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Abstract

Objective Cardiac O-water PET studies provide an
accurate quantitation of regional myocardial blood flow
(tMBF). We developed a motion cotrection system using
an optical motion-tracking device to detect a subject’s
global movement for cardiac study.

Methods PET studies were carried out on a cardiac
phantom and a healthy volunteer at rest. The three-
dimensional locations of the markers attached to the
subjects during scans were measured using an optical
motion-tracking system. In the phantom study, we per-
formed a transmission scan and seven '*F emission scans
of a baseline and with artificial misalignment of shifts and
rotations. The correlation coefficients between the baseline
and the other images before and after the corrections for the
misalignment were calculated. In the human study, we
performed a >O-water dynamic scan with a transmission
and axially 30 mm-shifted transmission scans. Motion of
the subject was estimated by the information from the
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system, and was corrected on each sinogram using atten-
uation maps realigned to dynamic frames. Reconstructed
dynamic images were then realigned to the transmission
data. We calculated rMBF values for nine segments and
myocardial images from the emission images, which were
reconstructed with the first attenuation map (reference) and
with the misaligned attenuation map before and after our
corrections.

Results In the phantom study, the correlation coefficients
were improved from 0.929 + 0.022 to 0.987 & 0.010
(mean =+ SD) after the corrections. In the human study, the
global and cyclic movements were detected. The cyclic
movement due to respiration was smoothed by frame-
averaging, and reasonable information of the global
movement was obtained. The rMBF value (mean 4+ SD)
was 0.94 + 0.12 mL/min/g for the reference. The tMBF
values using the misaligned attenuation map changed from
1.03 £ 0.21 to 0.93 + 0.11 mL/min/g after the correction,
and spurious defects in myocardial images were also
recovered.

Conclusions Our technique provided reasonable infor-
mation for correcting the global movement of the subject.
It was shown that this system was applicable to detect and
correct subject movement in cardiac PET studies at rest.

Keywords Myocardial blood flow - PET -

Motion correction - Attenuation correction -
130.labeled water

Intreduction
Motion of a patient during a positron emission tomography

(PET) scan can cause deterioration in image quality and
quantitative accuracy. Several techniques have been
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proposed for motion compensation in neuroimaging [1-7].
In cardiac PET studies, effects of wall contractile and
respiratory motion can be smoothed in the temporary
sampled PET images, but global movement of the patients
during the relatively long scanning period is still a signif-
icant source of errors [8-11].

It was shown that misalignment by a 20-mm shift in the
lateral/septal direction between transmission and '8E.fluo-
rodeoxyglucose (‘*FDG) emission scans caused a 30%
change in regional activity in cardiac '*F-FDG PET [8]. To
align two '®F-FDG emission images acquired on different
days, Bacharach et al. [11] proposed a registration tech-
nique based on the rigid body model using the transmission
images by assuming no misregistration between transmis-
sion and emission data sets.

Cardiac '’O-water PET studies provide quantitative
information with regard to the viabilities of myocardium
using the myocardial blood flow (MBF), coronary flow
reserve, and perfusable tissue index [12-19]. Naum et al.
[20] demonstrated that the movement occurred during
dynamic scans with cycling. They proposed a method to
correct for the motion during a single dynamic scan, and
among different sessions, by aligning the dynamic frames
of 150-water images using two external radioactive mark-
ers placed on the back of a subject. Although their tech-
nique did not provide correction for misalignment between
transmission and emission data, reasonable improvement in
calculated MBF values was demonstrated.

Correcting the misalignment between the transmission
and emission data is a challenging task because the image
contrast of transmission images differs from that of emis-
sion images. The distribution of 150-water also varies
dramatically in regions of the right and left ventricles,
myocardium, and other organs over time. Additionally, the
image quality of PET with '*O-water is worse than that
with other radioligands due to the short half life of 150,
which makes image registration difficult.

In this paper, we describe a novel approach using an
optical motion-tracking system for detecting the subject’s
global movement during the relatively long study period, as
an extension of the early studies of Watabe et al. [4]. The
proposed technique provided correction for misalignment
between dynamic emission sinograms, and also provided
accurate attenuation correction, in which misalignment
between attenuation map and each emission sinogram was
corrected in the reconstruction stage.

First, the inherent accuracy of our system was evaluated.
Then, the system was validated on a cardiac phantom study
for artificial misalignment between an attenuation map and
emission data. Correction for global movement obtained by
monitoring the locations of external markers on chest skin
was validated in a '’O-water cardiac PET study in a
healthy volunteer at rest.
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Materials and methods
Hardware-based position monitoring system

To detect motion of a subject, we adopted an optical
motion-tracking device in which targets attached to the
chest skin are monitored. The motion compensation
approach using an optical motion-tracking system has been
previously validated in brain PET studies [3-7]. We
applied this approach to the cardiac PET studies. Figure la
shows an optical motion-tracking system, POLARIS
(Northern Digital Inc., Canada). The POLARIS has two
charge-coupled-device cameras, and provides the 3D
position of a target. The three-dimensional position is
measured in the form of 6 degrees of freedom: three
rotational angles, and three translational directions. The
manufacturer reports that the accuracy of the rotational
angle and translation are better than 0.3° and 0.5 mm,
respectively. Figure 1b shows a target with four infrared-
reflective markers and supporting post. The target and
supporting post made of carbon resin were pinned with two
fluoroplastic screws. Figure lc shows the position cali-
bration tool used to convert the locations of subject posi-
tions in the POLARIS coordinate into PET coordinates.
Figure 1d represents the schematic diagram of our system.
Locations of targets attached to the chest skin of the subject
and the gantry of a PET scanner were measured with the
POLARIS. The target on the gantry of the PET scanner was
used as a reference in order to convert the subject’s posi-
tions from the POLARIS coordinate to the PET coordinate.
Figure le shows an example of the experimental setup with
a healthy volunteer in the cardiac PET study. Two targets
were attached to the chest skin of the subject. Three legs of
the supporting post were attached to the skin of the subject
using surgical tape. The axial field-of-view (FOV) of the
PET scanner used in the human study, HEADTOME-V
tomography (SHIMADZU Corp., Kyoto, Japan), was
200 mm, and the gantry diameter was 850 mm [21]. The
geometries of targets attached to the thoracic surface were
85 x 85 mm? (the left-hand target in Fig. le, target 1) and
65 x 90 mm? (the right-hand target in the Fig. le). The
heights of supporting posts for target | and target 2 were 50
and 42 mm, respectively. We calculated the subject’s
positions in the PET coordinate by measuring the locations
of the target with four infrared-reflective markers (the
primary target). Another target was used as a reserve in
cases when the primary target was hidden from the FOV of
the POLARIS.

Motion correction

The rigid motion correction technique employed is an
extension of the previous work for brain PET studies by
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Fig. 1 Our motion correction
system. a Optical motion-
tracking device. b Target
consists of infrared-reflective
markers with supporting post.
¢ Position calibration tool with a
target. d Schematic diagram of
the system. Locations of the
targets on the subject and the
gantry were measured with the
optical motion-tracking device.
e An example of the

experimental configuration d
Gantry |
ry Dzrget
e~
Target
«-1"""

(>

Reference

Optical motion
tracking device

Watabe et al. [4]. We consider four coordinates: the
POLARIS Cg, a target on a PET gantry for reference Cg, a
target attached on a subject Cr, and the PET scanner Cp.
By measuring the location and orientation of each target
attached to the subject and the gantry using the POLARIS,
we obtained a 4 x 4 transformation matrixes, Tr_g from
Cr to Cs, and Tg_,5 from Cg to Cs, respectively. Motion
matrix Mp,.p, from a position P, = P(f;) to another
position P, = P(t;) in the PET coordinate is written as
follows [4]:

Mp,p, = To-pT s TriosTr, s Ta—sTgLp (1)

where T, and 7T, are positions in target coordinates
corresponding to positions P, and P, in the PET
coordinate. Tg_,p is the matrix to transform a position
from the gantry coordinate to the PET coordinate. The
matrix is given by the following equation:

T6—p = Ts—pTGos (2)

Ts_p is the matrix which relates the POLARIS and PET
coordinates and is obtained by position calibration.

The point source was embedded in a given position of a
target, which is fixed on the calibration tool shown in
Fig. 1c. By measuring the position of the point source
using the POLARIS, the position Ps = (xg, ys, zs) of the
point source in the POLARIS coordinate is calculated
using the known position Pt = (xt, yr, zr) in the target
coordinate and Ty_gs, as Ps = Tt_sPt. The position
Pp = (xp, yp, zp) in the PET coordinate is also obtained
from the reconstructed emission image. By changing the
position of the target, in which the point source is
embedded, Ts.,p is calculated using the least-squared-fit
between the pairs of Pgs and Pps. The PET coordinate was

Scanner Front-side
ECAT EXAQT HR HEADTOME-V
Z
Y Y

Fig. 2 PET coordinates defined by position calibrations

defined by the position calibration as shown in Fig. 2. The
positions of subjects in the PET coordinate will be dis-
cussed in the following.

To correct a subject’s movements during a dynamic
acquisition of an emission scan with multiple frames, we
estimated the heart locations from the locations of the
target, which are measured by the POLARIS. The dis-
placement of the COG of the heart’s position from during
the transmission scan to during each dynamic frame of the
emission scan is given by

HY —HTCT = —i t)———«ZH(t)
TCT

F
— 157 P@) + AW - lz P(5) + AD)]
(3)

h

[\A»—a
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where H'CT and HY are the averaged COGs of the heart
positions during the transmission and the dynamic frame,
H(f) and P(f) are the COGs of positions of the heart and the
target at time ¢, A(f) is a term representing a non-rigid relation
for positions at time ¢ between the heart and the target, L and
N are the numbers of measurements of the target’s positions
by the POLARIS during acquisition of the dynamic frame
and the transmission scan, respectively. For motion correc-
tion, we assumed the rigid body model, in which the target
and the COG of the heart’s position have linear movement at
least in the FOV of a PET scanner, that is, we assumed that
summations of A(f) for the transmission scan and the
dynamic frame equal to zero. The procedures of our motion-
correction technique are as follows: (1) An attenuation map
is aligned to the coordinate of a dynamic frame of an emis-
sion scan using the motion matrix in Eq. 1, in which P, and
P, are ZTCTP(1)/N and ZFP(H)/Lin Eq. 3. (2) The attenuation
map is then converted to its sinogram by forward projection.
(3) Each sinogram of the dynamic frames is reconstructed
with the realigned attenuation sinogram. (4) The emission
image is aligned to the transmission coordinate with the
inverse matrix of the motion matrix. (5) Last, procedures
from 1 through 4 are repeated for all dynamic frames of the
emission data.

Position calibrations

Position calibrations were performed on two PET scanners
to obtain a matrix Tg_p in Eq. 2, which transforms the
subject’s positions from a gantry coordinate to a PET
coordinate. For ECAT EXACT HR tomography (CTV
Siemens, Knoxville, TN, USA) [22] used in a cardiac
phantom study, ten emission scans were performed, each
displaying different positions of a radioactivity point
source of '®F solution, using the calibration tool in Fig. 1b.
For the PET scanner used in a healthy volunteer study, 14
emission scans were performed with the '3F solution point
source and calibration tool.

The accuracy of the calibrations was evaluated from
To_s and Ts_,p in Eq. 2. The accuracy of Tg_,s part was
evaluated by determining the standard deviation (SD) of
rotational angles and translations calculated from position
data of the gantry, because Tg_s depends on only the
accuracy of the measurements in regard to the POLARIS.
To evaluate the accuracy of Ts_,p part, we calculated errors
between a position of a point source Pp, and the approxi-
mation position using Ts_,p, Px = Ts_,pPs:

e(i: k) = PX(i:k) - PP(i’k) (4)

Px(i, k) — Pp(i, k)[*
k}] x(i, k) — Pp(i, k)| -

(k=X,Y,Zandi=1,..,N)

RMSE() =
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where e(i, k) is the approximation error of a point source in
the ith position for each direction, X, Y, and Z are
orthogonal axes in Fig. 2, RMSEC() is the root mean square
error, and N is the number of positions of a point source.

Phantom study

To validate our correction technique for the misregistration
between the attenuation map and emission data, we per-
formed PET scans using a cardiac phantom (KYOTO
KAGAKU co., LTD, Kyoto, Japan, type HL-D) and the
ECAT EXACT HR tomography. The phantom mimics the
human thoracic region and has cardiac and liver inserts.
The insert can be filled with radioisotope solution. The
myocardium and liver inserts were filled with the '|F
solution of relative activities of 1 and 4. A target (without
the supporting port) for the POLARIS was attached to the
phantom using polyethylene cross tape. Then, we per-
formed a 1,000-s transmission scan for attenuation cor-
rections. After the transmission scan, seven '*F emission
scans were performed with a set of single frame data for
180 s. The first scan was the baseline (scan #1), in which
there was no misalignment to the transmission. For the
following three emission scans (scan #2-4), the phantom
was moved in the X, ¥, and Z directions. For the other three
scans, the phantom was rotated about the X, ¥, and Z axes
(scan #5-7). The phantom’s positions were measured with
the POLARIS.

The reconstructed images before and after the correction
were obtained using an FBP (filtered back-projection)
algorithm with a Gaussian filter of 6 mm FWHM (full-
width at half-maximum). The matrix size and voxel size of
images were 128 x 128 x 47 and 4.4 x 4.4 x 3.1 mm’,
respectively. All emission data were corrected for physical
decay of '®F with base time as the start of the first emission
scan, and all of the emission images were reoriented to the
short axis using a transformation matrix.

To evaluate the effects of the corrections, we calculated
correlation coefficients for myocardial regions between the
baseline and misaligned emission images, both before and
after the corrections.

Human study

A cardiac '*O-water PET study was performed on a healthy
volunteer (male, 32 years old) using the HEADTOME-V
tomography in order to validate use of the external markers
on the chest skin and also to evaluate the effects of the
global movement on the quantification of MBF by artificial
misalignment between attenuation and emission data. The
healthy volunteer gave written informed consent according
to a protocol approved by the Ethical Committee and
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Internal Review Board of Osaka University. The PET study
consisted of a 20-min transmission scan, an 8-min '*0-CO
emission scan for blood pool imaging, a 6-min >O-water
emission scan with 26 dynamic frames (12 x 5, 8 x 15
and 6 x 30 s), and a second 20-min transmission scan. All
scans were acquired in a 2D acquisition mode. The
radioactivity of inhaled 'O-CO gas was 3.2 GBq. 150-
water was injected via the left brachial vein; activity was
1.1 GBq for 40s. All scans were performed without
pharmacological stress. To investigate the accuracy of the
POLARIS for tracking the locations of the target attached
to the thorax skin of the subject, the couch of the PET
scanner was moved +30 mm along the axial direction
before the second transmission scan, corresponding to the Z
direction in Fig. 2, with the subject lying on the couch. It
was expected that the shift in the +Z direction caused the
artificial deterioration of image quality and quantitative
accuracy in especially the anterior and lateral regions. The
subject’s positions during the scans were monitored by the
POLARIS, at a frequency of one sample per second.

The reconstructed images for the four cases were obtained
using an FBP algorithm with a Gaussian filter of 9 mm
FWHM. The matrix and voxel sizes of the reconstructed
images were 128 x 128 x 63 and 2.03 x 2.03 x
3.13 mm>. No scatter correction was performed during the
image reconstruction stage.

Regional MBF values were estimated for four cases.
Case 1: the first attenuation map and emission data, case
2: the first attenuation map and emission data with
correction for the subject’s motions, case 3: the second
attenuation map and the emission data, case 4: the sec-
ond attenuation map and the emission data after the
correction for the subject’s motions and the 30-mm-
shifted misalignment. Differences in the MBF values for
cases | and 2 were considered to indicate effects from
the correction for the frame-averaged motion if the
subject’s motion was small. Differences in MBF values
for cases 1 and 3 could indicate errors in the quantifi-
cation of MBF caused by the artificial misalignment
between the second attenuation map and the emission
data. The lack of any difference in MBF values for cases
1 and 4 indicated that our technique tracked the shift of
the target on the thorax skin accurately and corrected the
misalignment. In order to generate cases 2 and 4, the
positions P, and PY in Eq. 1 were calculated as aver-
aged COGs of the subject’s positions during the first and
second transmission scans and the jth dynamic frame of
50-water or C'°0O emission scan. Using Eq. 1 with P,
and {Pg) }, we performed frame-by-frame motion cor-
rections for all dynamic frames of emission data. Due to
the fact that the PET scanner did not provide a dynamic
transmission scan, we assumed that the subject did not
move during the transmission scan.

For quantification of MBF, we employed a compartment
analysis model proposed by Ilida et al. [13], which provided
corrections for spillover from a left ventricle and partial vol-
ume effect and generated a MBF value in units of mL/min/g of
perfusable tissue. All transmission and emission images were
reoriented to the short axis. To calculate tissue time activity
curves, regions of interest (ROIs) were drawn in nine
myocardial regions: apical, mid-anterior, mid-lateral, mid-
posterior, mid-septal, basal-anterior, basal-lateral, basal-
posterior, and basal-septal regions. To avoid spillover effects
from the right ventricle, the sizes of ROIs in septal regions
were smaller than those in other regions. Another ROI was
drawn on the left ventricle in order to estimate the arterial
input function [19]. These ROIs were manually and inde-
pendently drawn for the four cases. In addition, to validate the
consistency between the quantitative results of MBF values
and the quality of the images, we calculated the build-up and
washout phase images [23] for the four cases. The build-up
and washout phase images were obtained by subtracting a
blood pool image from summed images of early (0~180 s)and
later (180360 s) frames of a ">O-water image.

We evaluated the magnitude of the subject’s motions in
the PET coordinate during each scan. We defined position
P, in Eq. 1 as the position at the start of the first trans-
mission scan, and position P, as the position at an arbitrary
time during a transmission or an emission scans. The
rotational angles and translations for arbitrary times were
obtained using Eq. 1. We represented motion during a scan
in the form of mean &+ SD for each rotational angle and
translation.

Results
Position calibrations

Table 1 shows the inherent accuracy of our system in the
two PET scanners. Values of SDs for rotations and trans-
lations obtained from 7Tg_,s data were very small. Table 1
also shows the approximation errors (mean =+ SD) occur-
red while transforming the positions of a point source from
the POLARIS coordinate to the PET coordinate using
Ts—p. There was no bias in any direction in either scanner.
Each value of RMSE was smaller than the spatial resolu-
tion of the corresponding scanner [21, 22].

Cardiac phantom study

Table 2 lists the observed misalignment from the reference
position of the phantom in the transmission scan and the
correlation coefficients between the reference image and
the misaligned images before and after the corrections
(mean £ SD; 0.929 4+ 0.022 and 0.987 + 0.010). The
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Table 1 Inherent accuracy of the motion correction system in the two PET scanners

Scanner Taos Ts.p # of point
- " positions
Rotational angle (deg) Translation (mm) [ ey e, RMSE
re Ty r 5% ty t
ECAT EXACT HR 0.0 0.0 0.0 0.0 0.0 0.0 00+£08 00+£09 00+£08 134+04 10
HEADTOME-V 0.0 0.0 0.0 0.0 0.0 0.1 004+15 00x16 00406 231+02 4

Standard deviations of rotational angles and translations obtained from Tg.,s data and approximation errors (mean & SD in mm) by trans-
forming positions of a point source from the POLARIS coordinate to the PET coordinate using Ts_,p. Columns Tg_,s, 7y, 7y and r, denote SDs of
rotational angles about three orthogonal X, Y, and Z axes, respectively. t,, t, and f, denote SDs of translations along three orthogonal axes,
respectively. Columns Ts..p, €, €,, and e, denote average values (mean =+ SD in mm) of e(i, X), e(i, ¥), and e(i, Z), respectively. e(i, k) was
defined in Eq. 4. RMSE denotes an average value (mean & SD in mm) of RMSE(i), defined in Eq. 5

Table 2 The observed misalignment and correlation coefficients for
the phantom study

Scan no. Rotation (deg) Translation Correlation
(mm) coefficient
Fe ry r. te t, t, Before  After
MC MC
2 0.0 0.2 5.1 357 08 —-34 0.89% 0.997
3 0.0 -10 1.3 09 352 32 0938 0.995
4 00 —-02 09 59 0.1 428 0917 0.971
5 13.1 1.4 04 19 225 17.1 0926 0.986
6 24 —156 —2.1 109 38 47 0938 0.982
7 —-0.6 1.8 —13.5 134 11.9 —9.5 0960 0.992
a Ant.
Sep. & Lat.
Pos.
10.0 1 7 T 1
b ; Reference
w Before correction
2 80r 7 After correction - - - - ’
x p
g 680 :
|
~— 4.0 4
8
s +
320t 3 ]
Q A
00 st D
0 20 40 60 80 100 120

Fig. 3 Reconstructed and reoriented images of the phantom.
a Reconstructed images. Left, mid, and right columns represent the
reference emission image (no misalignment), the second emission
images before correction for misalignment, and the second emission
images after correction for the misalignment, respectively. b Profiles
at the level of white lines in images. Solid line, cross symbols, and
dashed lines represent the first emission image, the second emission
images before correction, and the second emission images after
correction, respectively
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effects of our correction technique are demonstrated in
Fig. 3. The left column in Fig. 3a is the reference emission
image (no misalignment). The middle and right columns
represent the emission images with the misalignment of the
X-direction before and after the corrections. For the image
in the middle column, only the position was transformed to
the transmission coordinate after the reconstruction. Fig-
ure 3b represents line profiles at the level of white lines in
the slices.

Human study

Table 3 summarizes the observed movements of the sub-
ject during scans relative to the beginning of the first
transmission scan, in the form of rotational angles about
and translations along three orthogonal axes. It was
observed that the magnitude of the average parts of the
rotational angles and translations tended to increase. The
value of t, changed from —1.8 &+ 0.6 to 283 £ 0.6 mm
between the '>0O-water emission and the second transmis-
sion scan mainly because of the 30-mm shift of the couch
as well as the motions of the subject. There was little
change in the SD in any rotational angle or translation
among the scans.

Figure 4 shows motion parameters during 150-water
scan. Figure 4a and b represent the sample-by-sample
and frame-averaged translations. Figure 4c and d shows
the sample-by-sample and frame-averaged rotational
angles.

Table 4 shows that the MBF values (mean & SD),
which were obtained from nine myocardial segments,
were 094 +0.12, 091 4+ 0.13, 1.03 £0.21, and
0.93 4+ 0.11 mL/min/g for the four cases. The values for
cases 1 and 2 were obtained from the emission data and
the first attenuation map before and after motion cor-
rection. The values for cases 3 and 4 were obtained from
the emission data and the second attenuation map before
and after the corrections for the subject’s motions and
the 30-mm shift of the couch. There were significant
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Table 3 Observed movements (mean + SD) of the healthy volunteer during scans relative to the beginning of the first transmission scan

Scan Rotational angle (deg) Translation (mm)

x Ty e ty ty t,
TCT 1 —0.1£0.2 —-04 £ 0.2 —02 +02 07+05 1.3+ 06 1.0 £ 0.8
Cco 0.0 + 0.2 —-0.1 £ 0.2 —-0.7 £ 0.1 26+03 1.0 405 —-1.7 £ 07
150-water 04 +02 0.0 £ 0.1 —-0.7+£0.1 27+02 1.34+04 —1.8 £ 06
TCT 2 —-0.4 £ 0.2 0.7 £0.2 ~2.0 £+ 0.1 37403 2.6 £ 05 283 + 0.6

1y, Iy, and r, denote rotational angles (degrees) about X, Y, and Z-axes, respectively. £, #;, and ¢, denote translations (mm) along X, ¥, and Z axes,

respectively

Fig. 4 Motion parameters a 40 b 40
during PO-water study on the 3.0 30}
healthy volunteer. a, b Sample- e e S
by-sample and frame-averaged 20 20 ,_,‘ P00 660
translations. ¢, d Sample-by- g 10 ¢ € 10 Rgfso 0. OO O OO
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Table 4 MBF values (mL/min/g of perfusable tissue) of the healthy
volunteer

Myocardial Case
region
1 2 3 4

Apical 1.05 1.00 0.99 1.05
Mid-anterior 0.92 0.89 1.26 0.99
Mid-lateral 0.93 0.89 1.38 0.89
Mid-posterior  1.14 1.16 0.96 1.01
Mid-septal 1.05 1.06 1.08 1.12
Basal-anterior  0.87 0.80 1.18 0.80
Basal-lateral 0.86 0.82 0.95 0.84
Basal-posterior 0.88 0.83 0.84 0.86
Basal-septal 0.73 0.72 0.65 0.82

Mean + SD 0.94 £0.12 091 £0.13 1.03 + 0.21 0.93 + 0.11

z

My —F— fy =@ [ —3—

differences in the mid-anterior and mid-lateral regions as
well as the basal-anterior regions between cases 1 and 3.

Figure 5 demonstrates the influence of misalignment
between an attenuation map and emission data on the
quality of myocardial images, as well as the effect of our
correction technique. Figure Sa—f represent the build-up
and washout phase images of middle myocardial
obtained from the !’O-water data. Anterior, lateral,
posterior, and septal regions of myocardia were arranged
in a clockwise manner. Figure 5a and e was obtained
from the data of case 1, and Fig. 5b and f was calculated
from the data obtained in case 2. Figure 5¢ and g was
derived from the data in case 3, and only positions of
reconstructed images were transformed to the first
transmission coordinate after reconstructions for visual
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