current during depolarizing and hyperpolarizing (-50 mV) steps,
as previously reported {Bendahhou et al,, 2005; Schroeder et al.,
2000]. After the recordings of Q1 with or without E3 current, we
applied HMR1556 (1 &muM), a selective Q1 channel blocker.
Though the sensitivity on the Q1 alone and QI1+E3 channel of
chromanol 293B, another Q1 channel blocker, was different [Bett

patlent 4
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Figure 3. The 12-lead ECG of Patient 4 with QT prolongation. The
patient was found to have a KCNE3-SNP, P33R, and a KCNH2-
mutatlon W536G

et al, 2006}, both Q1 and Q1+E3 currents were almost totally
abolished by only 1 &muM HMR1556 (lower panels of Fig. 4A).

HMRI1556-sensitive current densities at the end of test pulse
(Fig. 4B) were averaged from data and are plotted as the function
of test voltage of Q1 (closed square), Q1 +E3-WT (closed circle),
Q1+E3-R99AH (open triangle), Q1-+E3-T4A (open circle), and
Q1+E3-P39R (closed triangle). Currents reconstituted by Ql
alone were activated at potentials greater than —40mV, whereas
those by Q1+E3 (WT and all mutants) were active at all test
potentials and exhibited a strong outward rectification with a
reversal potential close to Ex (-84 mV as predicted by Nernst
equation), All three E3 mutants, E3-R99AH, E3-T4A, and E3-
P39R, produced membrane currents with properties qualitatively
similar to those of E3-WT. As summarized in Figure 4C, the
current densities for the Q1+E3-R99AH current at +40 and
-120mV were 163.71426.3 and -10.1+2.6 pA/pE, respectively.
These values were significantly smaller than those of the Q1 +E3-
WT (301.6+33.3pA/pF at +40mV and —24.5+4.2pA/pF at
—120 mV, P<0.05). Q1+E3-T4A and Q1+E3-P39R displayed no
statistically significant difference. The deactivation time constant
for tail currents was significantly decreased by coexpression of E3
with Q1, but these three mutations in E3 had no significant effect
on deactivation kinetics (Fig. 4D).

Cellular Immunocytochemistry of KCNE3

It was reported that no E3 could be expressed on the plasma
membrane in the absence of Q1 [Schroeder et al., 2000]. This was
reconfirmed in our experimental protocol; the two left columns in
Figure 5 show that HA-tagged E3 is not detected by Alexa 488
conjugated HA antibodies in nonpermeabilized COS7 cells in the

A ma
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Functional analysis of KCNE3 and its mutants in a CHO cell line stably expressing KCNQ1 channel. A: Whole-cell membrane

currents recorded from stable KCNQ1-CHO cells transfected without (Q1) or with KCNE3-wild type (Q1+-E3-WT), KCNE3-R99AH {Q1-+E3-R8ILH),
KCNE3-T4A {Q1+E3-T4A), or KCNE3-P39R (Q1+E3-P39R). Cells were held at -80 mV and stepped to various test potentials ranging from —120 to
+40mV in 10mV steps for 1 sec before (upper panel) and during (lower panel) exposure to HMR1556 {1 uM). Dotted line indicates zero current
level. Scale bars indicate 0.5 sec and 100 pA/pF. Insets to right of each recording illustrate expanded views of tail current elicited after return to
-50mV from test potentials. Scale bar indicates 0.1 sec. B: Current-voitage relationships for mean values of HMR1556-sensitive currents
measured at the end of test pulses in CHO cells expressing Q1 (closed square, n = 5), Q1+E3-WT (closed circle, n = 14), Q1+E3-R39AH (open
triangle, n = 12), Q1+E3-T4A (open circle, n = 12), or Q1+E3-P39R (closed triangle, n = 10). C: Summary of the current density measured at +40
{black bar} and —120 mV (white bar). Columns and error bars indicate mean--SEM. D: Deactivation time constant calculated by fitting a single
exponential function to tail current at ~50 mV after depolarization to +40mV.
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E3-WT

Qi1+E3-WT

Q1+E3-R99H

Q1+E3.T4A Q1+E3.P3UR

Figure 5.

Cell surface expression of WT and mutant KCNE3 channels in nonpermeabilized cell. Upper panels of each column indicate HA-

tagged KCNE3 (E3) (WT and three variants) with Alexa 488-conjugated antibodies with or without KCNQ1. Lower panels show merge of green
fluorescence and light transmission images. Scale bars indicate 50 &mum in E3-WT and 10 &mum in others.

absence of Q1 cotransfection. In contrast, HA-tagged E3 could be
visualized in the presence of Q1, which indicates that the Q1
protein is necessary for E3 to be successfully trafficked to the cell
membrane. Q1 plus HA-tagged E3 channels generated currents
similar to those of Q1 plus untagged E3 channels (data not
shown). Figure 5 illustrates representative sets of confocal images.
COS7 cells were transfected with tagged E3 (WT, T4A, and
R99AH) and QIl. All Q1 plus HA-tagged E3 exhibited green
fluorescence in the plasma membrane indicating that these
channels were trafficked to the plasma membrane normally.

Discussion

In the present study, we report three E3 variants found in 485
LQTS probands. One of the two novel mutations, R99A\H,
displayed a significant decrease in outward currents when
coexpressed with Q1. The proband with the E3-R99AH mutation
suffered from drug-induced TdP. After washout of disopyramide,
her QTc time on the ECG returned within normal range. The drug
probably induced remarkable QT prolongation and TdP in the
presence of a reduced repolarization reserve [Roden, 1998], which
was associated with the E3-R99AH mutation.

The expression of E3 was confirmed in the human heart
[Bendahhou et al., 2005; Lundquist et al., 2005, 2006]. Though
neither the presence nor potential function of Q1+E3 channels in
human cardiac myocytes have been determined, E3 conformed a
functional channel in interaction with Q1, constitutively open
potassium channel [Schroeder et al., 2000]. In addition, azimilide-
sensitive Q1+E3 like currents were recorded in canine myocytes
[Dun and Boyden, 2005]. On account of these results, E3 is
assumed to have a physiological role in human heart. Mazhari
et al. [2002] studied the effects of E3 on action potential duration
(APD) in in vivo transduction of guinea pig ventricular myocytes.
APD of E3-transduced myocytes was significantly reduced
compared to that of control myocytes. Under the assumption
that E3 might interact with KCNH2, they also performed a series
of tests using an I, blocker (E-4031) to determine whether the
APD shortening was due to the interaction with E3 and KCNH2.
However, E-4031 did not affect the APD in E3-transduced
myocytes. As a result, the APD shortening appeared to be a result
of the interaction between Q1 and E3. Although ventricular
myocytes are repolarized mainly by Q1+E1 (Ix,) and KCNH2
(Ig,) in human hearts, we believe that the mutant E3 could
prolong APD through interaction with Q1. We recently reported
the knockdown of E3 expression using RNA interference in guinea
pig ventricular myocytes [Toyoda et al., 2008]. The knockdown of
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E3 was found to prolong the APD, suggesting that E3 may play a
physiological role in repolarization of cardiac action potential.

The interaction between KCNH2 and E3 is not established yet.
In the experiments using Xenopus oocytes, KCNH2 currents were
suppressed by coinjection with E3 [Schroeder et al., 2000]. On the
contrary, the interaction in horse hearts could not be displayed by
means of sequential immunoprecipitation and immunoblotting
[Finley et al., 2002]. In addition, the I, blocker did not affect
APD in E3-transduced myocytes in guinea pigs [Mazhari et al.,
2002]. Consequently, we supposed that KCNH2 plus E3 channel
would affect very little for repolarization. We therefore did not
pursue further examination on the interaction with KCNH2 and
E3 using mammalian cell lines.

Regarding the E3-T4A mutation, we postulated that the E3-T4A
has minor effects on the QT prolongation, based on the fact that
no E3-T4A variant was found in our normal control. Though one
of the probands had a KCNH2-G572S mutation [Tester et al,
2005] which is supposed to be the major reason for the QT
prolongation, another proband had no mutation in major LQTS-
related genes. In our biophysical assay, the mutant caused no
significant difference in Q1+E3-T4A channel currents; therefore
we could not display the association between E3-T4A mutation
and QT prolongation. In patient 3, hypokalemia triggered the
TdP, accordingly reducing extracellular potassium level may affect
the currents through Q1+E3-T4A channels. Or E3 may also
interact with another potassium channel alpha-subunit that affects
the repolarization of cardiac myocytes, and the E3-T4A mutation
may decrease the outward current to prolong QT time. We have to
take into account that E3-T4A is a rare SNP, because the
correlation between phenotype and genotype in our patients was
not common and the number of our control was smaller
compared to the studied cases.

E3-P39R may also have functional effects on repolarization.
However, our proband with E3-P39R had a compound KCNH2-
W563G mutation, as well as typical symptoms and ECG findings
(Fig. 3) compatible with type 2 LQTS. In addition, functional
analysis of the Q1+E3-P39R channel displayed smaller current
densities than those of the Q1+E3-WT channel; however there
was no statistical difference. Therefore we considered E3-P39R as a
rare normal variant in Japanese.

Concerning another o, subunit which interacts with KCNE3, Kv4.3
potassium channel encoded by KCND3 produces transient outward
potassium conductance (I,,) in the heart and KCNE3 inhibits the
Kv4.3 currents [Lundby and Olesen, 2006; Radicke et al., 2006], even
in the presence of KChIP2. Hence, there is a possibility that our E3
mutants affect the Kv4.3 current and prolong QT interval.



In conclusion, we identified three E3 variants among 485
Japanese LQTS probands, and one of which significantly reduced
currents by interacting with Ql. Though the proband had
remained asymptomatic in the absence of risk predisposing to
QT prolongation, she fell into highly critical condition by taking
disopyramide for AF at age of 76. Therefore, identification of E3
mutations with possible phenotypic effects provides us with
information for our understanding of the mechanism of LQTS.
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Abstract A framework for the homogenization of nonlin-
ear problems is discussed with respect to block LU factor-
ization of the micro—macro coupled equation, and based on
the relation between the characteristic deformation and the
Schur-Complement as the homogenized tangent stiffness. In
addition, a couple of approximation methods are introduced
to reduce the computational cost, i.e., a simple scheme to
reuse the old characteristic deformation and a sophisticated
method based on the mode-superposition method developed
by our group. Note that these approximation methods sat-
isfy the equilibrium conditions in both scales. Then, using
a simplified FE model, the conventional algorithm, a rela-
tive algorithm originating from the block LU factorization,
and the above-mentioned algorithms with the approximated
Schur-Complement are compared and discussed. Finally, a
large-scale heart simulation using parallel computation is
presented, based on the proposed method.
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u Macroscopic displacement vector

{u} Macroscopic structure nodal displacement
vector

{u®} Macroscopic structure nodal displacement
vector per element

w Periodic component of the microscopic
displacement vector

{w} Periodic component of the nodal
displacement vectors of all
microstructures

(w9} Periodic component of the nodal

displacement vector of a single
microstructure

Periodic component of the nodal
displacement vector per element
The deformation gradient tensor
The displacement gradient tensor
The right Cauchy—Green tensor
The Green—Lagrange strain tensor
The first Piola—Kirchhoff stress tensor
The identity tensor

I, 1., Ill, Principal invariants

J Determinant F

{w¢}

o EOQN™

1 Introduction

The door to petaflop computing has recently opened and
meaningful applications for massively parallel computers
are being sought. A multi-scale approach to biomechani-
cal problems is consequential in the post-genome era and
the homogenization method is going to play a more impor-
tant role than ever before. The homogenization method is a
mathematical modeling technique for efficiently analyzing
inhomogeneous material with a periodic microstructure. In
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biomaterial, the periodicity hypothesized in the homogeni-
zation method is not strictly established. However, Terada
et al. [1] have shown that an appropriate equivalent charac-
teristic is obtained in material with an irregular microstruc-
ture by assuming a periodic boundary condition. Thus, it
is possible to evaluate the effect of each component in the
microstructure on the macroscopic behavior, if microstruc-
ture modeling is appropriate. The homogenization method
for biomaterial was applied to bone by Hollister and Kikuchi
[2], while a two-dimensional analysis of engineered tissue
cells was conducted by Breuls et al. [3]. In an example using
the heart, Krassowska et al. [4] applied the method to an
excitation propagation phenomena. To investigate the effect
of intracellular structure on heartbeat, the authors have devel-
oped the necessary finite element homogenization method,
where the heart is the macrostructure and the cardiomyocyte
the microstructure. Thus the problem inevitably becomes a
large-scale one.

In the homogenization method two scales are introduced,
namely, a scale for the unit period, and a scale for the whole
material. By solving the governing equations for both scales
with coupling, we can obtain the macroscopic characteristic
as an equivalent homogeneous body and variable distribu-
tion from the microstructure. In the conventional nonlinear
homogenization method [5, 6], itis first necessary to calculate
microscopic equilibrium and then the macroscopic tangen-
tial homogenization updates all quadrature points at every
Newton—Raphson iteration, resulting in huge computational
cost. Even with a high performance computer, the cost is
prohibitive for practical large-scale problems. To reduce this
computational cost, various techniques have been devised.
These include, for example, the construction of a database
with the homogenized properties [7], sensitivity analysis [8],
Fast Fourier Transforms [9], and so on. In a previous work,
we proposed a homogenization method using characteristic
deformation mode superposition [10,11]. This is, however,
an approximation method and the accuracy depends on the
problem. We subsequently proposed a new algorithm that
solves the microscopic equilibrium equation alternately with
the solution of the mode superposition-based micro-macro
coupled equation. In this algorithm, the equilibrium condi-
tions for both the micro and macro structures are satisfied
with far less computational cost. This method is applicable
to microstructures composed of slightly incompressible and
viscoelastic materials [12—-15].

Looking at this method from the block LU factorization
of the micro—macro coupled equation, we recognize that the
Schur-Complement as the homogenized tangent stiffness, is
ingeniously approximated with the aid of mode superposi-
tion. It is further beneficial to generalize this view, that is,
to interpret the framework of the homogenization method
with regard to the block LU factorization and investigate how
the Schur-Complement can be approximated to reduce the

@ Springer

(b) Micro Structure

Fig. 1 Homogenization method for large deformation problems.
a Macro structure. b Micro structure

computational cost whilst preserving the accuracy. Accord-
ingly, a couple of approximation methods, i.e., a simple
scheme to reuse the old characteristic deformation and the
above-mentioned mode-superposition based method, are
introduced in this paper. Then a simplified numerical exam-
ple is solved using both the conventional homogenization
algorithm and the algorithm originating from the block LU
factorization, and the performance of each is discussed.
Finally, a large-scale heart simulation using parallel com-
putation is presented based on the proposed method.

2 Homogenization method for finite deformation
problem

2.1 Problem statement and geometric prospect

We assume that the material in the body (£2) reveals heteroge-
neity on a very fine scale and is characterized by the periodic
distribution of a basic structural element (Yp) as shown in
Fig. 1. To measure the changes in the spatial domains, we
introduce two scales: a macro-scale X €  and a micro-scale
Y € Yp. Thus the actual domain can be regarded as the prod-
uct space (€2 x Yp). In the subsequent development, the mac-
roscopic quantity corresponding to the microscopic one is
expressed with a bar symbol over the microscopic symbol.
The following assumptions of homogenization are applied in
the formulation of the homogenization method.

— A macrostructure that consists of a periodic microstruc-
ture can be considered to be an approximately equivalent
homogeneous substance.

— A microstructure is infinitely fine compared with a
macrostructure; the variable defined at each point of the
macrostructure corresponds to the volume average of the
variables in the microstructure.



Comput Mech

It is assumed that the deformation of the microstructure is
linked to the local values of the macro continuum via

y=FY+w, M

where y and Y are position vectors defined on the micro-
structure [16].

The deformation consists of a homogeneous part FY and
a non-homogeneous superposed field w. Consequently, the
following relationships exist between the microscopic and
macroscopic deformation gradients.

ay = 5
F=Vyy= - = s 2
YY =55 F+2Z )
— ox
F=Vyx=—, 3
XX = og 3
~ ow
Z=VY‘V=W' (4)

Thus increment and variation of the deformation gradients
are represented, respectively, as

AF = AF + AZ = AF + VyAw, Q)
SF = 8F + 8Z = &F + Vydw. ©)

For the assumptions mentioned above, the macroscopic
gradients are related via the volume averages

- 1 1 = = — 1 .
F=—/FdY=—/(F+Z)dY=F+—/ZdY,
IVl vl VI
Yo Yo Yo

Q)

where V is the volume of the microstructure Yg. Then, the
fluctuation field w must satisfy the constraint

/ZdY:/%%dY:/N@wdS:O, (8)
Yo Yo Yy

where N is an outward normal vector on the boundary 8Yp.
This constraint is satisfied when w is periodic.

2.2 Formulation of homogenization method and finite
element discretization

We now consider the equilibrium of material with a peri-
odic microstructure, modeled by hyperelastic material. Using
the principle of stationary potential energy, the equilibrium
condition becomes a functional stationary problem. Under
the homogenization assumptions, the macroscopic potential
energy is related via the volume averages of the microscopic
ones and the entire potential energy is defined by

P = /II7|/WdeX—/t.udS, &2
. 7

Q aQ

where W is the strain energy function of the microstruc-
ture defined by the deformation gradient F, and assuming

conservative tractions. The stationary condition becomes

1
5P = / W_I/(SF: MdYdX — Fext(8u) =0, o)
Q Yo
oW
M= T ay
Fexi(Su) = /t.&udS. (12)

aQ

A similar equation has been reported by Terada and Kikuchi
[5] using two-scale convergence theory [17]. We have also
shown a formulation based on the mixed variational princi-
ple with a perturbed Lagrange-multiplier [14]. By inserting
Eq. (6) into Eq. (10), macro and micro equilibrium equations
can be derived based on the defined space of the variation.

— 1 —

G = / 7 / 8F: MdYdX — Fop(du) =0, (13)
Q Yo

G=/8Z:HdY=O, 14)

Yo

which achieves equilibrium under the given boundary
condition in the macrostructure and self-equilibrium under a
periodic boundary condition, Eq. (8), of the microscopic dis-
placement in the microstructure. Thus the homogenization
method simultaneously satisfies the two equilibrium condi-
tions as described above. To solve the nonlinear equation,
the Newton—Raphson method is employed. Then the stan-
dard linearization process in nonlinear finite element method
provides the following linearized equations

1 r
— | 8F: A: AFdYdX
/!VI/

Q Yo
1
= ex,(&u)——/-'vl‘/SF: HdeX, (15)
Q Yo
all
A= —.
aF (16)

Substituting Egs. (5) and (6) into the above equation yields

/ I“Xl"l / sOF +38Z) : A : (AF + AZ)dYdX
Q Yo

1 -
= Fext(8u) —/m/(BIH—SZ) :HdYdX. amn
Q Yo
By finite element discretization using
AF = [B¢]{Auf}, (18)
AZ = [B[{AwE}, (19)

@ Springer



Comput Mech

where [B¢] is a shape function matrix, the left-hand side of
Eq. (17) becomes

{BWQ}ITI/T / (BE1T[AlLBC1dY (AwC)
Yo
+ {va}% / (B°)T [AldY[B¥)(Au¢)
Yo
+ {aue}[ﬁfﬁl,—l / [A][B¢]dY {Aw?}
Y

+ {sue}['B‘E]Trlﬁ f [AldY[B)(Au?)
Yo

= (Bw2IKZ, (AW} 4 (5w2)KY (Au®)
+ [(Bu®}K 2, (AW?} + (Su}KZ (Au®),

ww Hu (20)
while the second term of the right-hand side of Eq. (17)
becomes

Vi

— (su} B — / [Ty — {an}l-‘l,—l / (817 [,
i’o Yo

@1

at each quadrature point of the macrostructure. Symbol g
denotes the quantity that is evaluated at a macroscopic quad-
rature point, while symbol e denotes the quantity evaluated in
the macroscopic element. By assembling these appropriately
on the macro continuum, and considering the facultative vari-
ations, the following semi-positive definite symmetric matrix
is obtained

Kyw Ky Aw | _|ry

[Kuw Kllll] { Au ] - [ Ty } ' @2)

where

Kuw = / ﬁl;l / (BT [AIB°1Y | dx 23)
Q Yo

Ky = / % / [B°1T[A1dY | (BeldX (24)
Q Yo

Ky = / (Be)” [% / [AILB1dY | dx 25)
Q Yo

(26)

K =/[ﬁ]T T%/[A]dy [.B—é]dX
Q Yo
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1
v} = — — 1B mdy }dx
() / m/[ 171

Q Yo

@7

{ru} = Fext '—/[EE]T l—l‘;‘l"/[n]dY dX. (28)
Q Yo

The nonlinear homogenization method solves Eq. (22) for
Au and Aw under the given boundary condition for the mac-
rostructure and the periodic boundary condition (Eq. 8) for
microscopic displacement. The number of degrees of free-
dom (NDOF) of this matrix is (NDOF of macrostructure +
quadrature point of macrostructure x NDOF of microstruc-
ture). An enormous computational cost is, however, required
to solve a small-scale problem. Moreover, it is difficult to
solve the form given in Eq. (8) due to memory limitations, and
generally, a transformation into the weak form takes place as
described below.

2.3 Characteristic deformation

In a nonlinear problem, to evaluate the response of a micro-
structure to macroscopic deformation in a similar way to that
in a linear problem [18], we obtain the following equation
by taking the derivative of Eq. (14) at each quadrature point
and substituting Egs. (5) and (16).
/5Z:A:d2dy=_/aZ:A:dFdY (29)
-Yo Yo

Since the macroscopic deformation gradient is independent
of the microscopic integration,

. Z -
/SZ:A:'BTdY=—/8Z:A:IdY,
oF
Yo Yo

(30)

where I is a fourth order identity tensor, and the micro-
structural response of the macroscopic deformation gradient
becomes

87 ow
—— = — =~V N 31
aF Y (aF) rx @D
ow
= e, 32
X oF (32)

where a third order tensor yx is the derivative of the
microscopic displacement with respect to the macroscopic
deformation gradient. This is referred to as the characteristic
deformation for nonlinear problems. The equation above can
be substituted into Eq. (30) yielding
/sZ:A:vadY=/aZ:A:IdY. (33)
Yo Yo
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By finite element discretization, the gradient of x becomes
Vrx = [B°1x°], (34

in a microscopic finite element. [x¢] is the derivative of the
microscopic displacement for each component of F; in other
words, it is the matrix given below with nine kinds of char-
acteristic deformation.

Xin  Xiz -+ Xis
X511 X2 -e- X233
x1= : ) . . ) (35)

e e e
Xull  Xa12 Xn33

where n is the NDOF of one finite element of the microstruc-
ture. The matrix equation becomes

Ky [x91 = [ry], (36)

K, = / (B°)[AI[B°1dY, @7
Yo

[r,] = / (BT [AlL114Y, @38)
Yo

from Eq. (33) about one microstructure. [x Q1 denotes that
the quantity is evaluated at the macroscopic quadrature point.
The value of [x 21, which is a (NDOF of the microstructure)
row x 9 column matrix, can be obtained by assembling [ x¢].
[11is a ninth order identity matrix, consisting of nine column
vectors {;}({ = 1...9). Thus nine solutions can be obtained
for the right-hand side of Eq. (38), one for each {/;} corre-
sponding to a component of the deformation gradient. [y Q]
can then be obtained by solving each different version of the
right-hand side of the above equation,

Multiplying by [B¢] and dividing by |V| on both sides,
Eq. (36) yields

1 — 1 —
—_— 21Be] = — 2
lVle[)( 1B¢] lVl[l‘x][B I (39

Now, by using Eq. (20)

1

me =K¢,, (40)
1 —

Tﬂ“x]we] =K%, @1

and thus,

K2, [x 2B = K

wu*

(42)

The total is obtained at all macroscopic quadrature points in
respect of the above equation

wa[X][§] = Ky, 43)
(Bl= > [B7], (44)
x1=>1x%, (45)

where [ x]is a matrix consisting of (quadrature points of mac-
rostructure X NDOF of microstructure) rows x 9 columns.

The characteristic deformations are the deformation incre-
ments for unit macroscopic deformation gradients at a par-
ticular instant and these describe the material properties and
strain distribution of the microstructure. Equation (29) can
also be considered a linear approximation of the microscopic
deformation. Therefore, the update of the microscopic
deformation by

Aw = —x : AF, 46)

corresponds to the Forward Euler method for microscopic
deformation from Eq. (32).

2.4 Homogenization method using characteristic
deformation mode superposition

In the mode superposition homogenization method, the
microscopic displacement increment is approximately
obtained by the linear combination of the previously cal-
culated characteristic deformation ¢y and the scaling factor
from Eq. (46) as in [10]

Awg = —oXrpoAtpg, @7

where « is the scaling factor for each mode. Inserting Eq. (47)
into Eq. (22) yields the matrix

[OX]T 0] Kuw Ky lox] © A
[0 I][Kuw Kuu][o I]{An} (48)

_[lox1™ 0} [rw
10 Illr

[[OX]Twa[ox] [OX]TKwu] { Aa} _ { lox17ry ]

Kuwlox] K Au 7 |y,

49)

where [px] is the same kind of matrix as [x]. The above
equation can be represented as

Kﬂlot Kau Aa _ o9
[Kllot Kuu] [ Au] - {I‘u ] ’ (50)

@ Springer
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where

1
Koo = / 17 / lox1" [B1T[AI[B®1[0x1dY | dX,
Q Yo

633
1 —
Koy = — / i / Lx41T(B1 AldY | [BE)dX, (52)
Q Yo

— 1
Kua = — f | / (AILBIox°1dY | dx,  (53)
Q Y

Kue = / (B 117| / [A1dY | (BFlax, (54)
Q Yo
{ru}) = Fext — / (Be)” ﬁ / [Mmdy | dx, (55)
Q Yo
1
{re} = / Vi / lox17 (BT [M14Y | dX. (56)
Q Yo

We obtain the matrix with unknowns A« and Au. Because
the NDOF of the matrix is reduced to (NDOF of macrostruc-
ture + quadrature point of macrostructure x 9), significant
computational cost is saved.

This technique is, however, an approximate means of
achieving equilibrium in a range of displacements represent-
ing linear combinations of g, as it is clear from Eq. (56) that
xo has an effect on the equilibrium. In this way, to approx-
imate the deformation in limited deformation patterns, an
approximation error is created depending on the analysis case
[15].

3 Algorithm for nonlinear homogenization method

3.1 Generalized algorithm

In Eq. (22), {Aw} can be statically condensed at the element
quadrature point level and becomes

(Aw} = K5y, (rw} — Kuu{Au)). (57)

{Aw} vanishes when the above equation is substituted in the
macroscopic equilibrium equation

Ky — Kqu;llquu){Au} = {ry} - Kqu;}U{rw}~ (58)

Now, the microscopic equilibrium hypothesized for F at this
time is

{ru} =0. (39

@ Springer

By using Eqgs. (43) and (57), we obtain [5]
{Aw} = —K3 L Kyu{Au} = —[x][B]{Au}. (60)
By using Eqgs. (43), (57), and (58) we can represent

(Kuw — Kuw[x1(BD{Au) = (1}, (61)

where (K,;;,, — K, w[x] [B]) is called the homogenized tangent
stiffness.

In differential equation form, from Egs. (14), (17), and
(31), this becomes

/SF: %/(A:(I—-Vyx))dY : AFdx
Q

Yo
— — 1
== Fext —/5F . m/HdY dX. (62)
Q Yo
Microscopic equilibrium, Eq. (59),
ry = / 8Z : TdY =0, (63)
Yo

is a prerequisite of the above equation. To satisfy this non-
linear prerequisite, a Newton—Raphson iteration is needed.
Thus the above equation is linearized with respect to w while
F is fixed, and then discretized by the finite element method
using Eq. (19). At each quadrature point, the linearized self-
equilibrated equation becomes

/ (BT [Al(B?1dY {AWY} = — / (B¢1T [m1dy. (64)
Yo 4}

In the generalized algorithm, it is necessary to compute three
different calculations in each iteration,

1. Update macroscopic tangential homogenization x using
Eq. (36).

2. Solve microscopic equilibrium problem, Eq. (63), and
obtain the convergence solution {w)} while F is fixed.

3. Solve the linearized macroscopic equilibrium equation,
Eg. (61), to obtain {u}.

Processes 1 and 2 need to be solved at all quadrature points
of the macrostructure and it is known that this contributes the
most to the calculation load [6]. These processes require pro-
hibitive computational cost and actual numerical simulation
is difficult.

3.2 Block LU factorization algorithm

We now present an algorithm that decreases the residual of
each scale simultaneously using the block LU factorization
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algorithm without microscopic convergence in the macro-
scopic iteration as in the conventional algorithm. By block
LU factorization, Eq. (22) becomes

Kuw O[T Ko Kuu][AW] _ [rw
[Kuw S][O 1 Au | |r. |’ 65)

where S is called the Schur-Complement. Referring to
Eq' (43)’

S= Kuu - Kqul;i;Kwu

= Kyy — Kllw[)(][ﬁ]

= Kuu — [B]" [x1" Kuw X108, (66)
which corresponds to the homogenized tangent stiffness of

Eq. (61). The solution process for Eq. (65) is composed of
the forward substitution

Kpw 0][AW] _ [rw

e slae) =) @
and the backward substitution

AwW] [T K Ku. ][ Aw

{Aﬁ}" 01 Au | ©8)

Then, from Egs. (43), (67), and (68),

Kyw{AW} = {ry}, (69)
S{Au} = (r,} — K, {AW), (70)
(Aw} = (AW} — KL Ky (Au)

= (AW} — [x]AF, (71)

hold. The calculation process is described below.

1. Solve linearized microscopic equilibrium equation,
Eq. (69), to obtain {Aw}.

2. Solve linearized macroscopic equilibrium equation,
Eq. (70), to obtain { Au}. Note that this equation is equiv-
alent to Eq. (58).

3. Update {Aw} using Eq. (71). We have already obtained
[x]1 from the calculation of S.

Three matrices, namely the micro, macro, and Schur-
Complement, need to be solved at each iteration. Although
the computational cost of this algorithm is expected to be
lower than that of the generalized algorithm since equilib-
rium of the microstructure is not required at every iteration,
the Schur-Complement update is still relatively expensive as
described above. A similar algorithm for a differential equa-
tion using the Block-Newton method has been proposed by
Yamada and Matsui [19].

3.3 Approximation of schur-complement in micro-macro
coupled equation

In the block LU factorization algorithm described in the
previous subsection, the linearized equations for the micro-
structure are solved first and then the increment for the
macro-displacements is solved using the Schur-Complement
that reflects the micro—macro interactions. These two steps
essentially define the computational cost because the third
step can be solved efficiently by reusing the characteristic
deformation that has already been computed in the evalua-
tion of the Schur-Complement in the second step. Although
the macroscopic equilibrium conditions must be satisfied as
well as the microscopic ones by making a convergence judg-
ment for the residuals, the Schur-Complement is a tangent
stiffness for prediction and does not influence the equilib-
rium directly. Hence, one of the requirements for efficient
nonlinear homogenization algorithms is to approximate the
Schur-Complement effectively. In this regard, we propose
the two algorithms given below.

A simple method is to approximate the Schur-Comple-
ment using the previously calculated characteristic deforma-
tion gy asin

S=Ky, — Kz:w[X][ﬁ]
= Ky — Kuw[OX][E]

= Ky — BI7 [x1" Kuwlox1(B], (72)
that is,
X1 Kywlx] = [x1"Kuwlox], (73)

is employed from Eq. (66). Henceforth, this method is
referred to as the modified block LU factorization algorithm
(MBFA). The other approach is to make use of the aforemen-
tioned Mode Superposition method in the approximation of
the Schur-Complement. The calculation process and an inter-
pretation thereof are given below.

1. Solve the linearized microscopic equilibrium equation,
Eq. (69), to obtain {Aw]}.

2. From Eq. (50), solve the mode superposition-based
linearized micro—macro coupled equation

Koo Kou Aa | |ry
[Kua Kuu:l [ Au] - {ru ] ’ 74

to obtain {Au}. Then, S is approximated by the range of
the mode superposition method and the update of S can
be omitted.

3. The assumption of the mode superposition method fol-
lows from Egs. (46), (47), and (71), and {Aw} is updated
using

@ Springer
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{Aw} = (AW} — [ox]{Aa}. (75)

The meaning of the algorithm is now given. Block LU
factorization is applied to Eq. (74) yielding

Koo(Ad) = (rq}, (76)
Kuu — KuaK;g}Kau){Au} = {ry} — Ky (A&}, an
(Aa) = (Aa) — K Ky, {Au). (78)

In Eq. (77), the macroscopic displacement is updated using
Kuw — KoKy Ko, 79
which can be considered an approximation of the homoge-
nized tangent stiffness. Then, using Eqs. (43) and (66), the
Schur-Complement becomes
S = Kuu — Kuulx1(B]

= Kuu — Kuw[XJ (1 Kuw[x D™ () Kuw [xD(B]

= Kuw = Kuw X000 K XD ™ 01 Ko

%= Kuw — Kuwlox)(lox1 KuwwloxD ™ lox1" Kuu

= K — B1" [x1" Kuuwlox]

(o x1" Kuwlox D™ lox)" Kuw x1(B]

= Ky — KuaK;; Kou, (30)
that is,
X1 Kuwlx] = X1 Kywlox]

x (lox 1 KuwwloxD ™ ox1" Kuwlx], (81)

is employed. In the mode superposition method, since the
homogenized tangent stiffness corresponds to the exact value
with the mode updated at every Newton-Raphson iteration as
described above, this method can give an approximate mean
of the homogenized tangent stiffness by decreasing the num-
ber of times that the mode is updated. This method is referred
to as the mode superposition algorithm (MSA).

4 Numerical examples

4.1 Comparison of computational costs and convergence
properties

With respect to computational cost and convergence, which
are of interest to us, we now compare the four methods
introduced in the previous section, namely, the generalized
algorithm (GA), block LU factorization algorithm (BFA),
modified block LU factorization algorithm (MBFA) and the
algorithm using mode superposition (MSA). Detailed algo-
rithms for the parallel computation of each of the methods
are given in Fig. 2. The GA calculates the microscopic equi-
librium at each quadrature point in every iteration. In contrast
to the GA, the BFA, MBFA, and MSA decrease the residual
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. Perform in a unit cell at each quadrature point by paraell compu-
tation
Solve microscopic equilibrium problem : {r,} =0
Updaie the microscopic deformation : {w}
Solve for update \ : Ky [x%} = [r,]
Compute : Ky = Koo K Ky, {ru}
. Communication using MPlallreduce
Assemble : K, — Koo KD K, {ru}
4. Solve

w

(Kuu = Kuo[)Bh{Ou} = {ru}
. Update the vatiables

{u} = {u} +{Au}
. if f{re}} < Tol, then
Next step GOTO 1
else
Next iteration GOTO 2

o

(=2

(a)

s

. Set calculation condition

[

. Perform in a unit cell at each quadrature point by paraell compu-
tation
Compute : Ky {10}
Solve : Kyw{AW} = {ry,}
Update the microscopic deformation: {w} = {w} + {Aw}
In the BFA, everytime solve for update x : K,{x9] = [r,}
( In the MBFA, sometimne solve for update xo : Ky[x?] = [ry] }
Compute : §,{r,}- K, ,{Aw}

3. C ication using MPlallred
Assemble : 8, {r,}~ K,..{AW}
4. Solve

S{Au} = {r,}~ Ku.{AW}
. Update the vatiables
{u} = {u} + {Au}
In the BFA, {w} = {W} - [Y]AF
In the MBFA, {w} = {w}- {XU]AT'“
. if{re}] < Tol |[{ru}| < Tol, then
Next step GOTO 1
else
Next iteration GOTO 2

o

-3

(b)

-

. Set calculation condition

»

. Perform in a unit cell at each quadrature point by paraell compu-
tation
Compute : Ky, {Tw}
Solve : K, {AW} = {r,}
Update the microscopic deformation: {w} = {w} + {Aw¥}
( Sometime solve for update xo : Ky[x?] = [ry] )
Compute : Kuu, Kuas Kau, Kaas {ra} {re}
3. C ication using MPlallred
Assemble : K., Ko, Koy Kaon, {ra}, {14}

4. Solve
Koo Koo | fAa] [ra
Koo Kuu Auf Ty
. Update the vatiables
{u} = {u} + {Au}
{o} = {a} +{4a}
{w} = {%}- bxH{Aa}
. if [{ry}] < Tol,{r,}| < Tol, then
Next step GOTO 1
else
Next iteration GOTO 2

on

-]

(©)

Fig. 2 Algorithms for parallel computation using the message pass-
ing interface (MPI). a Algorithms for GA. b Algorithms for BFA and
MBFA. ¢ Algorithms for MSA
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Cross section view

/ Material A

Material B

Fig. 3 FE models used in the calculation time evaluation. a 64 nodes,
27 elements (minimum size). b 1000 nodes, 729 elements

Table 1 Material constants for the models used in the calculation time
evaluation

E{kPa] v
Material A in Fig. 3 0.1 0.3
Material B in Fig. 3 10.0 0.3

of both scales simultaneously. Moreover, in the MBFA and
MSA the straightforward update of S is avoided. We per-
formed a 20% tensile test using the mesh of the block shown
in Fig, 3 as the microstructure, and a single 8-node element
as the macrostructure. The minimum size of the mesh is con-
structed from 27 (3 x 3 x 3) elements as shown in Fig. 3a,
with the stiffness of the center element different from the
rest.

The NDOF is adjusted by adding the same number of min-
imum units in each direction (e.g. Fig.3b). The St. Venant
hyperelastic material is used for the constitutive equations

1
W= El(trE)z + uE : E, (82)
w
S=%E=(AI®I+ZLLI):E=C:E, (83)
lijw = 8ixdji, (84)
E E
2 p=G= (85)

A= adTwas oy 20+ vy’

where I is a second order identity tensor, A and u are Lame
constants; and E. and v are, respectively, Young’s modulus
and Poisson’s ratio. C is a fourth order constant elasticity ten-
sor and the relationship between S and E is linear. The mate-
rial constants are given in Table 1. If the material constants
are assumed to be uniform in the microstructure, the solu-
tions obtained by these methods agree completely with the
theoretical solution in the case of infinitesimal deformation.
We have thus confirmed the correctness of the formulations
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Fig. 4 Comparison of calculation time. a Iterative solver. b Direct
solver

and computer programs. The relationship between calcula-
tion time and NDOF of the microstructure for each algorithm
is depicted in Fig. 4 for cases where an iterative solver (ILU
preconditioned GMRES method) or direct solver (skyline
method) are used. The breakdown of calculation time and
number of iterations in each process, where the NDOF of the
microstructure is 31,944, are given in Table 2. Convergence is
judged to occur when the root sum square reaches 1 x 1010
times the initial value. As shownin Fig. 4, the calculation time
of the BFA using an iterative solver slightly exceeds that of
the GA. In the BFA, equilibrium of the microstructure is not
required within an iteration for the sake of computational
efficiency, but this may result in more iterations compared
with the GA. Table?2 illustrates this, in that the BFA requires
5 iterations whereas the GA requires 4. We need to calculate
the characteristic deformation to update the Schur-Comple-
ment; this means that the nine different right-hand sides of
Eq. (33) must be solved in the case of the iterative solver.
Consequently, the increased number of iterations results in
a deterioration in the performance of the BFA. If a direct
solver is used instead, the result of the LU decomposition
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Table 2 Calculation time and number of iterations in each process

Calculation  Calculation of Total (s) No.of
of y (s) equilibrium in the iterations
microscopic model (s)
a. Iterative solver
GA 670 211 906
BFA 805 107 942 5
MBFA 17 195 273 11
MSA 21 113 186 5
b. Direct solver
GA 19,816 36,949 56,791
BFA 23,689 18,492 42,212 5
MBFA 451 40,050 40,557 11
MSA 457 18,237 18,746 5

of the stiffness matrix can be reused in the computation of
the characteristic deformation, and as a result, the compu-
tational cost of the BFA is 20% less than that of the GA,
despite the BFA using one more iteration than the GA. On
the other hand, the MBFA is much faster than both the BFA
and the GA when an iterative solver is used, although in the
case of a direct solver there is almost no difference between
the MBFA and BFA. This is because the calculation cost of
the mode update in the BFA is similar to that of the increased
iterations in the MBFA. However, convergence in the MBFA
is slow as shown in Fig. 5 and it is anticipated that for strong
nonlinear problems, convergence may not be achieved at all.
Here, the characteristic deformation was approximated by
that obtained at the beginning of the analysis. Convergence
can be improved by incorporating more frequent updates, at
the expense of CPU time. Compared with these methods,
the MSA always exhibits excellent speed and convergence.
The advantage of the MSA is twofold. First, the approxi-
mation of the Schur-Complement is more accurate than in

IS D T VOO N T 0 U0 OO O S O o

LR S0 0 T S ¢

-18 T SR GOSN T
10 0 S 10

iteration

~{Generalized algorithm(GA)

~—&—Block LU factorization(BFA)
—@—Maodified Block LU factorization(MBFA)
—0O—Mode superposition(MSA)

Macrosopic Relative Residual
S

Fig. 5 Comparison of convergence property
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the MBFA, i.e., Eq. (80) gives a superior approximation than
Eq. (72). Second, in an iteration of the MSA, the microscopic
equation is solved in Eq. (75) in terms of Ae as well as in
Eq. (74) with Eq. (69). These advantages should contribute
to an accelerated convergence of the microscopic equation
as well as the macroscopic equation. Although the St. Venant
hyperelastic material assumed here has relatively weak non-
linearity, the number of iterations does not increase up to a
large deformation range, even with the initial characteristic
deformation being used for ¢ . However, a periodic update
of gx is required in the case of strong nonlinear material,
such as an elasto-plastic material. If g is updated at every
iteration, the homogenized tangent stiffness corresponds to
the exact value as described in Eq. (80).

4.2 Application to ventricle—cardiomyocyte analysis
with parallel computation

As seen in Table2, most of the calculation cost relates to
the microscopic equilibrium (Eq. (69)) when the MBFA or
MSA is used. In addition, as the NDOF of the microscopic
model becomes larger, the computational cost for the mac-
roscopic model becomes more negligible. It is therefore cru-
cial to decrease the time for microscopic calculation in real
problems. Since Eq. (69) holds independently at each mac-
roscopic quadrature point, paraliel computation is effective
in the homogenization method. In other words, microscopic
models can be distributed equally to the available cores, and
this directly accelerates the microscopic calculation accord-
ing to the number of cores. Moreover, since the memory is
shared by fewer microscopic models in the parallel compu-
tation, a greater NDOF of the microstructure can be handled.

Figures 6 and 7 show a simplified human cardiomyocyte-
ventricle model, to which we have applied the MSA. As
shown on the left and in the center of Fig.7 a simplified
cardiomyocyte model is constructed with extracellular and
intracellular matrices and gap junctions. The total NDOF is
20385. If the models are arrayed periodically in the three
directions as depicted on the right of the figure, a fairly accu-
rate imitation of a microgram of real tissue is obtained. The

6554 elements, 1 quadrature point

Fig. 6 FE meshes of ventricles as macroscopic model. a FE mesh. b
Fiber orientation
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Fig. 7 FE meshes of cardiomyocytes as microscopic model

Table 3 Material constants for the cell model

Cy Cy K
Gap Junction 1x10° 1x10° 2 % 10°
Intracellular Matrix 1x 104 1 x 10* 2 x 10*
Extracellular Matrix 1x10° 1x 103 2 x 103

Mooney-Rivlin material using reduced invariants is adopted
for the constitutive equation, with the material constants listed
in Table 3.

W =Cid, - 3) + Gl - 3) + —’;Uz (86)
- 1. - 1.

=, I,=—%5 87)
T T R
U=J -1, (88)

where U is the volumetric strain energy function and « is
the bulk modulus, The ventricle model is constructed based
on CT imaging, with fiber directions distributed from —90
to 60 degrees, relative to the plane perpendicular to the long
axis of the ventricle. The fiber direction denotes the long axis
(z-axis) of the cardiomyocyte model, and therefore, proper
rotation is taken into consideration for each micromodel. In
this model, the intracellular matrix is defined as a function
of a parameter that represents the excitation of the myocyte,
and this parameter is varied at every time step to represent
the transient contraction force. The homogenization method
is applied to 6,554 elements covering the greater region of
the ventricle, whereas the conventional Mooney-Rivlin hy-
perelastic constitutive law is assumed for the limited regions
at the base and apex. To reduce the computational cost, a
single myocyte (micromodel) is assigned to each finite ele-
ment of the ventricle, i.e., 6,554 cardiomyocyte models are
embedded in the ventricle model. The total NDOF, including
those of the ventricles, amounts to 133,609,263,

The computer used was an IBM Blade Center consisting
of 336 Power6 (4.0 GHz) processors. Considering the size of

e
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~

Green-Lagrange Strain
Number of Iterations

—&— Minimum Green-Lagrenge Strain
—o— Maximum Green-Lagrenge Strain
- Meam Green-Lagrenge Strain
—e&— Number of Iterations

Fig. 8 Green-Lagrenge strains and nunber of iterations at each step
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Fig. 9 Speed up in parallel computation

the problem, convergence was deemed to occur when the root
sum square of the macro and micro residuals was 1 x 1073
times less than the initial value. Figure 8 shows the maxi-
mum, the minimum and the mean Green-Lagrange strains
throughout the ventricle model, and the number of iterations
of the MSA at each time step. The strains are measured in
the fiber direction. Although the maximum and the minimum
strains reach £+20%, an excellent convergence property was
observed. Figure 9 shows the resulting scalability, by depict-
ing the speed up rate relative to a hundred-core computation.
As shown in this figure, satisfactory parallel performance
was obtained by the proposed algorithm. The deformations
of the ventricle and a representative myocyte in the diastole
and the systole are exemplified in Fig. 10. The CPU time for
the completion of a cardiac cycle was about 24 h when using
300 cores. The proposed method thus allows us to deal with
large-scale problems.

5 Conclusion

To reduce the computational cost of the nonlinear homoge-
nization method, the theoretical framework was reassessed
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Systale

Fig. 10 Deformations of macro and microstructures in diastole and
systole

from the perspective of block LU factorization of the micro-
macro coupled equation. Based on the relation between the
characteristic deformation and the Schur-Complement as the
homogenized tangent stiffness, a couple of approximation
methods were introduced, namely, a simple scheme to reuse
the old characteristic deformation (MBFA) and a sophisti-
cated method based on the mode-superposition method
(MSA) developed by our group. It is noted that accuracy
is preserved in these approximation methods by incorporat-
ing the equilibrium conditions in both scales. Then, using a
simplified FE model, the conventional algorithm (GA), arel-
ative algorithm originating from the block LU factorization
(BFA), the MBFA, and the MSA were compared and dis-
cussed. Of these methods, the MSA was found to be the best.
Then, using the MSA, a large-scale human ventricle—cardio-
myocyte simulation was performed on an IBM Blade Center
consisting of 336 Powerb processors, and good parallel per-
formance was demonstrated. We plan to use the proposed
homogenization algorithm in a whole-heart simulation on a
massively parallel computer in the near future.
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Abstract: Ttis well known that the baroreflex system is one
of the most important indicators of the pathophysiology in
hypertensive patients. We can check the sensitivity of the
baroreflex by obscrving hcart ratc (HR) responscs;
however, there is no simple diagnostic method to measure
the arterial behavior in the baroreflex system, Presently, we
report the development of a method and associated hard-
ware that enables the diagnosis of baroreflex sensitivity by
measuring the responses of both the heart and the artery. In
this system, the measurements are obtained by monitoring
an clectrocardiogram and a pulse wave recorded from the
radial artery or fingertip. The arterial responses were mea-
sured in terms of the pulse wave velocity (PWV) calculated
from the pulse wave transmission time (PTT) from the
heart to the artery. Tn this system, the HR change corre-
sponding to the blood pressure change in time series
sequence was observed. Slope of the changes in blood pres-
surc and HR indicated the sensitivity of the baroreflex
system of the heart. This system could also measure the
sensitivity of the baroreflex system of an artery. Changes in
the PWV in response to the blood pressure changes were
observed. Significant correlation was observed in the time
sequence between blood pressure change and PWYV change
after calculating the delay time by cross-correlation. The
slope of these parameter changes was casily obtained and it
demonstrated the sensitivity of the baroreflex system of an
artery. We evaluated this method in animal experiments
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using rotary blood pump (RBP) with undulation pump
ventricular assist device, and PTT clongation was observed
in response to increased blood pressure with RBP assis-
tance. Furthermore, when tested clinically, decreased sensi-
tivity of the baroreflex system in hypertensive patients was
observed. This system may be useful when we consider
the ideal treatment and [follow-up of patients with
hypertension. Key  Words: Baroreflex  sensitivity—
Arterial baroreflex—Baroreceptor—Pulse wave transmis-
sion time—Pulse wave velocity—Rotary blood pump.

The baroreflex system is a key indicator of
hypertensive pathophysiology (1-4). When blood
pressure (BP) increases, heart rate (HR) decreases,
and there is peripheral arterial dilation (1-6). By
decreasing the cardiac output and peripheral arte-
rial resistance, BP returns to normal. Hypertension
is a concern in the young as well as the clderly
(4-6). Baroreflex sensitivity is reduced in younger
hypertensive patients (4-6). However, currently
there is no simple and sensitive diagnostic method
to measure the arterial behavior in the baroreflex
system.

Both responses of the HR and vasomotor compo-
nents arc important when we consider the precise
quantitative diagnosis of the autonomic nervous
system mediating the baroreflex system in the human
body. However no one has reported the methodology
1o evaluate the vasomotor components in the baro-
reflex system. No report describing the baroreflex
sensitivily in vasomotor components can be cited
currently according to PubMed. So, we cannot cvalu-
ate the importance of the HR in baroreflex sensitiv-
ity, because we cannot cvaluate the vasomotor
components.

Several investigators suggested the regional differ-
entiation in autonomic responses in various human
body areas. So, we cannot evaluate total response of
the baroreflex system by only observing the HR.
It may be a disadvantage if we cannot evaluate the
precise quantification of the baroreflex system.
Precise evaluation may be clearly desirable when
we consider the ideal treatment and follow-up of
patients with hypertension.

This study describes the development and clinical
application of a new novel baroreflex diagnostic
machine and offers a preliminary consideration of its
clinical applicability in patients with rotary blood
pump assistance.
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FIG. 1. Schematic diagram to explain the PWV and PTT. A photagraph of the measurement equipment is shown on the upper left side.
By the use of the ECG and finger tip artery waveform, we can calculate the PTT from R wave in ECG and rising point of radial arterial
pressure waveform. An example of the correlation between the normalized systolic BP and normalized PTT in a patient is shown on the
right. Significant correlation was observed, and the slope, suggesting the baroreflex sensitivity of an arterial tree, was calculated from the
regression line from least square method.

DIAGNOSIS OF ARTERIAL
BAROREFLEX SENSITIVITY

Every. medical student  studies . the. barorellex
system as a typical example of homecostasis (1-6).
When BP increases; baroreceptors in the carotid
arteries and aortic arch sense this. The carotid sinus
baroreceptors. are innervated by the glossopharyn-
geal nerve, the aortic arch baroreceptors are inner-
vated: by the vagus nerve. With  information
(ransmitting to-the central nervous system; the HR
lowers and arterics dilate by coupling sympathetic
inhibition and parasympathetic activation.

In the conventional method, the baroreflex sensi-
tivity. was evaluated by measuring the HR response
to the BP changes. Although HR. response in the
baroreflex system can be monitored; no method cur-
rently exists to evaluate arterial barorellex function,

possibly because of the difficulty in evaluating vascu-

lar tone during wakefulness.

Recently, new methodologies like brachial-ankle
pulse - wave -velocity . (baPWV) have been deve-
loped to. evaluate human arterial stiffness (7-10).
These:  methodologies © non-invasively . - evaluate
arlerial wall stiffness “using - the - pulse  wavelform
of the brachial and ankle arterics. These methodolo-

Antif Organs, Vol. 33, No. 9, 2009

gies ‘are. based on: the premise  that PWV . is
corrclated “with arterial:wall stiffness. Thus, PWV
increases when the arterial wall becomes harder and
decreases when the arferial wall soltens, PWV can
be calculated from the pulse wave transmission time
(PTT) and distance . (Fig..1). Thus, measurements
of PTT and BP permit an evaluation of arterial
baroreflex response. Time was: calculated from the
R wave in the electrocardiogram (ECG) and up-
sloping point of pressure waveform,

PTT and PWV were easily measured by monilor-
ing  ECG and: pulse: wavce, Figure.l - shows. the
equipment used for the measurement. The newly
developed system ‘used only an ECG and: a pulse
wave recorded. from the radial ‘artery. These time
series were inputled into a:personal computer, and
analyzed - ‘quantitatively - using ~ custom-developed
software. HR was calculated {rom the reciprocal of
the inter-R-wave interval of the ECG signal. PTT was
defined as the time interval from the peak of the R
wave to the point at which the pulse wave signal
began to increase. HR ‘and PTT were interpolated by
cubic spine. functions to continuous-time functions,
and were resampled every 0.5s.

The right side of ‘Fig. 1. displays an “example
of ‘the correlation” between the systolic BP--and
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PTT. PTT was plotted after 6.0 s. Significant corre-
lation was evident in the time sequence between
BP change and PTT change after calculating the
delay time by cross-correlation, The slope of
these parameter changes was easily obtained, and it
demonstrated the sensitivity of the baroreflex
system of an artery.

The utility of this system for the quantitative diag-
nosis of the baroreflex sensitivity of an artery was
recognized by the patent application.

UNDULATION PUMP VENTRICULAR ASSIST
DEVICE (UPVAD) AND PTT CHANGE IN
RESPONSE TO BP CHANGE

On the basis of this method, rotary blood pump with
undulation pump was used in experiments to evaluate
the arterial response to the rotary blood pump assis-
tance (11,12). A healthy adult goat with UPVAD
rotary blood pump was used in this experiment and
results are shown in Fig. 2. If we added the rotary

blood pump assistance, BP was increased and the PTT-

was increased in response. However, the results were
influenced by the HR, of course. So, we added the
pacemaker on this experiment and the results are
showninFig. 2, During pacing, PTT was also increased
in response to BP change with RBP assistance.

So, this information is also useful when we consider
the hemodynamics with RBP assistance.

CONCLUSIONS

The arterial responses were measured in terms of
the PWV calculated from the PTT from the heart to
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FIG. 2. An example of a PTT response to the rotary blood pump
assistance with and without pacemaker. If we added the rotary
blood pump assistance with UPVAD, BP was increased and the
PTT was increased In response. However, the results were Influ-
enced by the HR, of course. So, we added the pacemaker on this
experiment. During pacing, PTT was also increased in response
to BP change with RBP assistance.

an artery (13,14). In this system, the HR change
corresponding to the BP change in time series
sequence was observed. Delay time was measured by
the cross-correlation function. Slope of the changes
in BP and HR indicates the sensitivity of the barore-
flex system of heart. Furthermore, this system could
also measure the sensitivity of the baroreflex system
of an artery.

Clinical research of our study has begun after
ethical committee allowance. So far, the results have
shown that our system can successfully detect
decreased sensitivity of the baroreflex system in
hypertensive patients. We are now analyzing the
various data of the patients with hypertension by
gathering data from related hospitals.

Further examination will be needed using more
cases, This new method may be useful to follow up
patients with hypertension.
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Abstract— The maximum cross-correlation coefficient pmax
between blood pressure variability and heart rate variability,
whose frequency components are limited to the Mayer wave-
related band, is a usefil index to evaluate the state of the
autonomic nervous function related to baroreflex. However,
measurement of continuous blood pressure with an expensive
and bulky measuring device is required to calculate pmax. The
present study has proposed an easier method for obtaining prax
with measurement of finger photoplethysmography (PPG). In
the proposed method, independent components are extracted
from feature variables specified by the PPG signal by using
the independent component analysis (ICA), and then the most
appropriate component is chosen out of them so that the prox
based on the component can fit its true value. The results from
the experiment with a postural change performed in 17 healthy
subjects suggested that the proposed method is available for
estimating pmax by using the ICA to extract blood pressure
information from the PPG signak

I. INTRODUCTION

To estimate the state of the autonomic nervous system
related to the baroreflex function, the authors have previously
proposed the maximum cross-correlation coefficient ppax
between blood pressure variability (BPV) and heart rate
variability (HRV) in Mayer wave band [1}{2]. However,
measurement: of continuous - blood  pressure is required to
obtaiit pmax. Instead of ‘blood pressure; we have' attended
to measurement of photoplethysmography (PPG) which is
an inexpensive, non-invasive, and easily attachable device.
The index puax - obtained from a feature variable of PPG
includes -some physiclogical components other than BPV
[31. Thus; pmax obtained from feature variables of PPG does
not-always correspond 10 priax from: BPV, Therefore, in this
study, we have proposed: a new method: for obtaining. pmax
with BPV-related information obtained from measurement
of PPG. In this study, heart rate is calculated from. the
foot-to-foot-interval’ (FFI) of ‘the PPG 'signal, and ‘BPV-
related information is obtained from the parameter-extracted
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by using the independent component analysis (ICA). The
adequacy of the proposed method was evaluated on the basis
of comparison with the conventional method.

H. METHODS
A. Maximum cross-correlation coefficient pmax

Let u(%) and v(é);7 = 0,1,2,... denote time series data,
for example, blood pressure variability (BPV) and heart rate
variability (HRV), respectively, sampled with a sampling
period At = 0.5s. They are filtered through a band-pass
digital filter with a-bandwidth between 0.08Hz and 0.12Hz
to limit their frequency components to the Mayer wave band.
At a certain time point ¢ = 7 - Af[s], a Hamming window
with the-interval between ¢ — 60[s} -and ¢ + 60[s} is applied
to u(?) and v(i). A cross-correlation coefficient p,, (7) for
alagof r =7 -Affsl; j=...,-1,0,1,... is calculated as
follows:

¢uv(7)

pun(T) = r——-————-——-—-—-—qsuu(o) ~6000)

where, ¢y.(T) is‘a cross-correlation function between u(7)
and v(7), and ¢, (7) and ¢, (7) are auto-correlation func-
tions of u(i) and v(%), respectively. The maximum cross-
correlation coefficient ppnay and the lag from BPV to HRV
Tmax are defined as

)

Pmax = oénf%m Puv(T) )
Tmax = arg 052%08 Puv (T) . (3)

In the present study, pmax is successively calculated every
one second between ¢ = 60[s] and { = T'— 60[s], where T'[s)
is the end time of the data obtained from an experiment.

B. Independent component analysis (ICA)

The ICA used in our method is described as follows:

D Let z1(k),z2(k),...,zm(k) be m feature vari-
ables extracted from the PPG signal at the k-th
beat. Define a feature vector x(k) as z(k) =
[z1(k), z2(k), ..., zm (k)] .

2) Let s1(k), s2(k),...,sn(k) be n unknown physiolog-
ical parameters that are independent of one another
at the k-th beat. Define a parameter vector s(k) as
8(k) = [s1(k), s2(k), - .-, su(K)]".

3) Assume that the feature vector a(k) is given by a linear
combination of s1(k), s2(k), ..., sn(k) as follows:
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