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3. Selective growth inhibition effect of cysteaminylphenols to melanoma cells

The selectivity and specificity of our synthetic compounds to melanoma cells were evaluated by the
in vivo and in vitro studies. The selective uptake of our drug by melanoma cells and tissues was
shown by employing "C-labelled cysteaminylphenol. A high, specific uptake of NAcCAP was seen
by melanoma cell lines, such as SKmel 23. In addition, a melanoma-bearing mouse showed, on the
whole body autoradiogram, the selective uptake and covalent binding of NAcCAP in melanoma
tissues of lung and skin. In another experiment, we examined to what extent one can block the
melanoma growth in both in vitro culture and in vivo lung metastasis assays by administration of
NAcCAP combined with BSO, buthionine sulfoxide, which blocked the effect of anti-oxidants. There
was a marked growth inhibition of cultured melanoma cells in the presence of BSO, indicating that
the selective cytotoxicity by our CAP is related to the quinone and free radicals. The in vivo lung
metastasis experiment also showed the decreased number of lung melanoma colonies [3]. The
problem was, however, that a fairly large number of amelanotic melanoma lesions were seen to
grow in the lung. NPrCAP has been developed with the hope of increasing the cytotoxicity and
overcoming a part of the problem.

I. STRATEGY FOR DEVELOPMENT OF CHEMO-THERMO-IMMUNOTHERAPY FOR
MELANOMA BY MELANOGENESIS SUBSTRATES

1. Synthesis for conjugate of N-propionyl cysteaminylphenol and magnetite nanoparticles

In order to further increase the cytotoxicity to both melanotic and amelanotic cells, we conjugated
NPrCAP with magnetite nanoparticles, which generate heat upon exposure to an alternating
magnetic field (AMF). We expected this combination of NPrCAP and magnetite nanoparticles to be
a potential source for developing not only anti-melanoma pharmacologic but also immunogenic
agent. It was expected that NPrCAP/magnetite nanoparticles complex could be selectively
incorporated into melanoma cells. The degraded melanoma tissues from oxidative stress by
NPrCAP and heat shock by AMF exposure would produce the synergistic effect for generating
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tumor-infiltrating lymphocytes, TIL that will kill melanoma cells in distant metastases, Fig. (4). Four
compounds were synthesized and two of them, i.e, NPrCAP/M and NPrCAP/PEG/M were used for
animal and human studies respectively (Fig). 5.
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Fig. (5). ML : neutral magneto-liposome, CML : cationic magneto-liposome.

Magnetite nanoparticles have been employed for thermotherapy in a number of cancer treatments
including human gliomas and prostate cancers [33-35]. They consist of 10-100nm-sized iron oxide
(Fe;O.) with a surrounding polymer coating and become magnetized when placed in AMF [9] We
synthesized, in our initial study, the conjugate of NPrCAP with magnetite nanoparticles
(NPrCAP/ML) and NPrCAP/CML in which NPrCAP were embedded in cationic liposomes, Fig. (5).
There was, however, non-specific electrostatic interaction between cationic magneto-liposomes and
various non-target cells [35] and non-specific aggregations in neutral magneto-liposomes. A promising
technique is the use of tumor-targeted magnetite nanoparticles, and this approach is extended by
synthesizing another type of magnetite nanoparticles, NPrCAP/M and NPrCAP/PEG/M, on which
NPrCAP is superficially and directly bound on the surface of magnetite nanoparticles without using



liposomes. They are chemically stable, and can be produced in large quantities and employed to
effect melanoma-targeted chemotherapy (by NPrCAP) and thermo-immunotherapy (by magnetite
with HSP), hence providing a basis for a novel chemo-thermo-immunotherapy (CTI therapy). Most of
the experiments described below were carried out by employing NPrCAP/M except in preliminary
clinical trials to which NPrCAP/PEG/M was used.

2. Development of chemo-, thermo- and immunotherapy by exploiting melanogenesis substrates
Our basic strategy in designing chemo-thermo-immunotherapy (CTI therapy) drugs is that
tyrosinase substrates, NPrCAP/M, will be selectively aggregated on the melanoma cell surface by
active transport through a still unknown receptor system and that they will be incorporated into
early and late endosomes to which tyrosinase will also be transported from TGN to form stage I
melanosomes. Once NPrCAP/M is incorporated into melanosomes, it will be then retained and
aggregated in the melanosomal compartments as there will be no melanosome transfer occurring in
melanoma cells, Fig. (6). Thus we should be able to selectively destroy melanoma cells by heat
generated by AMF exposure from magnetite nanoparticles which are accumulated only in
melanosomal compartments. In fact, we could see NPrCAP/M nanoparticles which were selectively
aggregated in melanoma cells compared to non-melanoma cells, Fig. (7). NPrCAP/M nanoparticles
were found to be specifically incorporated and aggregated in melanosomal compartments at 2 weeks
after ip administration by electron microscopy, Fig. (8). After AMF exposure, there will be selective
disintegration of melanoma tissues as can be seen by Berlin Blue staining, Fig. (9). [36.37]
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Selective Accumulation of NPrCAP/M into Melanosomal
Compartments at Day 15 after jp Administration

Fig. (8). Arrows indicate magnetite particles incorporated into melanosomes.
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Fig. (9).

In hyperthermia treatment, the expression of heat shock proteins (HSPs) plays an important role
in immune reactions [12-16, 38-39]. Accumulating evidence from our group [18-20] and from others
[21] implicates HSP expression induced by hyperthermia in tumor immunity and opens the door to
novel cancer therapy based on hyperthermia treatment (thermo-immunotherapy). In such a
strategy, a tumor-specific hyperthermia system that can induce necrotic cell death via HSP
expression without damaging non-cancerous tissues would be highly desirable. An intracellular
hyperthermia system using tumor-targeted magnetite nanoparticles facilitates tumor-specific
hyperthermia ; this can induce necrotic cell death via HSP expression, which in turn induces
antitumor immunity.

2. Protocols of experimental chemo-thermo-immunotherapy by employing melanogenesis
substrates

In this study, we employed three cell lines of B16 melanoma, ie, B16F1, B16F10 and B160VA
cells and compared the thermo-therapeutic protocols in detail by evaluating the growth of the re-
challenge melanoma as well as the duration and rates of survival of melanoma-bearing mice, Fig.
(10).
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We first evaluated the chemotherapeutic effect of NPrCAP/M with or without heat. NPrCAP/M
without heat inhibited growth of primary transplants to the same degree as did NPrCAP/M with
heat, indicating that NPrCAP/M alone has a chemotherapeutic effect. However, there was a
significant difference in the melanoma growth inhibition of re-challenge transplants between the
groups of NPrCAP/M with and without heat. NPrCAP/M with AMF exposure showed the most
significant growth inhibition in re-challenge melanoma and increased life span of the host animals,
ie, 30-50% complete rejection of re-challenge melanoma growth, indicating that NPrCAP/M with
heat possesses a thermo-immunotherapeutic effect, Fig. (11). Specifically our study indicated that
the most effective thermo-immunotherapy for re-challenge B16 melanoma can be obtained at a
temperature of 43C for 30 min with the treatment repeated three times on every other day
intervals without complete degradation of the primary melanoma, Fig. (10). Our therapeutic
conditions and their effects differ from those of magnetically mediated hyperthermia on the
transplanted melanomas reported previously [40]. cationic magneto-liposomes-mediated
hyperthermia for B16 melanoma showed that hyperthermia at 46C once or twice led to regression
of 40-90% of primary tumors and to 30-60% survival of mice, whereas hyperthermia at 43°C failed to
induce regression of the secondary tumors with 0% survival of mice [40].
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We analyzed HSP70 production in the primary tumor and CD4" and CD8" T cell infiltration into
the re-challenge secondary tumor. Our study showed that NPrCAP/M-mediated hyperthermia at
43°C for 15 to 30 min and 46C for 15 min produced a large amount of HSP70, Fig. (11). This stress
protein forms a complex with intracellular peptides released from degrading tumor cells and
presented by the MHC class I molecules of professional antigen-presenting cells {20]. Although
thermotherapy at 46C for 15 min could induce HSP70 as abundantly as that at 43C for 30 min, this
condition failed to suppress the re-challenge melanoma transplant as efficiently as 43T
thermotherapy Fig. (12). This suggests that immunological factors other than HSPs are at least in
part responsible for rejection of the second re-challenge melanoma. Hyperthermia at 43° for 1 hr
revealed the expression of MHC class I molecules after 24 h in association with enhanced expression
of HSP70 [41]. Heat treatment of tumor cells permits enhanced cross-priming, possibly via up-
regulation of both HSPs and tumor antigen expression [21]. Thus, by inducing HSP70 and possibly
MHC class I, our protocol of NPrCAP/M-mediated hyperthermia at 43C can be an effective therapy
for the treatment of advanced metastatic melanoma.
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Fig. (12).

NPrCAP/M-mediated hyperthermia at a relatively low temperature (437C) effectively inhibited the
growth of second transplant, re-challenge melanoma. It may be possible that superficially bound
NPrCAP possesses an important role not only in targeting nanoparticles to melanocytic cells and a
chemotherapeutic effect on these cells but also in causing potentially an immunotherapeutic effect.

4. Melanocytotoxic and immunogenic properties of N-propionyl cysteaminylphenol (NPrCAP) and
magnetite conjugates

Hyperthermia increases the expression of intracellular HSPs which is important in and necessary
for the induction of antitumor immunity [42,43]. Over expression of HSPs, such as HSP 70, increases
tumor immunogenicity by augmenting the chaperoning ability of antigenic peptides and presentation
of antigenic peptides in MHC class I molecules [44, 45] . In this process professional antigen
presenting dendritic cells play unique and important roles in taking up, processing and presenting
exogenous antigens in association with MHC class I molecules. Our working hypothesis for induction
of in situ vaccination immunotherapy is that CTI therapy causes degradation of melanoma tissues
which results in the release of HSP/melanoma antigen complex. This complex is taken up by
professional antigen-presenting dendritic cells through HSP receptor. Subsequently after



internalization within the dendritic cells, MHC and antigen peptide complex is presented to CD8+ T
cells with the induction of acquired immunity, Fig. (13).
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In our animal study it was indicated that NPrCAP/M by itself inhibits melanoma growth by not
only chemotherapeutic effect but also a unique immunogenic property. Our current working
hypothesis for this finding is that there is a difference in the cyototoxic mechanism and
immunogenic property of NPrCAP/M between experimental groups with and without AMF
exposure. The animals with NPrCAP/M plus AMF exposure resulted in non-apoptotic necrotic cell
death with immune complex production of melanoma peptide as well as HSP 70 and a small amount
of HSP 90. The group with NPrCAP/M plus AMF exposure showed the most significant growth
inhibition of the re-challenged melanoma growth which resulted in the almost complete survival of
the host animals as long as for 3 months that we have conducted our experimental protocol.

It is, however, important to note that those animals bearing B16F1, B16F10 and B160VA
melanoma cells showed not only significant rejection of second re-challenge melanoma
transplantation by administration of both NPrCAP alone and NPrCAP/M minus AMF exposure but
also apoptotic or apoptotic cell death which was associated with immune complex production of
HSP90 and melanoma peptide [44]. When NPrCAP was given systemically ip. to black C57BL/6
mice, it caused depigmentation of black hair follicles which was found to be derived from selective
apoptotic disintegration of follicular melanocytes [47]. Melanin intermediates produce reactive
oxygen species such as superoxide and H202 {5, 47, 48]. This unique biological property of melanin
intermediates not only causes cell death, but also may produce immunogenic properties. The
molecular interaction between NPrCAP chemo-immunotherapeutic and magnetite/AMF thermo-
immunotherapeutic properties needs to be further studied.

IV. SUMMARY AND PERSPECTIVES

In this communication, we are able to show that

(1) NPrCAP with conjugation of magnetite nanoparticles, NPrCAP/M, with/without AMF
exposure can induce cytotoxic T cells that inhibit the growth of re-challenged melanoma
transplanted at the opposite site of body ;
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(2) NPrCAP alone appears to generate both chemotherapeutic and immunotherapeutic property to
B 16melanoma cells through both apoptotic and non-apoptotic processes respectively ;

(3) Melanogenesis cascade can be utilized as the basis for developing melanoma-targeted DDS and
chemo-thermo-immunotherapy agents.

Based upon these animal experiments, a preliminary human clinical trial has been carried out by
employing NPrCAP/PEG/M plus AMF after we received the approval of our human clinical trials
for a limited number of stage III and IV melanoma patients (Clinical Trial Research No. 18-67,
Sapporo Medical University). The therapeutic protocol followed the basically identical experimental
schedule as that of animal experiments. In this clinical trials, however, we utilized NPrCAP/PEG/M
which was made by conjugating polyethylene glycol between NPrCAP and magnetite nanoparticles,
Fig. (). Among four patients two of them showed complete and partial responses to our treatment
and have been able to carry out normal daily activities after CTI therapy. In one patient, for
example, four distant cutaneous metastasis sites were evaluated and either significant regression or
shrinkage of all of these four melanoma lesions was seen. The patient was able to survive 30 months
after several trials of CTI therapy. The pathological and immunological specimens revealed dense
aggregation of lymphocytes and macrophages at the site of CTI therapy. Importantly there was a
trend to have an almost identical distribution of CD8+ T cells and MHC class 1 positive cells.
Another patient had many lymph node metastases, but still has been surviving more than 32 months.
In order to evaluate the overall therapeutic effect to advanced melanoma, it is important to have
larger-scaled clinical trials and define concisely the molecular interaction between chemotherapeutic
and thermo-immunotherapeutic effect in our CTI therapy.

ABBREVIATIONS

DDS= drug delivery system

HSP=heat shock protein

AMF= alternating magnetic field

NPrCAP/M= N-propionyl 4S cysteaminylphenol/ magnetite nanoparticle
NPrCAP= N-propionyl 4S cysteaminylphenol

CTI therapy= Chemo-thermo-immunotherapy

MSH= melanocyte stimulating hormone

MITF= microphthalmia transcription factor

MCI1R= melanocortin 1 receptor

NAcCAP= N-acetyl 4S cysteaminylphenol

BSO= buthionine sulfoxide

PEG= polyethylene glycol

NPrCAP/PEG/M= N-propionyl 4-S cysteaminylphenol/ polyethylene glycol/ magnetite nanoparticle
ML=non-cationic magneto-liposome

CML= cationic magneto-liposome
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Increased Caspase-2 Activity is Associated With Induction of
Apoptosis in IFN-B Sensitive Melanoma Cell Lines

Takafumi Kamiya,' Tamaki Okabayashi,? Shin-ichi Yokota,? Yuji Kan,! Jiro Ogino,! Toshiharu Yamashita,'
Nobuhiro Fuijii,2 and Kowichi Jimbow's

Interferon (IFN) is believed to be one of the most effective anti-melanoma agents. Specifically, IFN-B has the
ability to induce apoptosis of melanoma cells. Induction of tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) has also been suggested to have a critical role in IFN-B-induced apoptosis. To characterize the
signaling pathway involved in IFN-B-induced apoptosis, we analyzed the biological effects of IFN-B on the cell
death and caspase activation of melanoma cells. IFN-sensitive cell lines, MM418, SK-mel-23, and SK-mel-118,
showed increased apoptotic populations correlated with the activation of caspase-2 and caspase-3 by IFN-B.
IFN-B-induced apoptosis was significantly suppressed by inhibitors for caspase-2 or caspase-3, but not by inhibi-
tors for caspase-8 or caspase-9 in these cell lines. TRAIL expression was observed in IFN-B-treated cells of
SK-mel-23 and SK-mel-118, but not in those cells of MM418, which showed massive IFN-B-induced apoptosis and
resistance to exogenous TRAIL-mediated apoptosis. G361 was resistant to IFN-B-induced apoptosis but sensitive
to exogenous TRAIL-mediated apoptosis. Furthermore, IFN-B pretreatment significantly increased the sensitiv-
ity against exogenous TRAIL-mediated apoptosis and activation of caspase-2 in G361. These results suggested
that caspase-2 activation is commonly associated with induction of IFN-B-induced apoptosis in IFN-B-sensitive
melanoma cells.

Introduction _
the anti-tumor effects of IFN (Leaman and others 2003; Kang

"l THERAPY FOR MALIGNANT MELANOMA has been a difficult and others 2004).

challenge for physicians. Among various therapeutic Recently, it has been clarified that IFN has apoptotic
approaches, interferon (IFN) is believed to be an effective  effects on several tumors. TRAIL, known as Apo2 ligand,
anti-melanoma agent. is also a member of the TNF family of transmembrane pro-

Although the mechanisms of IFN-mediated cell death teins, which leads tumor cells to apoptosis by stimulating
have not been fully elucidated, IFN is known as an effective  death receptors (DRs) (Griffith and others 1998; Kimberley
anti-tumor agent (Fisher and others 1985; Pfeffer and oth- and Screaton 2004; Zhang and Fang 2005). It has been sug-
ers 1998; Stark and others 1998). It was reported that IFN-B  gested that the involvement of TRAIL is essential for the
induced apoptosis in melanoma cells more significantly than  apoptotic cascade induced by IFNs in certain melanoma cell
IFN-a and -y did (Chawla-Sarkar and others 2001; Leaman  lines, as well as in other tumor cell lines (Chawla-Sarkar and
and others 2003; Merchant and others 2004). It induces many  others 2001; Chen and others 2001; Meng and El-Deiry 2001
biological responses by regulating IFN-stimulated genes Morrison and others 2005). Furthermore, other ISGs, such
(ISGs) (Chawla-Sarkar and others 2003). Several ISGs, such  as Ras association domain family 1A (RASSF1A) and XIAP
as double-stranded RNA-activated protein kinase (PKR), (X-inked inhibition of apoptosis protein)-associated pro-
myxovirus resistance protein A (MxA), melanoma differen-  tein (XAF1), also contribute to IFN-B-induced and TRAIL-
tiation-associated gene-5 (MDA-5), and tumor necrosis fac-  induced apoptosis (Chawla-Sarkar and others 2003; Reu and
tor-related apoptosis-inducing ligand (TRAIL), are related to  others 2006).

'Department of Dermatology, and *Department of Microbiology, Sapporo Medical University School of Medicine, ‘Institute of
Dermatology and Cutaneous Sciences, Sapporo, Hokkaido, Japan.
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Apoptosis can be included by 2 signaling pathways. One
is through apoptosis-inducing ligands such as Fas ligand,
TRAIL, and TNF-a-stimulating DRs. The other is through
cytochrome c release from mitochondria. In these pathways, it
is evident that the functions of caspase-3, -8, and -9 are essen-
tial. Caspase-2, which is considered to be an initiator caspase
and involved in upper stream of the apoptotic pathways,
is located diversely in the cytoplasm and nuclei. However,
the biological role of caspase-2 remains controversial com-
pared with those of other caspases (Zhivotovsky and others
1999; van Loo and others 2002; Zhivotovsky and Orrenius,
2005). The correlation between TRAIL and caspase-2 has
been indicated recently in TRAIL-mediated apoptotic path-
ways, in which caspase-2 processes procaspase-8 or cleaves
Bid, a proapoptotic Bel-2 family member (Wagner and others
2004; Shin and others 2005). Although the interaction among
apoptosis-inducing ligands, IFNs, and caspase-2 has recently
been clarified to some extent, the role of caspase-2 in IFN-
induced apoptosis remains to be elucidated.

In this study we were interested in the activities of cas-
pases, especially caspase-2 in the IFN-B-induced apoptotic
pathway. Therefore, we examined 2 classes of human mela-
noma cell lines that were sensitive and resistant to apoptosis
induced by IFN-B treatment.

Materials and Methods
Cell cultures and reagents

The human melanoma cell lines, SK-mel-118, SK-mel-23,
MMA418, and G361 (Yamashita and others 2001), were grown in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 5% fetal bovine serum and antibiotics in 5% CQO, incuba-
tors at 37°C. SK-mel-23 and MM418 are pigmented cell lines,
and the others are non-pigmented cell lines. IFN-a2 was pur-
chased from Serotec (Oxford, UK). IFN-B was supplied by
Mochida Pharmaceutical (Tokyo, Japan): Cells were treated
with 1,000 IU/mL of IFNs for different time periods depending
on the experiment. Recombinant human TRAIL (R&D Systems,
Minneapolis, MN, USA) was used at the final concentration
of 100 ng/mL. Recombinant human TNF-a (R&D systems,
Minneapolis, MN, USA) was used at the final concentration of
50 ng/mL. The anti-Fas (CD95) antibody (MBL, Nagoya, Japan)
was used at the final concentration of 500 ng/mL.

Cell viability assay

Cells were plated in 100 mL of medium in 96-well plates in
triplicate with 1,000 cells/well. After 24 h, cells were treated
with IFN-a2, or IFN-8 (72 h), or treated with IFN-8 (24 h) fol-
lowed by addition of TRAIL, TNF-q, or the anti-Fas (CD95)
antibody (48 h) after PBS washing. At 48 h after plating, cells
were also treated with TRAIL, TNF-q, or the anti-Fas (CD95)
antibody (48 h) to be compared with IFN-B-pretreated cells.
The viability of treated cells was determined with the MTT
assay, which is a formazan-formation assay, using the Cell
Counting Kit-8 (DOJINDO, Kumamoto, Japan) according to
the manufacturer’s protocol.

Semiquantitative reverse transcriptase-polymerase
chain reaction (RT-PCR)

Total RNA was extracted from cells using an RNeasy
mini kit (Qiagen, Hilden, Germany). Complementary
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DNA was synthesized using Super Script™-III Rnase H
(Invitrogen, Carlsbad, CA, USA) from total extracted RNA
(50 ng). The quantitative PCR was validated by the lin-
earity of the determination curves at various concentra-
tions of cDNA. Specific primers (Sigma-Genosys, Ishikari,
Japan) were constructed as follows: 5-TTGGCTCAGGTGG
ATTTGG-3" and 5-GGCTTTTCTTCCACACAGTC-3' for
PKR, 5-GCATCCCACCCTCTATTACT-3' and 5-TGTCTT
CAGTTCCTTTGTCC-3' for MxA, 5-GGAAGTACAATGAG
GCCCTACAAA-3, 5 TCCTCAGTCCTAGTATATTGCTCC-3'
for mda-5, 5-GGCTATGATGGAGGTCCAGG-3' and
5-GGTCCATGTCTATCAAGTGCTC-3' for TRAIL, 5-AGC
GTGCCAACGCGCTGCGCAT-3' and 5-CAGGCTCGTC
CACGTTCGTGTC-3' for RASSF1A, 5-GCCTGCGGTTCCTG
GTCCTG-3" and 5-GCTGGGCGAGCATGCGGTGC-3" for
XAF1, 5-CCAACAAGACCTAGCTCCCCAGC-3' and 5-AA
GACTACGGCTGCAACTGTGACTCC-3' for DR4, 5'-GTCCT
GCTGCAGGTCGTACC-3* and 5-GATGTCACTCCAGG
GCGTAC-3' for DR5, 5-TCCACCACCCTGTTGCTGTA-3
and 5"-ACCACAGTCCATGCCATCAC-3' for glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). PCR using Taq DNA
polymerase (Promega, Wisconsin, WI) as follows: denatur-
ation, 94°C for 30 s; annealing, 55°C for 30 s; and extension,
72°C for 1 min. The number of cycles was 35.

Fluorescence-activated cell sorting analysis

Analysis of TUNEL assay of apoptotic cells was done by
fluorescence-activated cell sorting (FACS). Cells were plated
in 8 mL of medium in 10-cm dishes with 2 X 10* cells/mL.
After 72 h, cells were harvested by scraping. For TUNEL
assay, cells were assayed using the Apo-BrdU In situ DNA
fragmentation Assay Kit (MBL, Nagoya, Japan) according
to manufacturer’s protocol. These stained cells were ana-
lyzed with a FACS Caliber and Cell Quest software (Becton
Dickinson, San Jose, CA).

Caspase activity assay

Cells were plated in 8 mL of medium in 10-cm dishes with
2 X 10* cells/mL. After 24 h, cells were treated with IFN-a2
and IFN-B (48 h), or with IFN-B (24 h) followed by PBS wash-
ing and addition of TRAIL, TNF-q, and the anti-Fas (CD95)
antibody (24 h). At 48 h after cell plating, cells were also
treated with TRAIL, TNF-q, and the anti-Fas (CD95) anti-
body (24 h) to be compared with IFN-B-pretreated cells. Cells
were harvested by scraping, and were assayed with a com-
mercially available caspase-2, -3, -8, -9, and -10 fluorometric
assay kit (MBL, Nagoya, Japan) as procedure was described.
Caspase activity was measured by spectrofluorometer
Fluoroskan Ascent FL (Labsystems, Helsinki, Finland). The
excitation wavelength was 390 nm and the emission wave-
length was 510 nm. Western blotting analysis of caspase pro-
tein was performed as described elsewhere (Yamashita and
others 2001). Rabbit anti-caspase-2 antibody was purchased
from Santa Cruz Biotechnology (Santa Cruz, CA).

Caspase inhibitor treatment

Caspase inhibitors, Z-VDVAD-FMK (specific for cas-
pase-2), Z-DOMD-FMK (specific for caspase-3), Z-IETD-FMK
(specific for caspase-8 and granzyme B), and Z-LEHD-FMK
(specific for caspase-9) were purchased from Calbiochem
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(San Diego, CA). The cells were treated with 1,000 1U/mL
IFN-B for 48 h in the presence or absence of the caspase
inhibitor at a concentration of 100 mM. Cell viability was
determined with MTT assay.

Statistical analysis

Statistical comparisons were made using Student’s {-test.

Resulis

IFN-B inhibited the viability of melanoma cell lines
SK-mel-118, SK-mel-23, and MM418, but not G361.

To assess the viability of IFN-« and -B-treated melanoma
cell lines, MTT assay was performed (Fig. 1A). The cell via-
bilities of SK-mel-118, SK-mel-23, and MM418 were reduced
by IFN treatments. Detached cell death and cell growth inhi-
bition was microscopically detected in these cell lines. The

13

reduction of cell viability by IFN-B was significantly higher
than by IFN-«2. However, slight cell growth inhibition and
no detached cell death of G361 were microscopically detected
by IEN treatments. The cell viability was slightly inhib-
ited by IFN-a2 or IFN-B but no significant difference was
observed between untreated cell viability and IFN-treated
cell viability. And more cell death was not induced by higher
dose (>1,000 TU/mL) of ITFN-B in G361 and SK-mel-118 (data
not shown). These results indicated that these 4 melanoma
cell lines were divided into 2 groups, one in which cell via-
bility inhibition and detached cell death was observed by
IFN, and the other in which slight cell viability inhibition
and no detached cell death was observed.

Induction of ISGs after treatment with IFNs

To assess whether IFN treatment could transduce intra-
cellular signaling in melanoma cell lines, we investigated
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FIG.1. Cellviability and mRNA expression of interferon (IFN)-stimulated genes after treatment with IFN-a2 and IFN-8. (A)
Each cell line was plated in a 96-well plate with 1 X 10° celis/well. The cell lines were treated in the presence of 1,000 IU/mL of
IFN-a2 and IFN-B for 72 h. The viability of treated cells was determined by the formazan-formation assay at 72 h in triplicate.
The results are expressed as relative values (mean = S.D) to the untreated control. Untreated: empty column, IFN-«2: shaded
column, IFN-B: dotted column. *Significant difference (P < 0.01). (B) The cell lines were plated in 24-well plate with 3 X 10°
cells/well. After adding 1,000 IU/mL IFN-«2 and IFN- for 24 h, total RNA was extracted. cDNA was synthesized from total
extracted RNA (50 ng). The results of the semiquantitative RT-PCR were validated by the linearity of the determination of
curves at various concentrations of cDNA. MDA-5, melanoma differentiation-associated gene-5; PKR, double-stranded RNA-
activated protein kinase; MxA, myxovirus resistance protein A; TRAIL, tumor necrosis factor-related apoptosis-inducing
ligand; XAF1, (X-linked inhibition of apoptosis protein)-associated protein; DR4, death receptor 4; and DR5, death receptor 5.
GAPDH was determined as a control. N, untreated group; o, treatment with IFN-a2; and B, treatment with IFN-8.



14

mRNA expression of ISGs, which associated with cell death,
such as MDA-5, PKR, MxA, TRAIL, RASSF1A, and XAF1 in
IFN-treated cell lines (Fig. 1B). The mRNA expressions of
MDA-5 were significantly up-regulated by IFN treatment in
all the cell lines, including G361, which was resistant to the
anti-viability effects of IFN. Those of PKR, MxA, and XAF1
also tended to be up-regulated in the tested cell lines. These
resultsindicated that the [IFN-signaling pathway was not sup-
pressed in any of the tested cell lines. TRAIL-mRNA induc-
tions of SK-mel-118 and SK-mel-23 by IFN-8 treatment were
markedly higher than those of MM418 and G361. RASSF1A
mRNA was not detected in all cell lines. These results sug-
gested that expression levels of any ISGs so far examined
did not correlate with the degree of IFN-induced apoptosis.
Furthermore, we examined expression levels of proapoptotic
DRs for TRAIL. DR5 mRNA strongly expressed in SK-mel-
118, which is highly sensitive to TRAIL, and decreased by
treatment with IFN. DR4 mRNA was reduced by IFN treat-
ment in G361 and it did not show any significant changes
by IFN treatment in other cell lines. These results suggested
that DRs for TRAIL had little to do with the effect of IFN-
induced cell death.

Induction of apoptosis in melanoma cells by
IFN-B treatment

We investigated the mechanism of cell death induced
by IFN-B. We performed TUNEL assay in these 4 cell lines
to assess whether the cell viability reduction and detached
cell death by IEN-B occurred via apoptosis (Fig. 2). This
assay showed that BrdU-FITC-positive cells corresponding
to an apoptotic population, which underwent DNA frag-
mentation, increased in IFN-treated SK-mel-118, SK-mel-23,
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and MM418, whose cell viabilities were reduced by IFN-B
in MTT assay. Apoptotic cells in G361, whose cell growth
was slightly inhibited, were not increased by treatment with
IFN-B (Fig. 2). It was reported that TRAIL is essential for the
apoptosis cascade induced by IFN (Chawla-Sarkar and oth-
ers 2001). In SK-mel-118 and SK-mel-23 that expressed TRAIL
mRNA after IFN-B treatment, the induction of apoptosis
seemed to be related to TRAIL expression. However, MM418
did not induce TRAIL-mRNA expression even if massive
apoptosis was induced by IFN-§ treatment. Thus the IFN-
induced apoptotic pathway of MM418 was speculated to
occur not through TRAIL induction by IFNs.

Up-regulation of caspase-2 activity was related to IFN-§-
induced apoptosis in melanoma cell lines.

Activation of a caspase cascade is critical for initiation
of apoptosis. We performed caspase fluorometric assay to
detect up-regulation of caspase activity when apoptosis was
induced in melanoma cells by IFN-B treatment. Caspase-3
activities in IFN-B-treated SK-mel-118, SK-mel-23, and MM418
showed about 2.5- to 7-fold increases, but not in G361 (Fig. 3).
These results were consistent with the extent of apoptotic
population of the TUNEL assay (Fig. 2). To characterize the
related regulation of the caspase cascade, we furthermore
analyzed activation of caspase-2, -8, -9, and -10 in IFN-B-
treated cell lines. Activations of caspase-2, -3, and /or -9 were
observed in IFN- sensitive cell lines, SK-mel-118, SK-mel-23,
and MM418. IFN-resistant G361 cells had no significant up-
regulation of any caspase activity. Activation of caspase-2
was also confirmed by the finding that protein levels of pro-
caspase-2 decreased by treatment with IFN-B as shown by
Western blotting (Fig. 4). Active caspase-2 fragments were
not detected, although degradation of procaspase-2 was able
to be detected. Probably because of the sensitivity, Western
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A < Data.001 « SK23_con_72 h_tunel < MM418_72 h_con_tunel < Data.003
(=} o j=] 9
0.87% 2.48% 0.61% 0.48%
) < @ iyl
= e E S
X o x o N ].: o :E: o
- O -9 - 2 - 94
z "L s & | i - Control
r‘e - .—9 Pe ; ey
O -} H N, o lEl o —
E 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
D- FL2-H FL2-H FL2-H FL2-H
2 < Data.002 < SK23_beta_72 h_tunel < MM418_72 h_beta_tunel <« Data.004
o 2 ; e = - e
14.6% 32.1% 0.55%
© o« [~r] . o
e 2 - . 2 R 2
52 o2 52 =
T o i o S - - RSN |FN-B
S v—e v—e ‘—9 S i "j Ll
i
=y ———— 2l TRl el
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
FL2-H FL2-H FL2-H FL2-H
Pl

FIG. 2. FACS analysis of DNA fragmentation by TUNEL assay. Cells were plated on 10-cm dishes with 2 X 10* cell/mL.
The cell lines were treated with 1,000 IU/mL IFN-B. After 72 h, cells were harvested and fixed. They were labeled with
bromo-dUTP (BrdU) by the enzyme TdT, and then stained with an FITC-labeled anti-BrdU antibody. The percentage of

FITC-positive cells was assessed by FACS.
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FIG.3. Caspase assay after treatment with interferon (IFN)-B. Cells were plated on 10-cm dishes with 2 X 10* cells/mL. The
cell lines were treated with 1,000 IU/mL IFN- in triplicate. After 48 h, cells were harvested and caspase activity was assessed
by caspase fluorometric assay as described in the manufacturer’s protocol. The caspase activity is expressed as the fold
increase compared with the untreated cells. The results are expressed as relative values (mean % S.D)) to untreated controls.
Untreated: empty column, IFN-B: dotted column. *Significant difference (P < 0.01) from the value in the untreated control.

blotting was not enough to detect the active caspase frag-
ment in these IFN-f-treated cells. The levels of procaspase-2
and -3 were not up-regulated by treatment with IFN-B in
all cell lines (data not shown). The IEN-B-induced apopto-
sis in MM418, SK-mel-23, and SK-mel-118 was significantly
suppressed by the addition of inhibitor for caspase-2 or
caspase-3, and these inhibitors showed equivalent anti-
apoptotic effect against IFN-B-induced apoptosis. However,
the inhibitors for both caspase-8 and caspase-9 did not show
any anti-apoptotic effect by IFN- (Fig. 5). These results indi-
cated that caspase-2 and caspase-3 induced had critical role
on IFN-B-induced apoptosis as an initiator and an effector
for caspases, respectively.

Exogenous TRAIL caused apoptosis in
melanoma cells

To elucidate the mechanism of IFN resistance in mela-
noma cells, we treated the 4 melanoma cell lines by adding
exogenous apoptosis-inducing ligands (Fig. 4). When G361
and SK-mel-118 were treated with TRAIL, TNF-q, or an anti-

SK-mel-118 SK-mel-23 MM418
IFN-B — + - + - + - +

Procaspase-2

Actinrmm i W

FIG. 4. Activation of caspase-2 detected with degradation
of procaspase-2 protein by Western blotting. The cells were
treated with interferon (IFN)-B at 1,000 IU/mL for 48 h. The
treated cells were lysed, and processed to Western blotting.

Fas (CD95) antibody, TRAIL significantly reduced their cell
viability. The anti-Fas (CD95) antibody also reduced the
cell viability of SK-mel-118. The cell viabilities of SK-mel-23
and MM418 were not influenced with treatment of exoge-
nous apoptosis-inducing ligands (Fig. 6). We also examined
the effect of anti-TRAIL antibodies on the IFN-B-induced
apoptosis. Anti-TRAIL antibody slightly suppressed IFN-f-
induced apoptosis but did not show significant anti-apop-
totic effect induced by IFN-B in SK-mel-118 and SK-mel-23.
IFN-B-induced apoptosis was not suppressed by anti-TRAIL
antibody in MM418 (data not shown). Furthermore, the cell
viability of those tested cells was assessed after treatment
with IFN-B, followed by apoptosis-inducing ligands treat-
ment. IFN-f pretreatment followed by TRAIL stimula-
tion significantly reduced the cell viability compared with
TRAIL stimulation alone in G361 (Fig. 6). In IFN-sensitive
melanoma cell lines, IFN-B pretreatment followed by TRAIL
stimulation reduced the cell viability of SK-mel-23 compared
with IFN-B treatment alone, although exogenous apoptosis-
inducing ligands treatment did not reduce its cell viability.
However, IFN-B pretreatment followed by any apoptosis-
inducing ligands did not reduce the cell viability of MM418
compared with IFN-B treatment alone. In IFN-resistance
G361 cells, IFN-B pretreatment followed by TRAIL stimula-
tion significantly reduced cell viability compared with that
of TRAIL treatment alone.

IFN-B pretreatment enhanced up-regulation of caspase-2
activity in G361 treated with TRAIL.

We next analyzed the up-regulation of caspase activity
of G361, which is an IFN-resistant cell line, when cells were
treated with TRAIL, and with IFN-B followed by TRAIL. The
cells treated with TRAIL showed up-regulation of caspase-2
and -3 activities as did IFN-sensitive cell lines, in which
IFN-B induced apoptosis. Furthermore, IFN-8 pretreatment
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FIG. 7. Caspase assay after treatment with apoptosis-inducing ligands and interferon (IFN)-§ pretreatment followed by
apoptosis-inducing ligands. G361 cells were plated in a 10-cm dishes with 2 X 10* cells/mL. Cells were treated with TRAIL
for 24 h at the concentration of 100 ng/mL, or with 1,000 IU/mL IFN-B (24 h) pretreatment followed by a PBS wash and addi-
tion of TRAIL for 24 h at the same concentration as above, Cells were harvested and caspase activity was assessed by caspase
fluorometric assay as in the manufacturer’s protocol. The caspase activity is expressed as the fold increase compared with
the untreated cells, TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; TNF-a, tumor necrosis factor «; *sig-

nificant (P <0.01) difference.

enhanced the up-regulation of caspase-2 and -3 (Fig. 7), cor-
related with inducibility of apoptosis (Fig,. 6).

Discussion

In this study we found that cell death was promoted by
IFN-a2 and -f treatments in human melanoma cell lines
(SK-mel-118, SK-mel-23, and MM418), and that IFN-§ pref-
erentially induced cytotoxic effects compared to IFN-o2.
We also found that this cell death induced by IFN-B was
induced by apoptosis.

It has been reported that IFN-8 treatment induces apop-
tosis that is dependent on TRAIL induction in melanoma
cells. It was indicated that the cells that failed to express
TRAIL after IFN-f treatment were resistant to IFN-induced
apoptosis, whereas those that induced TRAIL by IFN-8
were sensitive to IFN-induced apoptosis (Chawla-Sarkar
and others 2001). The induction of TRAIL by IFN-B has been
shown to initiate the apoptotic cascade in a wide variety of
tumor cells (Shin and others 2005; Vogler and others 2007).
It was shown in melanoma cells that TRAIL had a more
significant tumoricidal effect than other members of the
tumor necrosis factor family such as TNF-a and Fas ligand
(Griffith and others 1998). We also showed a similar result
that TRAIL had more significant apoptotic effect than the
other apoptosis-inducing ligands, such as TNF-a and anti-
Fas antibody, in TRAIL-sensitive cell lines, SK-mel-118 and
G361 (Fig. 6). The induction of TRAIL by IFN-§ was shown
to be necessary, but still insufficient to induce apoptosis
(Chawla-Sarkar and others 2002). In our study 2 melanoma
cell lines, SK-mel-118 and SK-mel-23, exhibited such biolog-
ical reactions in IFN-B-induced apoptosis, and markedly

up-regulated TRAIL mRNA in response to IFN-§ treat-
ment. In contrast, in G361, in which ISGs were induced by
IFN-B treatment, IFN-B did not induce apoptosis and sig-
nificant expression of TRAIL mRNA, although exogenous
TRAIL induced apoptotic cell death. However, anti-TRAIL
antibody slightly suppressed IFN-B-induced apoptosis but
did not show any significant anti-apoptotic effect by IFN-B
on SK-mel-118 and SK-mel-23 cells. These results indicated
that a TRAIL-independent pathway may exist, although
TRAIL expression contributes to IFN-B-induced apoptosis
to some extent.

Our study showed a new and unique finding in the
study of MM418. MM418 significantly underwent apoptosis
induced by IFN-f treatment but did not exhibit significant
expression of TRAIL mRNA (Fig. 1B). Furthermore, exog-
enous TRAIL did not induce apoptosis in MM418, and cas-
pase-2 activation of MM418 by IFN-B treatment was much
higher than in SK-mel-118 and SK-mel-23, which are thought
to undergo TRAIL-mediated apoptosis to some extent. These
findings suggested that MM418 cells underwent apoptosis
via an alternative pathway, such as a TRAIL-independent
apoptotic pathway induced by IFN-B.

Several recent studies demonstrated TRAIL-mediated
apoptosis through the caspase-2 pathway in other tumor cell
lines (Wagner and others 2004; Shin and others 2005). They
suggested that caspase-2 was required in the upstream of
Bid, which leads to caspase-9 activation in the mitochondrial
apoptotic pathway (Wagner and others 2004; Bonzon and
others 2006). Samraj and others indicated that caspase-2 acti-
vation was absent in a mutant Jurkat T-cell line with a defect
of caspase-9 when treated with an anticancer drug releas-
ing cytochrome ¢ (Samraj and others 2007). Shin and others
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also indicated that caspase-2 processed procaspase-8 (Shin
and others 2005). Thus caspase-2 appears to have diverse
functions in apoptotic processes. Our study suggested the
possible presence of an alternative IFN-induced apoptotic
pathway that activates caspase-2 directly without induction
of TRAIL. In a previous study, TRAIL was indicated to be
a novel therapeutic modality useful for the management of
melanomas (Ren and others 2004). We, however, identified
TRAIL-independent IFN-B-induced apoptosis in one cell
line, MM418.

Another new finding in this study was for G361. It did
not show IFN-B-mediated apoptosis, but its IFN signal
transduction seemed to be normal. Griffith and others previ-
ously reported that only TRAIL among apoptosis-inducing
ligands had a significant cytotoxic effect (Griffith and others
1998). In this study TRAIL mRNA was not induced by IFN-B
in G361, although other ISGs were expressed. Thus, this loss
of TRAIL-mRNA induction may be a meaningful biolog-
ical process for the resistance to IFN-B-induced apoptosis
because exogenous TRAIL induced significant apoptosis in
G361 (Fig. 6). It has also been suggested that IFN-p pretreat-
ment sensitizes TRAIL-mediated apoptosis (Chawla-Sarkar
and others 2002). In this study, we also showed that IFN-B
pretreatment increased sensitivity against TRAIL-mediated
apoptosis in G361 and SK-mel-23, SK-mel-118. When G361
was treated with IFN-f followed by additional TRAIL treat-
ment, caspase-2 activity was up-regulated compared with
that after TRAIL treatment alone. Thus not only TRAIL but
also other factors induced by IFN seem to be important for
apoptotic processes, because synergetic activity of TRAIL
and IFN-B treatment was observed in this study after treat-
ment with TRAIL and IFN-B in G361 and specifically in
SK-mel-23, in which TRAIL alone did not induce apoptosis
although IFN-B pretreatment enhanced apoptosis by TRAIL
stimulation. Along with a previous report (Chawla-Sarkar
and others 2002), we found in this study that the TRAIL /cas-
pase-2 system was important for induction of apoptosis in
3 (SK-mel-118, SK-mel-23, G361) of the 4 melanoma cell lines
tested. On the other hand, in MM418 IFN-induced caspase-2
and -3 activation and apoptosis occurred without TRAIL
expression.

Our results further suggested that those melanoma
cell lines (SK-mel-118, SK-mel-23, MM418), in which apop-
tosis was induced by IFN-B, commonly had up-regulated
caspase-2 activity with (SK-mel-118, SK-mel-23) or with-
out (MM418) involvement of a TRAIL-related pathway.
Furthermore, caspase-2 and -3 inhibitors remarkably sup-
pressed IFN-B-induced apoptosis that was equivalent to
that in IFN-B-sensitive cell lines. The finding was a common
phenomenon in these cell lines, and the increased apoptotic
population had up-regulation on caspase-2 activity, but not
on TRAIL induction.

Thus our present results clearly indicate that the extent
of the IFN-B-induced apoptosis depends on up-regulation
of caspase-2 activity more strongly than on induction
of TRAIL. These findings suggest that measurement of
caspase-2 activity in primary culture cells from excised
melanoma tissues can be a novel marker for estimating
the extent of the cytotoxic effect of IFN-$ adjuvant therapy
for melanoma. Caspase-2 activity may be useful for IFN-
induced sensitization of chemotherapeutic drugs to mela-
noma cells.
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