A Wild type CCKAR-/-
’
1.0 @ 20 lux o 1.0
e 100 ux g
@© - Bright light (> 1000 lux) £
2 08 4 < 0.8
©
§‘
o 0.6
o
@
N
© .
g 0.4
3
p=4
0.2
0.0 T T

Wild type

CCKAR-/~

Atropine -s

Dark

Atropine 100 lux

o

Time after exposure ( sec)

0.35 - mumen \Wild type
5 0301 === CCKAR-/-
S 025 *
8 020 F *
(o}
g 0.15 4 [_'
£ 010+ ' I—LI
S 0.05 -

0.00 ] |

20 lux 100 lux

Bright light

Figure 7. Mice lacking CCK-A receptors exhibit an incomplete pupillary light
reflex. A) Time course changes in the normalized pupil area during light
exposure at different intensities (20, 100, or >1000 lux). All of these light
exposures were followed by 1-2 h dark adaptation during the daytime. The
dark-adapted aperture area just before light exposure was regarded as 1.0.
The maximal aperture area was estimated by an atropine instillation at the
end of experiments. Note that irradiation-dependent pupillary reflex was
observed for both genotypes, but CCKAR™/~ mice displayed reduced
pupillary constriction compared with the wild-type mice. B) Example video
frames taken in the session of 100-lux irradiation. Pupil diameters () were
estimated as arrows. Relative size of pupillary area was calculated based on »?
of dark-adapted pupil image. C) The minimal pupil area during 1 min of

light exposure was significantly larger in CCKAR™/ ™ mice than in the wild-type mice when they were exposed at 100 lux
or >1000 lux. n = 4-b in each group. *P < 0.05 by Student’s ¢ test.

cells. Inhibition of GABAergic amacrine cells would
then disinhibit the bipolar ganglion cell synapse. Reti-
nal ganglion cells, which project to the SCN, could then
be activated by ON bipolar cell activity (Fig. 8). Itis also
possible that the excitation of glycinergic amacrine
cells by activation of CCK-A receptors may inhibit OFF
bipolar terminals, which may also allow activation of
retinal ganglion cells. It has been suggested, however,
that intrinsically photosensitive retinal ganglion cells,
which are the predominant type (~75%) of SCN-
projecting retinal ganglion cells (43) only receive ON
bipolar terminals and amacrine cell terminals (8).
Rhythmic mPerl expression has been reported to occur in
the majority of GABAergic amacrine cells but not glycinergic
amacrine cells (44). Also, the AIl amacrine cells exhibit
circadian rhythms in parvalbumin expression in constant
darkness (45). Therefore, a subpopulation of amacrine cells
may contain an intrinsic molecular clock mechanism. It has
not been shown previously, however, that amacrine cell-
mediated pathways have a critical role in circadian photoen-
trainment. The present results showed that CCKAR ™/~ mice
exhibited significantly reduced bright lightinduced behav-
ioral phase shifts; thus, we propose that the CCK-A receptor-
mediated amacrine cell pathway has an important role in
circadian photoentrainment viaz cone photoreceptor path-
ways, although we cannot exclude the possible involvement
of rods in this signaling pathway only with the results of
behavioral phase shifts. In specific photoreceptor-deficient
mutants, such as midwavelength coneless mice (46), expo-
sure to fullspectrum light or saturating bright light (>100
lux) masks their deficiency in circadian photoentrainment.
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In the present study, however, CCKAR ™/~ mice exhibited a
significantly reduced saturating bright light response, sug-
gesting that multiple cone-mediated pathways may be pro-
cessed via amacrine cells that express CCK-A receptors. This
hypothesis is consistent with the dense lateral distribution of
CCK-A receptors within the inner nuclear layer that we
observed in the present study using X-gal staining.

CCK-A receptors may control outputs and inputs of
the circadian clock

The present data show that CCK-A receptors are involved
in the photic input to the SCN for photoentrainment.
This finding raises the possibility that CCK receptors in
related structures may have additional functions in other
aspects of circadian control of behaviors. For example,
the CCK peptide is known as an important regulator for
feeding behaviors, and CCK-A receptors may participate
in control of satiety both via central and gastrointestinal
systems (47). As described above, efferent fibers from the
SCN contain CCK peptides (16), and they may terminate
on satiety-controlling hypothalamic nuclei such as the
paraventricular nucleus and dorsal medial hypothalamus
that express CCK-A receptors (47), observable also in our
results (Fig. 1). This suggestion raises the possibility that
CCK outputs from the SCN contribute to the circadian
rhythms in feeding behaviors. If so, the CCK-A receptor-
mediated pathway could not be the sole output from the
SCN because CCKAR ™/~ mice maintain normal noctur-
nal feeding rhythms (48). Consistent with this hypothesis,
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Figure 8. Diagram of the possible retinal circuitry underlying
the role of amacrine cells and CCK-A receptors in photoen-
trainment of the circadian clock. Activation of CCK-A recep-
tors excites glycinergic amacrine cells [AC (Glycine)]. These
cells may then inhibit activation of GABAergic amacrine cells
[AC (GABA)], which would disinhibit ON bipolar-ganglion
cell synapses, allowing activation of intrinsically photosensi-
tive retinal ganglion cells (ipRGC) and then SCN neurons.
We propose that glycinergic amacrine cells modulate cone-
mediated pathways because CCKAR™/ ™ mice exhibited sig-
nificantly reduced phase shifts in response to bright light
pulses and functional CCK-A receptors were located primarily
on glycinergic amacrine cells. Sine waves indicate cell types in
which intrinsic intracellular clock gene oscillations have been
described (GABAergic amacrine cells and SCN neurons). IN,
inner nuclear layer; IP, inner plexiform layer; G, ganglion cell
layer; RHT, retinohypothalamic tract. (+) denotes excitatory
synaptic transmission, and (—) denotes inhibitory synaptic
transmission in the presence of light.

our locomotor activity recordings also showed strong
circadian rhythms in CCKAR™ ™ mice.

We have previously observed that light pulse-induced
phase shifts and c-fos expression in the SCN were
reduced in obese mutant OLETF rats (26, 27), which
lack multiple genes, including genes encoding CCK-A
receptors (28, 29). The present study further demon-
strated that CCKAR ™/~ mice exhibited impaired circa-
dian photoentrainability similar to that observed in
OLETF rats. The CCKAR™/™ mice are not obese,

CCK-A RECEPTORS REGULATE PHOTOENTRAINMENT

presumably due to the basal energy balance of mice,
although food intake activity is up-regulated in mutant
mice (30, 48, 49). Therefore, a lack of CCK-A receptors,
but not an obese phenotype, underlies impaired circa-
dian photoentrainability. The present study demon-
strated thatin CCKAR™ ™ mice a key cause of impaired
photoentrainability is a deficiency in CCK-A receptor
expression in amacrine cells.

As in cerebral CCK-receptive neurons, amacrine cells
may receive CCK peptides from neighboring retinal neu-
rons, because CCK peptides have been found in retina
(18-22), and blood-retinal barriers may prevent peptide
transport from the gastrointestinal system. It has recently
been suggested, however, that there may be direct regu-
lation of satiety control centers by peripheral nutritional
signals, such as CCK, ghrelin, and leptin, via “leaky”
portions of the blood-brain barrier and circumventricular
organs (47, 50). This suggestion raises the possibility that
peripheral CCK harmonistically activates cerebral and
retinal CCK-A receptors, adding an interesting aspect to
possible circadian clock mechanisms, especially at a sys-
tems level and in relation to metabolic control.

In conclusion, our data suggest a novel function for
retinal CCK in nonimage-forming visual functions, in-
cluding circadian photoentrainment and pupillary
light reflex. CCK-A receptors on glycinergic amacrine
cells may have a key role in the process of photoen-
trainment, probably modulating retinal ganglion cell
activation of the SCN.
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THE OLFACTORY CONDITIONING IN THE EARLY POSTNATAL
PERIOD STIMULATED NEURAL STEM/PROGENITOR CELLS IN
THE SUBVENTRICULAR ZONE AND INCREASED NEUROGENESIS IN

THE OLFACTORY BULB OF RATS
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Abstract—The olfactory memory acquired during the early
postnatal period is known to be maintained for a long period,
however, its neural mechanism remains to be clarified. In the
present study, we examined the effect of olfactory condition-
ing during the early postnatal period on neurogenesis in the
olfactory bulb of rats. Using the bromodeoxyuridine—pulse
chase method, we found that the olfactory conditioning,
which was a paired presentation of citral odor (conditioned
stimulus) and foot shock (unconditioned stimulus) in rat
pups on postnatal day 11, stimulated the proliferation of
neural stem/progenitor cells in the anterior subventricular
zone (aSVZ), but not in the olfactory bulb, at 24 h after the
conditioning. However, the number of newborn cells in the
olfactory bulb was increased at 2 weeks, but not 8 weeks,
after such conditioning. Neither the exposure of a citral
odor alone nor foot shock alone affected the proliferation
of neural stem/progenitor cells in the aSVZ at 24 h after and
the number of newborn cells in the oifactory bulb at 2
weeks after. The majority of newborn cells in the olfactory
bulb of either the conditioned rats or the unconditioned rats
expressed the neural marker NeuN, thus indicating that the
olfactory conditioning stimulated neurogenesis in the olfac-
tory bulb. These results suggest that olfactory conditioning
during the early postnatal period temporally stimulates neu-
rogenesis in the olfactory bulb of rats. © 2008 IBRO. Pub-
lished by Elsevier Ltd. All rights reserved.

Key words: neural stem cells, proliferation, SVZ, bromode-
oxyuridine, olfactory memory.

The olfactory function is well known to play an important
role in the survival of newborn animals as well as in hu-
mans. The long-term olfactory memory acquired during the
early postnatal period is involved in these olfactory func-

*Cormesponding author. Tel: +81-95-819-7033; fax: +81-95-819-7036.
E-mail address: kazuyuki@net.nagasaki-u.ac.jp (K. Shinohara).
Abbreviations: aSVZ, anterior subventricular zone; BrdU, bromode-
oxyuridine; CS, conditioned stimulus; PB, phosphate buffer; PBS,
phosphate-buffered saline; PBSGT, phosphate-buffered saline con-
taining 1% normal goat serum and 0.3% Triton X-100; PD, postnatal
day; RMS, rostral migratory stream; US, unconditioned stimulus.

tions, and therefore they are able to learn their mother’s
odor and successfully approach her nipple without any
visual information (Teicher and Blass, 1976). In general,
the paired presentation of odor and somatosensory stim-
ulation is known to be crucial in establishing olfactory learn-
ing. In rat pups, the pairing of odor and foot shock is able to
establish olfactory learning (Okutani et al., 1999; Sullivan et
al., 2000). Okutani et al. (1999) have reported that rat pups
that had been exposed to citral odor associated with shock
treatment on postnatal day (PD) 11, showed an aversive
response to that odor. At present, the mechanism underlying
the olfactory learning in early postnatal rats is considered to
involve the modulation and plasticity of the synapse in the
olfactory bulb (Wilson and Sullivan, 1994; Sullivan and Wil-
son, 2003), which involves either GABA (Okutani et al., 1999,
2003), noradrenaline (Sullivan et al., 1989, 1992; Yuan et al.,
2003) or serotonin (Yuan et al., 2003).

On the other hand, recent studies have revealed that
the neural stem/progenitor cells, which possess the ability
of proliferation and differentiation into neurons and glial
cells (Ono et al., 2001), are located not only in the embry-
onic brain but also in the postnatal brain, including the
anterior subventricular zone (aSVZ), subgranular zone of
the hippocampal dentate gyrus (Gage, 2002) and the ol-
factory bulb (Fukushima et al., 2002; Gritti et al., 2002).
The neural stem/progenitor cells in the aSVZ have been
proven to migrate via the rostral migratory stream (RMS)
and finally differentiate into interneurons, such as granule
cells and perigiomerular cells in the olfactory bulb, and it
takes approximately 2 weeks for neural stem/progenitor
cells to migrate and differentiate in the olfactory bulb (Alt-
man, 1969; Luskin, 1993; Lois and Alvarez-Buylla, 1994,
Kato et al., 2001; Coskun and Luskin, 2002). Furthermore,
the proliferative and differentiative activities of the neural
stem/progenitor cells in the aSVZ dynamically change un-
der various physiological conditions such as pregnancy
(Shingo et al., 2003) and enriched odor exposure (Roch-
efort et al., 2002).

Interestingly, a number of studies have reported hip-
pocampus-dependent learning to enhance adult neuro-
genesis in the hippocampal dentate gyrus and the new-
born neurons integrated in the hippocampal network ex-
hibit synaptic plasticity and are also involved in memory
formation (Gould et al., 1999a,b; Shors et al., 2001; Shors,
2004; Pham et al., 2005). These reports suggest that the
certain types of learning and memory might be formed by
the replacement of newborn neurons derived from the
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neural stem/progenitor cells in the postnatal brain. From
these lines of evidence, it is possible that early olfactory
learning involves newborn neurons in the olfactory bulb
which originates from neural stem/progenitor cells, which
develop in the aSVZ and thereafter migrate via the RMS to
the olfactory bulb. To explore this possibility, we therefore
investigated whether the olfactory conditioning during the
early postnatal period affects the neurogenesis in the ol-
factory bulb of the rats, using the bromodeoxyuridine
(BrdU) —pulse chase method.

EXPERIMENTAL PROCEDURES
Animals

Male and female pups of Long-Evans rats (SLC, Shizuoka, Japan)
were used. Dams were housed in polypropylene cages (41X
25%19 cm) with wood shavings, and were kept in an environment
with controlled temperature (23 °C) and light (12-h light/dark).
Food and water were available ad /ibitum. The litters were culled to
11 on PD 1 (PD 0 is defined as day of birth). All procedures were
conducted in accordance with the guidelines of the Institution for
Animal Care and the Use Committee of the Nagasaki University.
All experiments conformed to international guidelines on the eth-
ical use of animals. All efforts were made to minimize the number
of animals used and their suffering.

Olfactory conditioning and sampling schedule

Olfactory conditioning was performed on PD11. During a 30 min
training session, the conditioned subjects received continuous
exposure of citral odor [conditioned stimulus (CS)] with concurrent
electrical foot shock [unconditioned stimulus (US)] (CS/US group).
For odor exposure, absorbent cotton (2X2 cm) with 1 ul of citral
(Wako, Osaka, Japan) was attached to the ceiling of the training
chamber. The foot shock consisted of 15 presentations of a 5-s
electrical shock (0.5 mA) which were given at 2 min intervals. For
controls, unconditioned subjects received only citral odor (CS/—
group). Additional unconditioned subjects that were naive sub-
jects (—/— group) and shock-only subjects (—/US group), naive
subjects received neither citral odor nor foot-shock and shock-only
subjects received only foot shock. The pups were trained in trans-
lucent Plexiglas training chamber with a stainless steel grid floor.
Immediately after the training, pups were intraperitoneally injected
with BrdU (100 mg/kg). Twenty-four hours after the olfactory con-
ditioning, half the pups were deeply anesthetized with diethyl ether
and then were perfused intracardially with 25 ml of chilled saline
followed by 25 ml of 4% paraformaldehyde in 0.1 M phosphate
buffer (PB) and thereafter their brains were quickly removed. The
remaining pups were returned to their dams and they were main-
tained for 2 weeks. Two weeks after such olfactory conditioning,
the pups were anesthetized and perfused as described above and
their brains were quickly removed. To investigate the survival of
newly generated cells during the olfactory conditioning, a group of
pups was allowed to survive 8 weeks after the odor conditioning.
They were anesthetized with diethyl ether and then were perfused
intracardially with 100 mi of chilled saline followed by 100 ml of 4%
paraformaldehyde in 0.1 M PB and thereafter their brains were
quickly removed.

Immunohistochemistry

The brains were post-fixed in 4% paraformaldehyde in 0.1 M PB
overnight at 4 °C, followed by immersion in 20% sucrose in 0.1 M
PB for 48 h. The brain sections that were processed for immuno-
histochemistry were sampled at four distinct antero-posterior lev-
els. The frozen coronal sections with a thickness of 30 um were

made with a cryostat (Leica, Nussloch, Germany) at the olfactory
bulb, aSVZ, dentate gyrus and basolateral amygdala levels. The
sections were incubated in 2X SSC/formamide at 65 °C for 2 h,
and then were treated with 1 N HCI at 37 °C for 20 min, followed
by neutralization with 0.15 M sodium borate (pH 8.5) at room
temperature for 10 min. After three washes with phosphate-buff-
ered saline (PBS), the sections were incubated with rat anti-BrdU
antibody (1:100; Oxford Biotechnology, Oxford, UK) diluted with
phosphate-buffered saline containing 1% normal goat serum and
0.3% Triton X-100 (PBSGT) at 4 °C overnight, followed by Alexa-
Fluor568-conjugated goat anti-rat IgG (1:200; Molecular Probes,
Eugene, OR, USA) and 0.1 ug/ml of Hoechst33258 for a nuclear
counterstaining, diluted with PBSGT at room temperature for 2 h.
For the double-labeling of the olfactory bulb, the sections were
processed for BrdU-immunostaining and then were incubated in
primary antibodies at the following dilutions: mouse anti-NeuN anti-
body 1:500 (Chemicon, Temecula, CA, USA), mouse anti-GFAP
antibody 1:150 (Sigma-Aldrich, St. Louis, MO, USA). The sections
were incubated with AlexaFluor488-conjugated goat anti-mouse
1gG (1:200; Molecular Probes), and 0.1 ug/ml of Hoechst33258 for
nuclear counterstaining. After washing with PBS, the sections
were mounted, dried and coverslipped with Gel/MountTM, aque-
ous mounting gel (Biomeda Corporation, Foster City, CA, USA).

Quantification of the number of BrdU-positive cells
and the proportion of BrdU-positive cells that
co-express neural marker or astroglial marker

Three to five sections in each anatomical region were analyzed. The
images were photographed by a digital fluorescent microscope cam-
era (DP70, Olympus, Tokyo, Japan) equipped with a fluorescent
microscope (ECLIPSE E600, Nikon, Tokyo, Japan). The number of
BrdU-positive cells in the subgranular zone of the dentate gyrus and
basolateral amygdala was counted by an observer without any
knowledge of the groups. In the offactory bulb, the number of BrdU-
positive cells in the granule cell layer, intemal plexiform layer, and
mitral cell layer was counted as described above. In the case of
aSVZ 24 h after olfactory conditioning, the number of BrdU-positive
cells was counted using the Scion image software (Scion Corpora-
tion, Frederick, MD, USA) as previously reported (Aida et al., 2002).
Double-labeling experiments were analyzed by confocal scanning
microscopy (LSM510, Carl Zeiss, Jena, Germany).

Statistical analysis

The data in the present study were statistically analyzed by one-
way ANOVA followed by either Fisher's protected LSD post hoc
test or unpaired Student's t-test.

RESULTS

The effect of olfactory conditioning on the
proliferation of the neural stem/progenitor cells

To determine whether the olfactory conditioning affects the
proliferation of the neural stem/progenitor cells in the ol-
factory bulb, we quantified the number of BrdU-positive
cells in the olfactory bulb of the conditioned (CS/US group)
and unconditioned (CS/— groups) pups 24 h after the
olfactory conditioning followed by BrdU injection. Fig. 1A
shows the representative immunofluorescence images of
BrdU-positive cells in the olfactory bulb of CS/~ and
CS/US pups. There was no statistical difference in the
number of BrdU-positive cells in the olfactory bulb between
CS/US and CS/~— groups (Fig. 1B). We examined whether
olfactory conditioning affects the proliferation of the neural
stem/progenitor cells in the aSVZ. We counted the number
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Fig. 1. Olfactory conditioning fails to affect the proliferation of the neural stem/progenitor cells in the olfactory bulb. (A) The representative
immunofluorescence images of BrdU-positive cells in the olfactory bulb of CS/— and CS/US pups 24 h after the conditioning. The upper images
represent entire olfactory bulb and lower images are the enlargement of the granule cell layer enclosed by dashed rectangle in upper images. SEZ,
subependymal zone; GCL, granule cell layer; IPL, interplexi layer; MCL, mitral cell layer; EPL, external plexi layer; GLL, glomerular layer. (B) The
number of BrdU-positive cells in the oifactory bulb. The humber in parentheses indicates the number of pups.

of BrdU-positive cells in the aSVZ of the conditioned
(CS/US group) and unconditioned (CS/~, ~/—~ and —/US
groups) pups at 24 h after the olfactory conditioning fol-
lowed by BrdU injection. Fig. 2A shows the representative
immunofluorescence images of BrdU-positive cells in the
aSVZ of CS/— and CS/US pups. The number of BrdU-
positive cells within the aSVZ in the CS/US group was
significantly more abundant in comparison to those in the
CS/— control groups (Fig. 2B). In the other groups, no
statistical difference was observed in the number of BrdU-
positive cells in the aSVZ between the —/— group [758.6*+
66.50 (n=4)] and —/US group [816.4:97.31 (n=3)], or
between the —/— group [758.6+£66.50 (n=4)] and CS/—
group [744.7+76.59 (n=7)]. In the subgranular zone of the
hippocampal dentate gyrus, there was no statistical differ-
ence in the number of BrdU-positive cells between the
CS/— group [68.3:3.16 (n=4)] and CS/US group [72.2*
2.45 (n=4)]. Since basolateral amygdala is reported to
contain BrdU-positive cells in adult rodents (Wennstrom et
al., 2004), we examined the effects of olfactory condition-
ing on the number of BrdU-positive cells in the basolateral

amygdala. However, no significant difference was found in
the number of BrdU-positive cells in the basolateral amyg-
dala between the CS/— group [19.420.65 (n=4)] and the
CS/US group [18.3+1.45 (n=4)].

The effect of olfactory conditioning on the
differentiation of neural stem/progenitor cells

We examined whether the olfactory conditioning has any
effect on the differentiation of the neural stem/progenitor
cells. Therefore, we quantified the number of BrdU-positive
cells in the olfactory bulb of conditioned {(CS/US group)
and unconditioned (CS/—, —/— and —/US groups) pups at
2 weeks after the olfactory conditioning followed BrdU
injection, since it takes approximately 2 weeks for neural
stem/progenitor cells to migrate and differentiate in the
olfactory bulb (Lois and Alvarez-Buylla, 1994). Fig. 3A
shows the representative immunofluorescence images of
BrdU-positive cells in the olfactory bulb in CS/— and
CS/US pups 2 weeks after the conditioning and BrdU
injection. The number of BrdU-positive cells in the olfactory
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Fig. 2. Olfactory conditioning stimulates the proliferation of the neural stem/progenitor cells in the aSVZ. (A) The representative immunofluorescence
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followed by Fisher's PLSD test).

bulb of CS/US group [678.7+39.62 (n=14)] was signifi-
cantly more abundant in comparison to those in CS/—
control groups [477.8+26.12 (n=18)] (Fig. 3B). In the
other groups, no statistical difference was observed in the
number of BrdU-positive cells in the olfactory bulb between
the —/— group [485.5+34.54 (n=9)] and the —/US group
[515.4+8.63 (n=3)], or between the —/— group [485.5+
34.54 (n=9)] and the CS/— group [477.8£26.12 (n=18)].
The number of BrdU-positive cells in the olfactory bulb of
CS/US group [578.7+39.62 (n=14)] tended to increase in
comparison to those in —/— control group [485.5:£34.54

(n=9)] (P=0.078), though this difference did not reach a
significant level.

We also counted the number of BrdU-positive cells in the
aSVZ of conditioned (CS/US group) and unconditioned
(CS/~ groups) pups 2 weeks after the olfactory conditioning
and BrdU injection. There was no statistical difference in the
number of BrdU-positive cells between the CS/— group
[30.64+6.27 (n=4)] and the CS/US group [38.198.03 (n=4)).

We next examined the effect of olfactory conditioning on
the fate of the neural stem/progenitor cells. Therefore, we
quantified the proportion of BrdU-positive cells that co-ex-
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ANOVA followed by Fisher's PLSD test).

pressed the neuronal marker NeuN or the astroglial marker
GFAP in the granule cell layer of the olfactory bulb in the
conditioned (CS/US group) and unconditioned (CS/— group)
pups 2 weeks after the olfactory conditioning and BrdU injec-
tion. Fig. 4A and 4B exhibit the representative confocal im-
ages double-labeled with BrdU-positive cells and NeuN or
GFAP in the olfactory bulb. The majority of the BrdU-positive
cells co-expressed NeuN, while the BrdU-positive cells with
GFAP expression were only sparsely observed. Fig. 4C
shows the proportion of the cells double-labeled with either
NeuN or GFAP in the olfactory bulb. No difference was
observed in the proportion of the BrdU-positive cells co-
expressing either NeuN or GFAP between the conditioned
(CS/US) group and the unconditioned (CS/—) group.

To investigate the survival of cells newly generated
during the olfactory conditioning, we quantified the number
of BrdU-positive cells and the proportion of BrdU-positive
cells that co-expressed the neuronal marker NeuN or the
astroglial marker GFAP in the granule cell layer of the
olfactory bulb in the conditioned (CS/US group) and un-

conditioned (CS/— group) pups 8 weeks after the olfactory
conditioning and BrdU injection. Even 8 weeks after the
olfactory conditioning followed by BrdU injection, newly
generated cells which incorporated BrdU during the olfac-
tory conditioning was observed in the olfactory bulb. There
was, however, no statistical difference in the number of
BrdU-positive cells between the CS/— [215.4%+15.56
(n=4)] and the CS/US group [203.4:6.89 (n=4)]. In re-
gard to the proportion of the BrdU-positive cells co-ex-
pressing NeuN, no difference was observed between the
CS/— [83.1%=1.1% (n=4)] and the CS/US group [84.6*
1.2% (n=4)]. Likewise, we could not detect any difference
in the proportion of the BrdU-positive cells co-expressing
GFAP between the CS/— [14.3%£0.6% (n=4)] and the
CS/US groups [15.9+1.0% (n=4)].

DISCUSSION

The present study was designed to investigate whether the
olfactory conditioning during the early postnatal period

— 2565 —



K. So et al. / Neuroscience 151 (2008) 120-128 125

CS/US B CS/-

Zi a
3 m
Z (G)
o o
5 =
© ©
@ (1)
15 o
[ [TIN
= =

20um
NeuN-BrdU
C 100
;\3 90 T
5o 80
s8 10 f
52
&% 50 I
Sa 40
2o g0 L GFAP-BrdU
F3
3 2 }
© 10t —
0 1 -_.__J
CS/- CS/US CS/- Cs/us
(4) 4) 4) (4)

Fig. 4. Most of the newborn cells express the neural marker NeuN. (A) Representative confocal images of the double labeling of BrdU-positive cells
with the neural marker NeuN in the olfactory bulb of CS/— and CS/US pups at 2 weeks after conditioning. The arrows in the merged image indicate
double-positive cells. (B) The representative confocal images of double labeling of BrdU-positive cells with the astroglial marker GFAP in the olfactory
bulb of CS/— and CS/US pups 2 weeks after the conditioning. The arrows in the merged image indicate double-positive cells. (C) The proportion of
BrdU-NeuN and BrdU-GFAP double-positive cells in the granule cell layer of the olfactory bulb. The number in parentheses indicates the number of
pups.

affects the neurogenesis in the olfactory bulb of rat pups. increase in the number of newborn neurons in the olfactory
Using the BrdU-pulse chase method, we found early ol- bulb 2 weeks, but not 8 weeks, later. These results suggest
factory conditioning in rats to stimulate the proliferation of that olfactory conditioning activated the neural stem/pro-
the neural stem/progenitor cells in the aSVZ followed by an genitor cells in the aSVZ and that the neural stem/progen-
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itor cells might migrate rostrally thereby inducing an increase
in neurogenesis in the olfactory bulb. To our knowledge, this
is the first report to show that olfactory conditioning during the
early postnatal period temporally stimulates neurogenesis in
the olfactory bulb of rats.

It is well known that the olfactory bulb plays a critical
role in odor learning (Wilson and Sullivan, 1894; Sullivan
and Wilson, 2003). Since a number of studies have re-
vealed neurogenesis to occur in the postnatal olfactory
bulb (Altman, 1969; Luskin, 1993; Lois and Alvarez-Buylia,
1994; Coskun and Luskin, 2002), it is therefore possible
that neurogenesis could be involved in the neural plasticity
in the olfactory bulb. To explore this possibility, we exam-
ined whether the olfactory conditioning in early postnatal
rats stimulates the neurogenesis of the neural stem/pro-
genitor cells in the olfactory bulb. As a result, early olfac-
tory conditioning was proven to increase neurogenesis in
the olfactory bulb temporally.

We determined where the newborn neurons in the
olfactory bulb came from. Since recent studies have re-
vealed that neural stem/progenitor cells exist in the olfac-
tory bulb (Fukushima et al., 2002; Gritti et al., 2002), we
examined whether olfactory conditioning in early postnatal
rats stimulates the proliferation of neural stem/progenitor
cells in the oifactory bulb 24 h after such olfactory condi-
tioning. However, such olfactory conditioning failed to af-
fect the proliferation of neural stem/progenitor cells in the
oifactory bulb. Nexi, we investigated the effect of olfactory
conditioning on the proliferation of neural stem/progenitor
celis in the aSVZ, in which neural stem/progenitor cells are
known to migrate along the RMS and differentiate into
interneurons in the olfactory bulb (Altman, 1969; Luskin,
1993; Lois and Alvarez-Buylla, 1994; Kato et al., 2001). As
a result, the neural stem/progenitor cells were observed to
remarkably proliferate in the aSVZ 24 h after olfactory
conditioning, thus suggesting that neurogenesis in the ol-
factory bulb originated from the neural stem/progenitor
cells in the aSVZ.

It is possible that the CS (citral odor) alone or the US
(foot shock) alone influenced the proliferation of these
neural stem/progenitor cells. However, this possibility is
unlikely because we found neither the CS alone nor the US
alone to affect the proliferation of neural stem/progenitor
cells in the aSVZ.

It has been reported that a considerable number of
newborn neural stem/progenitor cells die during migration
from SVZ to olfactory bulb (Brunjes and Armstrong, 1996)
and a small portion of newborn cells in the SVZ could
reach cerebral cortex (Gould et al., 2001; Gould and
Gross, 2002). Kato et al. (2001) indicated that two-thirds of
newly generated neurons in the granule cell layer of the
olfactory bulb were lost during the short survival time (6
weeks). In our present study, it should be noted that the
difference in the number of BrdU-positive cells in the aSVZ
24 h after the olfactory conditioning between the CS/—
group and CS/US group was more apparatus than that in
the olfactory bulb 2 weeks after the olfactory conditioning.
Furthermore, we demonstrated that a part of newly gener-
ated neurons in the olfactory bulb survived 8 weeks after

the olfactory conditioning, but a number of BrdU-positive
cells were less than a half of those 2 weeks after the
olfactory conditioning and there was no significant differ-
ence in the number of BrdU-positive cells between the
CS/— group and the CS/US group. Based on both the
findings of previous reports and our present results, a part
of newly generated cells in the aSVZ during the olfactory
conditioning might arrive and survive for a long time in
the olfactory bulb, leading the decrease in the difference in
the number of BrdU-positive cells 2 and 8 weeks after the
conditioning.

Hippocampus-dependent learning, such as water
maze learning, trace eyeblink conditioning and contextual
fear-conditioning, modulates the neurogenesis in the den-
tate gyrus, but not in the aSVZ (Gould et al., 1999a; Pham
et al., 2005). Shors et al. (2001) demonstrated the neuro-
genesis in the adult dentate gyrus to be causally involved
in the formation of trace eyeblink conditioning using a
reagent to diminish the number of adult-generated cells.
On the other hand, olfactory conditioning was found to
affect the proliferation of neural stem/progenitor cells in the
aSVZ, but not in the dentate gyrus in the present study.
Thus, the neural stem/progenitor cells in the aSVZ and the
dentate gyrus are considered to be independently regu-
lated according to individual learning tasks.

In the present study, we showed early olfactory condi-
tioning to be associated with increases in the proliferation
of the neural stem/progenitor cells within the aSVZ fol-
lowed by increases in neurogenesis in the olfactory bulb at
2 weeks after olfactory conditioning, but its precise mech-
anism remains unknown. In rats that undergo an olfactory
bulbectomy, the neural stem/progenitor cells in the aSVZ
continued to proliferate and migrate rostrally (Kirschen-
baum et al., 1999). In other studies, olfactory deprivation
by naris closure did not affect the proliferation or migration
of the majority of neural progenitor cells in the SVZ and
RMS (Frazier-Cierpial and Brunjes, 1989; Corotto et al.,
1994). Our present study demonstrated that the exposure
of the citral odor (CS) alone failed to affect the proliferation
of neural progenitor cells in the aSVZ. Based on both the
findings of previous reports and our present results, the
neural activation in the olfactory bulb by odor stimulation is
thus suggested to not be sufficient for the increased neu-
rogenesis caused by olfactory conditioning and olfactory
conditioning is suggested to necessarily appear to be as-
sociated with odor. Since a number of factors such as
growth factors and neuropeptides have been shown to
regulate the proliferation of neural stem/progenitor cells in
the aSVZ (Gritti et al., 1999; Wagner et al., 1999; Shingo et
al., 2003), these factors might associate CS with US in
order to regulate the proliferation of neural stem/progenitor
cells.

It is known that the neural stem/progenitor cells in the
aSVZ migrate long distances and differentiate into inter-
neurons, namely granule cells and periglomerular cells in
the olfactory bulb (Altman, 1969; Luskin, 1993; Lois and
Alvarez-Buylla, 1994; Zigova et al., 1996). However, it
remains to be clarified exactly how newborn neurons are
involved in the neural networks of the olfactory bulb. The
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granule cells form GABAergic inhibitory synapse to the
mitral cells which are the main output neurons from the
olfactory bulb. Mutant mice lacking neural cell adhesion
molecule have been reported to be deficient in the migra-
tion of neural stem/progenitor cells, thus resulting in an
impairment of odor discrimination (Gheusi et al., 2000).
Similarly, Rochefort et al. (2002) reported an enriched odor
environment to increase the number of the newborn gran-
ule celis in the olfactory bulb, thereby improving olfactory
memory in adult mice. In the present study, we demon-
strated the number of newborn neurons in the olfactory
bulb to increase by the olfactory conditioning at 2 weeks
after, but not 8 weeks after the olfactory conditioning.
Further experiments will be required to clarify the role of
the temporal stimulation of the neurogenesis by the olfac-
tory conditioning in the brain functions such as olfactory
learning and memory.
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Medical and Surgical Management for Necrotizing Enterocolitis in

Low~birth-weight Infants
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The mortality rate of necrotizing enterocolitis (NEC) is very high in low-birth-
weight infants. In the management of this life-threatening disease, prevention, early
diagnosis, and early medical treatment are the most important strategies. Intestinal
perforation is accepted as the absolute indication of surgical intervention. However,
the relative indications and initial optimal surgical procedure—peritoneal drainage or
laparotomy—have been controversial. We will describe our strategies of prevention
and medical and surgical management for NEC and discuss issues of prevention, medi-
cal treatment, indications for surgical intervention, and optimal surgical treatment.
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