed the proton irradiation volume in
each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity

image (taken at the first treatment} and the daily activity-images.

In the case of head-and-neck treatment,

the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treat-
ment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells.
Conclusions: The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by

measuring changes of daily measured activity.

Information about the

positron-emitting nuclei generated

during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proten

treatment. © 2010 Elsevier Inc.

Dose-volume delivery guided proton therapy (DGPT),

(BOLPs-RGp), Target nuclear fragment reaction.
INTRODUCTION

Proton therapy is a form of radiotherapy that enables the con-
centration of a dose onto a tumor by the use of a scanned or
modulated Bragg peak. Therefore, it is very important to
evaluate the proton-irradiated volume accurately.

Recently, to ensure the high accuracy of proton therapy,
imaging studies of positron-emitting nuclei that are generated
by target nuclear fragment reactions involving incident pro-
tons and nuclei from a patient’s bady have been performed
(1-14). The annihilation gamma rays from the positron-
emitting nuclei were measured by a positron emission tomog-
raphy (PET) system (specifically a beam OFF-LINE PET

Beam ON-LINE PET system on rotating gantry port

system using commercial PET apparatus or PET-computed
tomography [CT] apparatus postirradiation or a beam ON-
LINE PET system in a proton treatment room). The beam
OFF-LINE PET system using the commercial PET-CT appa-
ratus has the advantage of being able to easily acquire fusion
images and the ability to reconstruct three-dimensional im-
ages. However, the time required for the movement of the
patient to the PET room (10-30 min} and the resulting dete-
rioration: of the statistical accuracy of the acquired data are
large disadvantages. With the bearn ON-LINE PET system,
capturing a large view and the acquisition of three-dimensional
images are difficult because of geometrical problems caused
by the beam direction and the PET apparatus (7, 15, 16).
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The ability to take daily PET images with a high statistical
accuracy while the patient remains in the proton irradiation
room is a large advantage. Besides, availability of a cone
beam (CB) CT system or CT apparatus in the irradiation
room can offer the possibility of daily and in situ monitoring
of the patient’s anatomy. A prototype beam ON-LINE PET
system (BOLPs) was previously constructed for basic research
(10), and verification of the proton-irradiated volume in
a patient’s body was confirmed using a PET apparatus and
a PET-CT apparatus (beam OFF-LINE PET system) (13).

A BOLPs mounted on a rotating gantry port (BOLPs-
RGp) was constructed in our proton treatment room. Activity
measurement and PET imaging were performed in 48 pa-
tients with tumors of the head and neck, liver, lungs, prostate,
and brain during proton treatment at our facility. The position
and intensity of the activity were measured daily using the
BOLPs-RGp immediately after proton irradiation. Using
the activity measurement, we were able to confirm whether
the proton beam irradiation of the tumor was reproducibly

performed during the treatment period. Moreover, changes -

in the activity distribution were observed as the volume of
the tumor changed, and these changes were related to the de-
livery dose, changes in the body shape and position of the pa-
tient, and the physiologic changes. The PET images from the
BOLPs-RGp were sufficient to provide high-quality proton
treatment.

METHODS AND MATERIALS

Design of a beam ON-LINE PET system mounted on an
RGp

Via the detection of pairs of annihilation gamma rays emitted -

from the generated radioactive nuclei of a patient’s body, the
BOLPs-RGp is designed to determine the position and activity of
the positron-emitting nuclei generated in patients by proton irradia-
tion. Figure 1 is a picture of the BOLPs-RGp. The BOLPs-RGp was
developed as a standardized system for use with proton therapy de-
vices. During proton therapy, the detector heads have many degrees
of freedom and the system allows remote control adaptation to each
new proton beam condition and a patient’s position. As a result, the
measurement of the activity distribution is simple.

A planar positron imaging system (Hamamatsu Photonics K. K,
Hamamatsu, Japan) (17) was newly arranged for the BOLPs-RGp.
In comparison to the system used previously (10), the 24 detector
units mounted on each detector head were increased to 36 detector
units, and each unit was composed of 11 x 10 arrays of BGO
(BiyGes301,) crystals with a erystal size of 2 x 2 x 20 mm®. Fur-
thermore, the 2,400 crystals were increased to 3,600 crystals. The
gap of each unit became 3.3 mm from 11.0' mm for minimizing
dead space in the detector. The field of view (FOV) became
164.8 x 167.0 mm” from 120.8 x 186.8 mm?. The maximum field
size is 185.0 x 185.0 mm” in the rotating gantry port with the
BOLPs-RGp. Therefore, the FOV can almost cover each treatment
site of the head and neck, liver, lungs, prostate, and brain for a pro-
ton treatment in our facility. However, in case of prostate, the depth
activity distribution is not measured in the entrance of the incident
proton beam. The BOLPs-RGp was mounted on and the center of
its detection area was aligned with the iso-center of the rotating
ganiry in the treatment room of the proton therapy facility at our
center. A PET image teconstructed by a back-projection method
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Fig. 1. Setup of the BOLPs-RGp, which is mounted on the rotating
gantry port of our proton treatment room.

along the axis of the proton beam direction is always included in
the FOV of the opposing detectors together with the axis of the ro-
tating angle of the gantry system. The distance between the two
opposing detector heads of the BOLPs-RGp can be adjusted
from 30 to 100 cm: When the activity is not being measured, the
detector head is stored inside the wall of the ganiry device. The
position resolution of this system is about 2 mm for the full width
at half maximum in the case of use of 2?Na point source. The
maximum data collection rate for the coincident detection of pair
annihilation gamma rays is about 4,000 counts/s/cm® (kcps/em?).
The accuracy of the measurements of activity distribution by this
system was verified by a prototype beam ON-LINE PET system
(10). The measured data are stored using in the software’s list
mode format. The activity image is tenewed every second. The
information of the on-off time points of beam irradiation is
recorded in the data, and the image can be restructured according
to this information. The PET data from the irradiation field of
each patient are managed throughout-each treatment day.

The detection efficiency of the distance between the detector
heads was calibrated by using the thin-flat acrylic container filled
with *F-solution. The calibration is used for a correction of the im-
aging uniformity and the detection sensitivity. The attenuation coef-
ficient of 511-keV ganima rays in the patient’s body was calculated
by the patient’s CT image data. They are used for a construction of
the activity imaging. The correction of the photon scattering in the
patient’s body is not considered for the activity imaging. Further-
more, the photons scattered in the patient’s body outside the FOV
are detected by the effect of the geometry of the detector head.
Therefore, the activity image is contaminated by about 10% back-
ground in this system. As the result, the position resolution of the
activity distribution will become large more than 2 mm in the clin-
ical case of a proton therapy. :

Activity measurement in a patient during proton treatment

The measurement of activity was performed daily in 48 cases in-
volving tumors of the head and neck, liver, lungs, prostate, and brain
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using the BOLPs-RGp. The position and intensity of activity were
measured during the 200 s immediately after proton irradiation us-
ing the trigger signal of the beam-off time. The measurement was
performed using the shortest possible dista.ncé between the two op-
posing detector heads of the BOLPs-RGp for each patient. The ay-
erage distance of the detector heads was 40 ¢m for the head and neck
and the brain, 70 cm for the liver and the lungs, and 50 ¢m for the
prostate. The time of 200's after proton beam irradiation was chosen
according to the intensity of activity estimated from the results of
other studies (10, 13). The activity data obtained during proton irra:
diation were not used for PET imaging. Various types of back-
ground radiation (X-rays, gamma rays, dnd neutrons} occur during
proton beam irradiation, and the quality of the activity image be-
comes markedly worse in their presence (2, 10, 15, 16). Further-
more, high radiation decreases the accuracy of the defector.

Verification of activity measurement was performed in 18, 4, 15,
10, and 1 cases involving tumors of the head and neck; the liver; the
lungs, the prostate, and the brain, respectively. The typical fractional
doseis 2.5 Gy equivalents (GYE = Gy x the relative biologic effec-
tiveness: [= 1.1 = constant]) for the liead and neck, 3.8 GyE for the
liver, 4.0 GyE for the Iungs, 2.0 GyE for the prostate, and 2.5 GyE
for the brain in our facility. The irradiated field is typically planned
with three fields in the head and neck and two fields in other sites.
Furthermore, the typical number of irradiated field per fractional
dose is one in the head and neck, liver, and prostate, and two in
the lungs. The fractional dose was delivered over an irradiation
time of 10-300 s. The proton beam irradiation was synchronized
with the organ motion caused by respiration in the liver and the
lungs.

Procedure for clinical use of activity image

A flow chart of procedure for clinical use of the BOLPs-RGp is
shown in Fig. 2. In the clinical use, the main operation is to take
an activity image every day and compare the activity image of the
first day of treatment with each activity image during the compara-
tively long period of the treatment. If the difference of both the im-
ages is confirmed by reducing of the tumor size and changing of the
body shape, then the new dose distribution is obtained from redose
calculation of the plan on a new CT image acquisition, and the first
proton treatment plan is immediately corrected to the new plan.
As a result, proton treatments of high accuracy can be offered to
the patient by keeping of the planned dose delivery.

RESULTS

Estimation of the measurement time for PET imaging

An estimation of an appropriate measurement time for
PET imaging was performed using the measured activity
data from tumors of the head and neck. The proton beam con-
ditions were as follows: an energy of 120 MeV, a spread out
of Bragg peak (SOBP) of 80-mm width, a gantry angle of
340°, a fractional dose of 2.5 GyE, and an imradiation time
of 24 5. The distance between the detector heads was 70
cm, and the detection rate of the activity was 1.5 keps. The
left panel of Fig. 3 shows the number of detection events
per volume during the detection period after proton beam
irradiation. The statistical error (= standard deviation/mean
value) decreased as the detection time increased. The error
was 2.8% for a 200-s detection time, 3.0% for 150 s, 3.4%
for 100 s, and 4.4% for 50 s. The right panel of Fig. 3 shows

Measured sctivity  Treatment

First day
Planned dosg.
S o O NS
o1 (Reference image}
3
5
L Second da
Lo ay
A
g new CT irage é
Flire-dose calculating §
<) ™ ? E
= re-planing .
if comparing tesult
is different”
conaparing”
N-th day
comparing

comparing

Fig. 2. Flow diagram of the procedure for the clinical use of the
BOLPs-RGp.

PET images taken using detection times of (a) 0, (b) 50, (c)
100, and (d) 200 s.

PET images of each treatment $ite

Typical PET images obtained by the BOLPs-RGp are
shown for each case involving tumors of the head and
neck, the liver, the lungs, the prostate, and the brain. Figure 4
shows the calculated dose distribution and the measured ac-
tivity distribution on the first treatrment day. The beam irradi-
ation parameters were shown in Table 1. The PET images
were obtained during the 200 s after proton beam irradiation.
The mean detection rates of the activity generated in the pro-
ton beam irradiated volume were 1.58, 1.39, 0.53, 1.08, and
1.85 kops, respectively. The color line and wash normalized
to the iso-center show the dose distribution and activity dis-
tribution, respectively, By comparing and verifying between
the calculated dose distribution and the measured activity dis-
tribution, it can be confirmed visually and roughly that the
proton beam has irradiated the tumor. In cases of the liver
and the lungs, the length of beam irradiation time is adjusted
according to the stability of respiration on the treatment day
and the patient. By the effect of organ motion, the number of
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the detection event of the activity measured in the gating win-
dow will became about one third of the total detection events,
and the statistical error will increase. Therefore, the measure-
ment was performed with no synchronization with organ
motion by respiration.

Changes in the activity distribution during the treatment
period

In each treatment site, the activity distribution changed
probably by reduction of the tumor size and’ changing of
the body shape was conspicuously observed in some cases
of the head and neck.

The verification was performed for a case involving tu-
mors of the head and neck. Proton beam irradiation was per-
formed in three fields of view: Port 1: 123 MeV, 90-mm
SOBP, 350° gantry angle, 0° bed angle; Port 2: 121 MeV,
90-mm SOBP, 10° gantry angle, 20° bed angle; and Port 3:
117 MeV, 80-mm SOBP, 340° gantry angle, 350° bed angle.
The irradiation dose was 2.5 GyE. Figure 5 shows a calcu-
lated proton dose distribution, an activity distribution, and
a depth profile of a 2.5-GyE dose irradiation after a delivery
dose of 2.5 (reference image), 10.0, 17.5, or 32.5 GyE from
Port 1, adelivery dose of 5.0 (reference image), 12.5, 20.0, or
35.0 GyE, from Port 2, and a delivery dose of 7.5 (reference
image), 15.0, 22.5, or 30.0 GyE from Port 3. Changes of the
activity distribution were observed according to changes of
the proton beam range and the dose delivered by previous ir-
radiations resulted in a reduction of the tumor (see the arrow
and the area surrounded by the dotted line in Fig. 5). The
changing values of the activity range for each irradiation field
(Port 1, Port 2, and Port 3) are shown in upper left of Fig. 6.

0, (c} 100, and (d) 200 s are shown.

The activity range was defined by the depth point of 50%
distal falloff in the activity distribution normalized at the
iso-center. The changing value of the activity range fully
exceeded a 10-mm length. Moreover, to observe the changes
in the activity distribution in the depth direction in a similar
manner, the ratio of te integration of the detected numbers
between 20 mm and 70 mm from the iso-center was
expressed as follows:

(D1 ;;’(dA(D)/dz)dz
()= HEND JdZ)dz

)

Here, z is the depth, D is the delivery dose, A(D) is the
depth activity distribution, and A(Q) is the reference depth ac-
tivity distribution. The ratio of the delivery dose is shown in
the middle left of Fig. 6. The bottom left of Fig. 6 is the proton
beam irradiation time per fraction dose at each irradiation.
The average of the irradiation time was 30 s, and the differ-
ence of the irradiation time at random was within 3 s.

In this case, anew CT image was scanned and a retreatment
planning was produced after the delivery of 35 GyE of the
prescribed dose of 65 GyE. The volume of the tumor was de-
creased from 184 mL to 125 mL (the arrow in right of Fig. 6
shows the visible tumor reduction), and the maximum beam
range was shortened by 20-mm water equivalent length, In
the other 2 cases of 18 clinical cases of the head and neck,
the changing activity range of more than 10 mm was ob-
served. Similarly, the new CT image acquisition and the re-
treatment planning were immediately performed after the
observation of the changing activity range. The reduction .
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of the tumior’s volume was more than 100 mL. Also, in car-
bon therapy, similar observation of the tumor shrinkage has
been reported in (7). The BOLPs-RGp indicated that the pro-
ton irradiation dose was delivered to the brain stem of organs
at risk.

Washout effect of the activity in the treatment period

A histopathologic examination demonstrated that higher
activity was observed in regions containing necrotic liver
cells than in any other region. The upper panel of Fig. 7
shows the calculated dose distribution and the measured ac-
tivity distribution on a CT image taken at the first treatment of
a 3.8 GyE delivery dose. The bottom left panel of Fig. 7

Table 1. Summary of proton beam irradiation parameters

shows the number of detection counts per 20 s of activity
in the regions of interest of areas A and B in the liver. Hence,
the region of interest of area A is the necrotic region of the
tumor, and area B is the normal tumor region. Therefore,

~ area B-A is equivalent to the area of the tumeor minus the ne-

crotic region. The observed decay curves in the region of in-
terest of area A and B-A were fitted well enough using
a double exponential equation. The two half-lives of the dou-
ble exponential fitting were 31 & 8 s and 146 + 20 s in the
area A, and 21 +4 s and 164 + 11 s in the area B-A, respec-
tively. The half-life was longest in the necrotic region of the
tumor. The activity images for the 200 s measurement by the
BOLPs-RGp are shown in the left of Fig. 8. The high activity

" Proton energy SOBP Gantry angle Bed angle Fractional dose Trradiation time
Treatment site [MeV] [mm] [deg.} [deg.] [GYE] [sec.}
(a) Head and Neck 123 90 o a 2.5 39
®) Liver 137 70 270 [\ 38 229
) Lungs 145 76 160 0 2.0 38
@ Prostate 187 50 270 0 2.0 15

© Brain 122 90 330 90 25 40
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Fig. 5. The calculated proton dose distribution, measured activity distribution of 2 2.5;GyE dose irradiation; and the depth

profile of the measured activity normalized to the iso-center €0-mm depth) of the reference activity after a delivery dose of

2.5-35.0 GyE.

of the necrotic region decreased to same level as the normal
parts of the liver in the last treatment. The ratio F of the de-
tection activity normalized to the activity data from the first
treatment for the delivery doses in the area A and the area
B-A is expressed as follows: : ’

)" (dN(D)/dS)dS/[3* ds
D)=~ : @
v (dN(D)/ds)ds/[" s

Here, N is the detection number, S A is the square of area A,
and Sy, is the square of area B. Ratio of the F values normal-
ized at the value in first treatment calculated by using Eq. 2
and proton beam irradiation time per fraction dose are shown
in the right of Fig. 8. The average of the irradiation time at
random was 159 + 77 s. There was no correction in the irra-
diation time and the decrease of the activity shown in Fig,. 8.
A decrease in the activity of the necrotic region was observed
after the delivery dose was increased without depending on
the beam irradiation time per fraction dose.

DISCUSSION

This study focused on the development of the BOLPs-RGp
and its clinical use against tumors of the head and neck, liver,
lungs, prostate, and brain in the proton therapy. Quick mea-
surement of the activity generated in a patient’s body after
proton irradiation is feasible by using the BOLPs-RGp. The
elements tracked by the activity imaging are ''C (20.39
min), *°C (19.26 s), N (9.965 min), 0 (122.2 ), “O
(70.61 5), *°P (2.498 min), and **K (7.636 min), and accord-
ing to the results of a simulation by Parodi ez al., the “key”
positron emitter nuclei are ''C and 0 {14). The measure-
ment of this activity must be immediately performed after
proton irradiation as the half-life of 0 is about 2 min. As
a result, the information for activity imaging is obtained in
a short period. On the other hand, in the case of a beam
OFF-LINE PET system used with a commercial based PET
or PET/CT apparatus, it is very difficult to measure the activ-
ity of "0 for several minutes even at the start of the activity
measurement after proton irradiation. The main elements
used for activity imaging are O for measurements with



