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Telomerase-Specific Virotheranostics for Human Head and
Neck Cancer
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Abstract

Purpose: Long-term outcomes of patients with squamous cell carcinoma of the head and neck
(SCCHN) remain unsatisfactory despite advances in combination of treatment modalities.
SCCHN is characterized by locoregional spread and it is clinically accessible, making it an attrac-
tive target for intratumoral biological therapies.

Experimental Design: OBP-301is a type b adenovirus that contains the replication cassette in
which the human telomerase reverse transcriptase promoter drives expression of the £7 genes.
OBP-401 contained the replication cassette and the green fluorescent protein (GFP) gene. The
antitumor effects of OBP-301 were evaluated i vitro by the sodium 30-[1-(phenylaminocar-
bonyl) -3,4-tetrazolium] -bis (4-methoxy- 6 -nitro) benzene sulfonic acid hydrate assay and in vivo
in an orthotopic xenograft model. Virus spread into the lymphatics was also orthotopically
assessed by using OBP-401:

Results: Intratumoral injection of OBP-301 resulted in the shrinkage of human SCCHN tumors
orthotopically implanted into the tongues of BALB/c nu/nu mice and significantly recovered
weight loss by enabling oral ingestion. The levels of GFP expression following ex vivo infection
of OBP-401.may be of value as a positive predictive marker for the outcome of telomerase-
specific virotherapy. Moreover, whole-body fluorescent imaging revealed that intratumorally
injected OBP-401 could visualize the metastatic lymph nodes, indicating the ability of the virus
to traffic.to the regional lymphatic area and to selectively replicate in neoplastic lesions; resulting
in. GFP expression and cell death in metastatic lymph nodes.

Conclusions: These results illustrate the potential of telomerase-specific oncolytic viruses for

a novel therapeutic and diagnostic approach; termed theranostics, for human SCCHN.

Cancer remains a leading cause of death worldwide despite
improvements in diagnostic techniques and clinical manage-
ment (1, 2). An estimated 500,000 patients worldwide are
diagnosed with squamous cell carcinoma of the head and neck

Authors’ Affiliations: 'Department of Oral and Maxillofacial Surgery, Schoo! of
Dentistry, Showa University and 2Oncolys BioPharma, Inc., Tokyo, Japan; Center for
Gene and Cell Therapy, Okayama University Hospital and *Division of Surgical
Oncology, Department of Surgery, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; ®Research
Center of Lung Cancer, Shanghai Pulmonary Hospital, Shanghai, China; SDepartment
of Obstetrics and Gynecology, Kanazawa University School of Medicine, Kanazawa,
Japan; and " Department of Biochemistry and Molecular Biology, Graduate School of
Pharmaceutical Sciences, Osaka University, Osaka, Japan
Received 10/22/08; revised 12/17/08; accepted 12/31/08; published OnlineFirst
3/24/09.
Grant support: Grants-in-Aid from the Ministry of Education, Science, and
Culture, Japan (T. Fujiwara), and Grants from the Ministry of Health and Welfare,
Japan (T. Fujiwara).
The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance
with 18 U.S.C. Section 1734 solely to indicate this fact.
Note: Supplementary data for this article are available at Clinical Cancer Research
Online (http://clincancerres.aacrjournals.org/).
Requests for reprints: Toshiyoshi Fujiwara, Center for Gene and Cell Therapy,
Okayama University Hospital, 2-5-1Shikata-cho, Okayama 700-8668, Japan. Phone:
81-86-235-7997, Fax: 81-86-235-7884; E-mail: toshi_f@md.okayama-u.ac.jp.
© 2009 American Association for Cancer Research.
doi:10.1158/1078-0432.CCR-08-2690

wwwv.aacrjournals.org

2335

(SCCHN) annually. This aggressive epithelial malignancy is
associated with a high mortality rate and severe morbidity
among the long-term survivors (3). Current treatment strategies
for advanced SCCHN include surgical resection, radiation,
and cytotoxic chemotherapy. Although a combination of these
modalities can improve survival, most patients eventually
experience disease progression that leads to death; disease
progression is often the result of intrinsic or acquired resistance
to treatment (4, 5). A lack of specificity for tumor cells is
the primary limitation of radiotherapy and chemotherapy. To
improve the therapeutic index, there is a need for anticancer
agents that selectively target only tumor cells and spare normal
cells. )
Replication-selective tumor-specific viruses present a novel
approach for cancer treatment {6, 7). We reported previously
that telomerase-specific replication-competent adenovirus
(OBP-301, Telomelysin), in which the human telomerase
reverse transcriptase (hTERT) promoter element drives the
expression of E1A and E1B genes linked with an IRES, induced
selective E1 expression, and efficiently killed human cancer
cells but not normal cells (8-10). We also found that
intratumoral injection of telomerase-specific replication-
selective adenovirus expressing the green fluorescent protein
(GFP) gene (OBP-401, TelomeScan) causes viral spread into the
regional lymphatic area with subsequent selective replication in
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Translational Relevance

Despite new therapeutic modalities, long-term out-
comes of patients with squamous cell carcinoma of the
head and neck (SCCHN) remain unsatisfactory. Thus,
the development of efficient treatment methods to enable
the reduction of tumors in these patients is clearly impera-
tive. Tumor-targeted oncolytic viruses have the potential to
selectively infect target tumor cells, muitiply, and cause cell
death and release of viral particles, leading to the spread of
viral-mediated antitumor effects. We developed a telomer-
ase-specific oncolytic adenovirus OBP-301 (Telomelysin)
as well as OBP-401 - expressing GFP gene (TelomeScan).
Our data showed that telomerase-specific oncolytic viruses
can be effective to kil human SCCHN cells in vitro and
in vivo-as well as to identify the patients who will likely
benefit from virotherapy, suggesting that an oncolytic
virus-based approach exhibited desirable features of a
novel “virotheranostics;” the combination of a diagnostic
assay with a therapeutic entity for human SCCHN. Thisis a
preclinical study for the future clinical trials.

metastatic lymph nodes in nu/nu mice (11). Although up to
25% of patients with SCCHN develop distant metastasis to the
lung, liver, or bone, lymph node metastases are more common
in SCCHN patients (12); therefore, locoregional disease control
with telomerase-specific oncolytic viruses may be a novel
therapeutic strategy that is clinically applicable for the
treatment of human SCCHN.

In the present study, we explore the therapeutic as well as
diagnostic ability of telomerase-specific oncolytic viruses
in vitro and in vive. To this end, we adopted an orthotopic
head and neck cancer xenograft model by inoculating human
SCCHN cells into the tongues of nu/nu mice; this model
resembles human SCCHN in a number of biological
properties (13).

Materials and Methods

Cell lines and cell culture. The human oral squamous carcinoma
cell lines SAS-L, SCC-4, SCC-9, HSC-2, HSC-3, and HSC-4 were
maintained in vitro as monolayers in DMEM supplemented with 10%
heat-inactivated fetal bovine serum, 100 units/mL penicillin, and
100 mg/mL streptomycin {complete medium). The human non -smali-
cell lung cancer cell line H460 and the human esophageal cancer cell
line TE8 were routinely propagated in monolayer culture in RPMI 1640
supplemented with 10% fetal bovine serum. The normal human lung
diploid fibroblast cell line WI38 (JCRB0518) was obtained from the
Health Science Research Resources Bank {Osaka, Japan) and grown in
Eagle’s MEM with 10% fetal bovine serum. The normal human lung
fibroblast NHLF (TaKaRa Biomedicals) and the normal human
embryonic lung fibroblast MRC-5 (RIKEN BioResource Center) were
cultured according to the vendors’ specifications.

Adenoviruses. The recombinant replication-selective, tumor-specific
adenovirus vector OBP-301 (Telomelysin), in which the hTERT
promoter element drives the expression of E1A and E1B genes linked
with an IRES, was previously constructed and characterized (8-10).
OBP-401 is a telomerase-specific replication-competent adenovirus
variant with the replication cassette, and GFP gene under the control
of the cytomegalovirus promoter was inserted into the E3 region for
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monitoring viral replication (11, 14). The viruses were purified by
ultracentrifugation in cesium chloride step gradients, their titers were
determined by a plaque-forming assay using 293 cells, and they were
stored at -80°C.

Cell viability assay. An sodium 30-[1-(phenylaminocarbonyl)-3,4-
tetrazolium}-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate
(XTT) assay was done to assess the viability of tumor cells. Human
SCCHN cells (1,000 per well) were seeded onto 96-well plates 18 to
20 h before viral infection. Cells were then infected with OBP-301 at
a multiplicity of infection (MOI) of 1, 10, 50, and 100 plaque-forming
units (pfu) per cell. Cell viability was determined at the indicated time
points by using a Cell Proliferation Kit II (Roche Molecular
Biochemicals) according to the protocol provided by the manufacturer.

Fluorescence microplate reader. Cells were infected with OBP-401 at
the indicated MOI values in a 96-well black-bottomed culture plate and
further incubated for the indicated time periods. GFP fluorescence was
measured by using a fluorescence microplate reader (DS Pharma
Biomedical) with excitation/emission at 485 nm/528 nm.

Animal experiments. SAS-L and HSC-3 human oral squamous cell
carcinoma cells were harvested and suspended at a concentration of
5 % 10°/mL in the medium. To generate an orthotopic head and neck
cancer model, 6-wk-old female BALB/c nu/nu mice were anesthetized
and injected directly with 20 uL of cell suspension at a density of 10°
cells. The cells were injected into the right lateral border of the tongue
with a 27-gauge needle. When the tumor grew to 2 to 3 mm in diameter
~5 to 7 days later, 20 pL of solution containing 1 x 10° pfu of
OBP-301, OBP-401, or PBS were injected into the tumor. The perpen-
dicular diameter of each tumor was measured every 3 d, and tumor
volume was calculated by using the following formula: tumor volume
(mm?®) = a x b x 0.5, where a is the longest diameter, b is the shortest
diameter, and 0.5 is a constant to calculate the volume of an ellipsoid.
The body weights of mice were monitored and recorded. The
experimental protocol was approved by the Ethics Review Committee
for Animal Experimentation of Okayama University.

In vivo fluorescence imaging. In vivo GFP fluorescence imaging was
acquired by illuminating the animal with a Xenon 150-W lamp. The
reemitted fluorescence was collected through a long-pass filter on a
Hamamatsu C5810 3-chip color charge-coupled device camera (Hama-
matsu Photonics Systems). High-resolution image acquisition was
accomplished by using an EPSON PC. Images were processed for
contrast and brightness with the use of Adobe Photoshop 4.0.1]
software (Adobe). A fluorescence stereomicroscope (SZX7; Olympus)
was also used to visualize GFP-positive tissues.

Statistical analysis. The statistical significance of the differences in
the in vitro and in vive antitumor effects of viruses was determined by
using the Student’s ¢ test (two-tailed). The antitumor effect viruses
on orthotopically implanted tumors in nude mice were assessed by
plotting survival curves according to the Kaplan-Meier method. P values
<0.05 were considered statistically significant.

Results

In vitro cytopathic efficacy of OBP-301 on human SCCHN cell
lines. We examined the cytopathic effect of OBP-301, which is
an attenuated adenovirus in which the hTERT promoter
element drives expression of EIA and E1B genes linked with
an internal ribosome entry site (IRES; Fig. 1A), on various
human SCCHN cell lines by the XTT cell viability assay. OBP-
301 infection induced cell death in human SCCHN cells in a
dose-dependent manner; the sensitivity, however, varied
among different cell lines (Fig. 1B). The IDs, values calculated
from the dose-response curves confirmed that SAS-L cells could
be efficiently killed by OBP-301 at an multiplicity of infection
(MOI) of <150 (IDsp = 148), whereas HSC-3 cells were less
sensitive to OBP-301 (IDs¢ = 500; Fig. 1C).
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Fig.1. Schematic DNA structures of telomerase-specific viruses and selective cytopathic effect in human SCCHN cell lines in vitro. A, OBP-301is a telomerase-specific
replication-competent adenovirus containing the hTERT promoter sequence inserted into the adenovirus genome to drive transcription of the E1A and E1B bicistronic cassette
linked by the IRES. OBP-401is a variant of OBP-301, in which the GFP gene is inserted under the cytomegalovirus (CMV) promoter into the E3 region for monitoring viral
replication. B, human SCCHN cell lines were infected with OBP-301 at the indicated MOI values, and surviving cells were quantitated over 5 d by the XTTassay. The cell
viability of mock-treated cells on day O was considered 1.0, and the relative cell viability was calculated. Points, mean of triplicate experiments; bars, SD. C, effects of various
concentrations of OBP-3010n SAS-L and HSC-3 cells assessed 5 d after the XTTassay. Results are expressed as the relative cell viability of untreated control cells.

To confirm the specificity of telomerase activity in human
SCCHN cells, we next measured the expression of hTERT
mRNA in a panel of human SCCHN cell lines and normal cell
lines by using a real-time reverse transcription-PCR method.
Although the levels of expression varied widely, all SCCHN
cell lines expressed detectable levels of h'TERT mRNA, whereas
human fibroblast cells such as NHLF and WI38 were negative
for hTERT expression (Supplementary Fig. S1A). We also
examined the expression levels of coxsackievirus and adenovi-
rus receptor on the cell surface of each type of cell by flow
cytometric analysis. Apparent amounts of coxsackievirus and
adenovirus receptor expression were detected on SAS-L and
HSC-3 human SCCHN cells (Supplementary Fig. S1B).

To assess whether viral replication was restricted to tumor
cells, we next examined the replication ability of OBP-301 by
measuring the relative amounts of E1IA DNA. SAS-L human
SCCHN cells and MRC-5 human fibroblasts were harvested at
indicated time points over 72 h after infection with OBP-301
and subjected to quantitative real-time PCR analysis. The ratios
were normalized by dividing the value of cells obtained 2 h after
viral infection. OBP-301 replicated 3 to 4 logs within 48 h after
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infection; the viral replication, however, was attenuated up to 2
logs in normal MRC-5 cells (Supplementary Fig. S2).

The response of tumor cells to DNA-damaging stimuli such
as chemotherapeutic drugs and ionizing radiation is predeter-
mined by the functional status of their p53 gene (15); however,
the p53 status of human SCCHN cell lines (wild-type p53 [SAS-
L], mutant p53 [SCC-4, HSC-2, HSC-3, HSC-4|, and deleted
p53 [SCC-9]) is not related to their sensitivity to OBP-301.
Indeed, OBP-301 similarly killed parental SAS-L cells and cells
stably transfected with the mutant p53 gene (Supplementary
Fig. S3), suggesting that OBP-301 induces cell death in a p53-
independent manner.

Selective replication of OBP-401 in human SCCHN cell lines
in vitro. OBP-401 is a genetically engineered adenovirus that
expresses GFP by inserting the GFP gene under the control of
the cytomegalovirus promoter at the deleted E3 region of
OBP-301 (Fig. 1A). To determine whether OBP-401 replication
is associated with selective GFP expression in human SCCHN
cells, cells were analyzed and recorded by using a time-lapse
fluorescent microscope after OBP-401 infection. Representative
images at the indicated time points are shown (Fig. 2A). SAS-L

Clin Cancer Res 2009;15(7) April 1, 2009
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Fig. 2. Selective visualization of human SCCHN cells /n vitro by OBP-401. A, time-lapse images of SAS-L cells were recorded for 42 h after OBP-401infection at a MOI of 50.
Representative images taken at the indicated time points show cell morphology by phase-contrast microscopy (top) and GFP expression under fluorescence microscopy
(bottom). Magnification, x 200. B, quantitative assessment of GFP labeling by OBP-401in human SCCHN cell lines. Cells were infected with OBP-401 at the indicated MOI
values, and GFP fluorescence was measured over 72 h by the fluorescence microplate reader. The intensity of green fluorescence was evaluated based on the brightness
determinations used as relative fluorescence units (RFU). The relative fluorescence unit and time after infection were plotted on the ordinate and abscissa, respectively. A
green color calibration bar for the indicated relative fluorescence unit is shown on the right. C, relationship between GFP fluorescence after OBP-401 infection and IDs values
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correlation between these two factors (R2 = 0.7839).

human SCCHN cells expressed bright GFP fluorescence as early
as 12 h after OBP-401 infection at a MOI of 50. The
fluorescence intensity gradually increased in a dose-dependent
manner, followed by rapid cell death due to the cytopathic
effect of OBP-401, as evidenced by floating, highly light-
refractile cells under phase-contrast photomicrographs.

We also quantified GFP expression in human SCCHN cells
following OBP-401 infection by using a fluorescence plate
reader. Relative expression levels of GFP gradually increased in
a dose-dependent manner (Fig. 2B). Moreover, we found an
apparent inverse correlation between relative GFP expression at
72 h after OBP-401 infection and the ID5q values of OBP-301 in
various human cancer cell lines including SCCHN cell lines
(Fig. 2C), indicating that the outcome of OBP-301 treatment
could be predicted by measuring GFP expression following
OBP-401 infection.
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In vivo antitumor effect of intratumoral injection of OBP-301
in an orthotopic nude mouse model of human SCCHN. To assess
the effect of OBP-301 on SCCHN in vivo, we used an orthotopic
animal model for SCCHN in which SAS-L cells were implanted
into the tongues of BALB/c nu/nu mice. Histopathologic
examination of the excised primary tumors showed a tumor
formation composed of implanted SAS-L cells with a solid
architecture (Fig. 3A). Mice bearing palpable SAS-L tumors with
a diameter of 3 to 5 mm received three courses of intratumoral
injections of 10® pfu of OBP-301 or PBS (mock treatment)
every 3 days beginning on the 7th day (regimen 1) or 10th day
(regimen 2) after the initial tumor inoculation (Fig. 3B).
Representative images from each group showed that tumors
treated with OBP-301 starting on day 7 after tumor inoculation
were consistently smaller than those of mock-treated mice
28 days after the first viral injection (Fig. 3C).
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Tumor growth at the primary site and body weight were
continuously monitored. Intratumoral injection of OBP-301
in both regimens induced a gradual reduction in tumor volumes
compared with mock-treated mice. Mice with tumor shrinkage
significantly recovered body weight starting on day 10
(regimen 1) or day 15 (regimen 2) after the last virus injection
(P < 0.05), although there was a decrease in body weight in the
control group (Fig. 3D). This antitumor effect could be observed
in mice orthotopically implanted with HSC-3 cells; the
appearance of the effect, however, was ~4 to 5 days slower
than that of SAS-L tumor-bearing mice (Supplementary Fig. S4).

Locoregional spread of virus following virotherapy in an
orthotopic human SCCHN model. SCCHN patients with
metastases to regional lymph nodes have a poorer prognosis
than patients without nodal metastases (16). To verify
whether adenoviruses could traffic to regional lymph nodes
through the lymphatics, we injected 1 X 10® pfu of OBP-
401 into SAS-L tumors implanted into the tongues of
mice. Five days after virus injection, primary tongue tumors

as well as lymph node metastases could be detected as light-
emitting spots with GFP fluorescence under the optical
charge-coupled device imaging (Fig. 5A). We also found that
OBP-401 could infect and replicate in SAS-L cells trafficking
in lymphatic vessels (Fig. 5B). These results suggest that
although adenoviruses could effectively drain to regional
lymph nodes, OBP-401 replicated only in metastatic lymph
nodes, which was confirmed by a histopathologic analysis.
Metastatic SCCHN cells were mostly observed in the lymph
nodes with fluorescence emission, whereas most of GFP-
negative lymph nodes contained no tumor cells (Fig. 5C).
The optical imaging detected 13 lymph nodes labeled in
spots with GFP fluorescence in 14 metastatic nodes (sensitiv-
ity of 92.9%). Among 21 metastasis-free lymph nodes,
3 nodes were GFP positive (specificity of 85.7%). In another
orthotopic model implanted with HSC-3 human SCCHN
cells, we could also detect GFP signals in one or two
metastatic lymph nodes but not in other nonmetastatic nodes
and salivary glands (Fig. 5; Supplementary Fig. S5).
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Fig. 3. Antitumor effects of OBP-301/n vivo in an orthotopic SCCHN model. A, tumor sections were obtained 35 d after tumor cell implantation. Paraffin-embedded sections
of SAS-L tongue tumors were stained with H&E. Scale bar, 100 um. Top, x40 magnification; bottom, detail of the boxed region of the top panel; magnification, x400.

B, orthotopic animal experiment regimens. The tongues of BALB/c nu/nu mice were inoculated with 1 x 10% SAS-L human SCCHN cells. Orthotopic tumor-bearing mice
received three courses of intratumoral injection of 1 x 108 pfu of viruses every 3 d starting on day 7 (regimen 1) or day 10 (regimen 2) after tumor cell inoculation. Eight mice
were used in each group. C, macroscopic appearance of SAS-L tongue tumors on BALB/c nu/nu mice 5 d (top) or 35 d (bottom) after tumor cell inoculation. Representative
tumors treated with PBS or OBP-301 are shown. Note the eradicated tumors in mice that received OBP-301 injection. Green arrowhead, SAS-L tumors. D, orthotopic
tumor-bearing mice received three courses of intratumoral injection of 1 x 108 pfu of viruses every 3 d starting on day 7 (regimen 1; top) or day 10 (regimen 2; botton) after
tumor cell inoculation. The tumor volume (/eft) and the body weight (right) were monitored and plotted. Point, mean; bars, SD. Statistical significance was defined as

P <0.05.
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Fig. 4. Virus spread of OBP-401 via lymphatics to regional lymph nodes on SAS-L tumor-bearing mice. A, selective visualization of lymph node metastasis in orthotopic
xenografts of SAS-L human SCCHN cells. Mice received intratumoral injection of OBP-401 (1 x 108 pfu) 24 d after tumor inoculation and were assessed for lymph node
metastasis 5 d later under charge-coupled device imaging. Left, gross appearance; right, fluorescence image. Red arrowhead, primary tumor; white arrowhead, metastatic
tumor cells. B, selective visualization of lymph node metastasis and lymphatic dissemination in orthotopic xenografts of SAS-L cells. Note the GFP-expressing disseminated
tumor cells in lymphatics. Red arrowhead, primary tumor; white arrowhead, metastatic tumor cells in lymphatics. C, sections of GFP-positive lymph nodes were obtained 35 d
after tumor cell implantation. Paraffin-embedded sections of lymph nodes were stained with H&E. Scale bar, 100 pm.

Prolonged survival following OBP-301 virotherapy in an
orthotopic human SCCHN model. Finally, we assessed the
effect of intratumoral injection of OBP-301 on survival time
of SAS-L-bearing mice. Mice treated with OBP-301 beginning
either on the 7th day (regimen 1) or the 10th day (regimen 2)
after tumor implantation survived significantly longer (mean =
27.4 or 33.7 days) than mice without treatment (mean = 14.7
or 24.3 days; regimen 1, P = 0.017; regimen 2, P = 0.016;
Fig. 6). The prolonged survival might reflect an antitumor effect
of oncolytic adenoviruses spreading into the locoregional area,
including regional lymph nodes.

Discussion

The present study illustrates the potential application of
replication-selective oncolytic adenoviruses as an anticancer
agent in human SCCHN patients. We found that intratumoral
administration of telomerase-specific oncolytic adenovirus
induced tumor volume reduction as well as the recovery of
weight loss by enabling oral ingestion in an orthotopic
xenograft model, in which human SCCHN cells were
implanted into the tongues of BALB/c nu/nu mice. Oncolytic
virotherapy also prolonged the survival of SCCHN tumor-
bearing mice, presumably due to the locoregional antitumor
effect against primary tumors and lymph node metastases with
viruses spreading into the lymphatics.
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Telomerase-specific oncolytic adenovirus OBP-301 exhibits
a broad cytopathic effect against human cancer cell lines of
different tissue origins (8-10). In a panel of human SCCHN
cell lines, OBP-301 also showed apparent antitumor effects
in vitro in a dose-dependent manner (Fig. 1B), although the
sensitivity varied greatly between cell lines despite hTERT and
coxsackievirus and adenovirus receptor expression (Supple-
mentary Fig. S1). We have previously found that the process
of oncolysis is morphologically distinct from apoptosis and
necrosis (17). The cell death machinery triggered by OBP-301
infection is still under the investigation, although autophagy is
partially involved in this effect (17, 18). OBP-301 has been
developed based on the ability of the hTERT promoter to
control replication of the virus in the tumors, leading to
selective killing of tumor cells and minimal undesired effects on
normal cells; the ID5y values of OBP-301 in various human
cancer cell lines, however, were not related to the levels of
hTERT mRNA expression (8, 10). Indeed, HSC-3 and HSC-4
human SCCHN cells expressing high levels of h"TERT mRNA
were less sensitive to OBP-301 than SCC-4 and SCC-9 cells with
low levels of hTERT expression. Thus, neither hTERT expression
nor coxsackievirus and adenovirus receptor expression could be
useful for predicting the outcome of OBP-301 treatment.

Biomarkers have been extensively studied and often used
to predict the potential therapeutic benefit of new agents,
including molecular-targeted therapies (19). There is a widely
recognized need for biomarkers that could improve the
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clinician’s ability to select suitable drugs for appropriate
patients. We found that the levels of GFP expression following
OBP-401 infection were highly associated with IDs, values of
OBP-301 in individual cell lines in wvitro (Fig. 2C). This
correlation may be an expected result, because OBP-301 and
OBP-401 have the same genomic backbone except for the GFP
expression cassette. Although it is necessary to establish the
assay procedures for GFP-based fluorescence measurement in
more detail, we propose the diagnostic application of OBP-401
to predict tumor responses to OBP-301. For example, when the
biopsy tissue samples of the tumor are exposed to OBP-401 for
a certain amount of time ex vivo, the levels of GFP expression
may be of value as a positive predictive marker for the outcome
of OBP-301 virotherapy. Further prospective clinical studies are
required to confirm the direct correlation between the GFP
expression in biopsy samples following ex vivo OBP-401
infection and the clinical responses to OBP-301 in patients
with SCCHN.

An orthotopic nude mouse model to investigate the cellular
and molecular mechanisms of metastasis in human neoplasia
was first described by Fidler et al. (20, 21) and Killion et al.
(22). The orthotopic implantation of tumor cells restores the

correct tumor-host interactions, which do not occur when
tumors are implanted in ectopic subcutaneous sites (20). To
further explore the in vivo antitumor effects of telomerase-
specific virotherapy for SCCHN, we used an orthotopic nude
mouse model of human tongue squamous cell carcinoma. In
our preliminary experiments, we inoculated tumor cells into
the tongue of BALB/c nu/nu mice and confirmed the formation
of tumors with a diameter of 3 to 5 mm after 5 days and the
development of metastases in neck lymph nodes after 35 days.
We also identified the presence of disseminated tumor cells in
the regional lymph nodes at least 10 days after tumor cell
implantation by using GFP-expressing SAS-L human SCCHN
cells (data not shown). Intratumoral injection of OBP-301
done 7 or 10 days after tumor inoculation significantly shrunk
the tongue SAS-L tumor volumes, which in turn increased the
body weight of mice by enabling oral ingestion (Fig. 3D).
Moreover, HSC-3 cells were relatively resistant to OBP-301
in vitro; intratumoral injection of OBP-301 was, however,
effective for recovering the body weight in mice bearing HSC-3
tongue tumors after a long-term observation (Supplementary
Fig. S4). These results suggest that although the appearance of
the effect may be slower, the in vivo antitumor activity could be
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Fig. 5. Virus spread of OBP-401 via lymphatics to regional lymph nodes on HSC-3 tumor-bearing mice. A, selective visualization of lymph node metastasis in orthotopic
xenografts of HSC-3 human SCCHN cells. Mice received intratumoral injection of OBP-401 at the concentration of 1 x 108 pfu after 24 d of tumor inoculation and were
assessed for lymph node metastasis 5 d later under fluorescence stereomicroscope. B, HSC-3 primary tumor, salivary glands, and lymph nodes were excised 5 d after
OBP-401 injection and then assessed for GFP fluorescence. 1to 4, lymph nodes; 5 and 6, salivary glands. C, other HSC-3 tumor-bearing mice. Excised primary tumors, salivary

glands, and lymph nodes were assessed for GFP fluorescence.
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expected even in resistant SCCHN tumors. Because the body
weight loss due to a feeding problem in this orthotopic SCCHN
model resembles the disease progression in SCCHN patients,
the finding that OBP-301 increased the body weight of mice
suggests that OBP-301 virotherapy could potentially improve
the quality of life in advanced SCCHN patients.

Amplified viruses can infect adjacent tumor cells as well as
reach metastatic lymph nodes via the lymphatic circulation. We
have previously shown that the telomerese-specific OBP-401 -
expressing GFP could be delivered into human tumor cells in
regional lymph nodes and replicate with selective GFP fluores-
cence after injection into the primary tumor in an orthotopic
rectal tumor model (11). In the orthotopic SCCHN model,
OBP-401 spread into the neck lymph nodes after injection into
the primary tongue tumor and selectively replicated in metastatic
nodules (Figs. 4 and 5; Supplementary Fig. S5). The sensitivity
and specificity of this imaging strategy for SAS-L tumors are
92.9% and 85.7%, respectively, which are sufficiently reliable
to support the concept of this approach. These results suggest
that surgeons may be able to excise primary tumors as well as
metastatic lymph nodes precisely with appropriate margins
by using this novel surgical navigation system with OBP-401.
Moreover, the therapeutic profiles of OBP-401 and OBP-301 are
considered similar, and a histopathologic analysis showed the
destruction of micrometastases by virus in metastatic lymph
nodes. This regional antitumor effect of oncolytic viruses could
have a significant effect on the prolongation of the survival of
mice bearing orthotopic tumors (Fig. 6).

Targeted therapies such as the anti-epidermal growth factor
receptor monoclonal antibody cetuximab and other small-
molecule epidermal growth factor receptor-tyrosine kinase
inhibitors have been developed for SCCHN. Although a phase
111 trial showed a survival benefit with cetuximab and standard
platinum-based therapy in SCCHN patients (23), some patients
are exquisitely sensitive to these drugs and can develop
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Summary We constructed a replication-competent oncolytic
adenovirus, OBP-301 (Telomelysin), in which human telo-
merase reverse transcriptase (WTERT) promoter drives El
genes. OBP-301 is currently being used in a phase-I clinical
trial for various types of tumors. Under such conditions, anti-
adenoviral agents should be available for safety use against
OBP-301 since any adenoviral viremia could cause severe
adverse effects. Cidofovir (CDV) is an acyclic nucleoside
phosphonate that has a broad antiviral activity against DNA
viruses. Here, we examined the antiviral effects of CDV
against OBP-301. The in vitro cytopathic effects of OBP-301
were suppressed by CDV. Moreover, CDV decreased the
adenoviral E1A gene copy number after OBP-301 infection.
These results suggest that CDV is a potentially useful
antiviral agent for OBP-301.

Keywords hTERT - Adenovirus - Cidofovir-
Oncolytic virus - Clinical trial

Introduction

Oncolytic adenoviruses have been developed for treatment of
human cancer. These viruses are designed to replicate and
selectively kill cancer cells but to have minimum effect on
normal cells [1]. Two major approaches to generate selective
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replication of viruses within tumor cells have been used [2, 3].
One is to delete genes that are critical for replication of the
virus in normal cells but are dispensable for cancer cells such
as ONYX-015 or A24 [4]. The other approach is the
replacement of the promoter region that initiates viral
replication genes to the promoter region of the genes active
in cancer cells [2, 3]. Various genetic or epigenetic targets
limited to cancer cells have been investigated and used for
constructing oncolytic adenoviruses.

Human telomerase reverse transcriptase (hTERT) is an
enzymatic subunit of human telomerase [5]. Telomerase is
expressed in almost all cancer cells but not in all normal
cells [6]. Therefore, telomerase is an attractive target for
treatment of cancer. We constructed previously the attenu-
ated adenovirus, OBP-301 (Telomelysin), in which adeno-
viral E1A and E1B genes are linked with internal ribosomal
entry site under the control of the hTERT promoter. We
reported that OBP-301 induced selective expression of E1A
and E1B genes in many cancer cell lines and selectively
replicated and lysed cancer cells but not normal cells [7-9].
OBP-301 is currently being tested in a phase-I clinical trial
that includes various types of solid tumors. Although
patients receiving this type of therapy become positive for
anti-adenoviral neutralizing antibodies, those treated with
OBP-301 could develop adenoviral viremia with potentially
severe adverse effects. Thus, there is a need for anti-
adenoviral agents for treatment of potential viremia in
clinical trials of OBP-301.

One of the antiviral compounds is phosphonyl acyclic
nucleotides, (S)-9-(3-hydroxy-2-phosphonometoxy propyl)
cytosine dehydrate, also known as HPMPC (cidofovir, or
CDV). CDV was developed for the treatment of viral
infections and has a broad antiviral activity against DNA
viruses, such as cytomegalovirus and adenoviruses (AdV).
CDV exhibits potent inhibitory effects against several
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adenoviral serotypes in cell culture models [10]. Further-
more, CDV has been used clinically for AdV infections
after bone marrow transplantation in immunodeficient
patients [11]. Thus, we presumed that CDV could be a
useful antiviral drug against OBP-301. In the present study,
we examined the in vitro inhibitory effects of CDV against
OBP-301 in human lung cancer cell lines.

Materials and methods
Cell culture, viruses, and chemicals

The human non-small lung cancer cell H1299 and lung
cancer cell line A549 were purchased from American Type
Culture Collection (ATCC). H1299 was cultured in RPMI
1640 medium supplemented with 10% FCS. A549 was
cultured in DMEM F12 medium supplemented with 10%
fetal calf serum (FCS). OBP-301 was constructed and
characterized as described previously [7-9]. The human
wild-type adenovirus type 5 (wt-Ad) was also used.
VISTIDE™ (CDV injection) was purchased from Gilead
Sciences (Foster City, CA).

Cell viability assay

Cells were seeded in 96-well plate at 1x10* cells per well
and incubated at 37°C. After incubation, cells were infected
with OBP-301 at a MOI of 1 (in H1299) and 5 (in A549)
for 2 hours. The medium was aspirated and replaced with
fresh medium containing 2% FCS and serially diluted CDV.
Cell viability was determined by XTT assay 7 days after
infection using Cell Proliferation Kit II (Roche Molecular
Biochemicals) according to the protocol recommended by
the manufacturer. Protection was determined by the
following formula: Protection (%)={OD (AdV(+):CDV
(+)) — OD (AdV (+):CDV(-))}/{OD (AdV(-):CDV(+))
—OD (AdV (+):CDV(-))} x100. CCso (50% cytotoxic
concentration) was defined as CDV concentration that
inhibited relative cell viability to 0.5 without OBP-301
infection. ECs, (50% effective concentration) was defined
as CDV concentration that archived 50% protection.

Quantitative real-time PCR analysis

Cells were seeded in six-well plate at 2x 10> cells per well.
After overnight incubation at 37°C, the medium was
aspirated, and cells were infected with OBP-301 or wt-Ad
at a MOI of 10 for 2 hours at 37°C with gentle shaking
every 15 minutes. After incubation, the cells were washed
with PBS and placed in a medium containing serially
diluted CDV (100, 20, 4, 0.8, 0.16 and 0 puM). The cells
were harvested 24 hours later with Trypsin/EDTA and total
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DNA was extracted using QIAamp™ DNA Mini Kit
(Qiagen, Hilden, Germany). Viral EIA copy number was
measured using LightCycler instruments and LightCycler
Faststart DNAMaster SYBR Green I (Roche, Mannheim,
Germany). ECs, (E1A) was defined as the CDV concentra-
tion that inhibits the E1A ratio (with CDV/no CDV) to 0.5.
Primers for E1A gene were: forward: 5’- CCTGTGTCTA
GAGAATGCAA -3’, reverse: 5’- ACAGCTCAAGTC
CAAAGGTT - 3°. PCR amplification began with a 600-s
of denaturation step at 95°C and then 40 cycles of
denaturation at 95°C for 10 s, annealing at 60°C for 15 s,
and extension at 72°C for 8 s.

Statistical analysis

The Student’s r-test was used to compare differences.
Statistical significance was defined when p was <0.05.

Results

In vitro cytopathic effect of OBP-301 on lung cancer cell
lines

We reported previously that OBP-301 exhibited oncolytic
activity against many types of human cancer cells [7-9]. To
confirm this, we tested its cytopathic effects in cancer cell
line in vitro. Human lung cancer cell lines, A549 and
H1299, were infected with OBP-301 at various MOIs and
numbers of living cells were measured by XTT assay
(Fig. 1). At 5 days after infection, the majority of H1299
cells were killed by OBP-301 at MOI of 1 and 10, and
approximately 70% of A549 cells were killed by OBP-301
at MOI of 50. These results confirmed that OBP-301
induced cell death in A549 and H1299 cells.

Inhibitory effects of CDV on the cytopathic effect
of OBP-301

Next, we tested whether the cytopathic effect by OBP-301
on these cancer cells could be inhibited by CDV treatment.
A549 and H1299 cells were infected with OBP-301 then
treated with CDV at various concentrations. Cell viability
was also determined by XTT assay. In the presence of the
drug and virus, relative cell viability significantly increased
in the presence of CDV at > 30 uM in A549 cells and
> 40 puM in H1299 cells (p<0.01) (Fig. 2). Furthermore,
inhibition of cell growth of each cell line was observed in
the presence of CDV at > 100 uM. The calculated ECsy
values of CDV were 20.4 uM for H1299 and 35.9 uM for
A549 cells, while the calculated CCs, values were
146.4 pM for H1299 cells and 106.9 uM for A549 cells.
Similar results were obtained by using ONYX-015 (see



