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Fig. 2 a Combined image generated from two datasets obtained at
different tube voltage. b Dual-energy CT image of a carotid artery
eliminated “hard * plaques with ~application’ ‘of * DE: hard - plaque
removal. The pixels detected as:bone or calcifications are displayed
with a CT number of ~1,000 HU on the DE hard plaque removal CT
image

Fig. 3 -a Conventional CTA
image does not allow the visu-
alization of the intravascular
lumen due to the dense calcifi-
cation. b CTA image after DE
hard plaque removal: the calci-
fication is almost completely
removed and a quantification of
stenosis is possible. The image
quality is comparable with that
of DSA (¢) ,

DSA examinations were performed using a biplane DSA
unit with rotational 3D DSA (INTEGRIS BV3000, Philips
Healthcare, Best, Netherlands). Common carotid arteries
were selectively catheterized, and anteroposterior, lateral,
right anterior oblique, and left anterior oblique images were
obtained.

Carotid artery stenosis was quantified according to
NASCET criteria [1] on MIP images and on DSA images at
the same plane. Carotid artery stenosis was measured
independently by two experienced radiologists with 8 and
16 years of experience in vascular imaging. The readers
evaluated the grade of stenosis according to the following
scale: 0-25%, 25-50%, 50-75%, 75-99%. Interobserver
variability was assessed using Cohen’s kappa test. Corre-
lation between CTA and DSA was determined by means of
cross tabulation, and accuracy for detection and grading of
stenosis was calculated.

Results

Evaluation of stenosis was possible for all vessels
postprocessed with DE head bone and hard plaque removal
software (Fig. 3). In contrast, conventional CTA did not
allow the evaluation of stenosis in 13 out of 18 vessels on
MIP images because calcifications covered the lumen.
Good correlation (+*=0.9504) was observed between the
degree of carotid stenosis measured on CTA images after
DE hard plaque removal and on DSA images (Fig. 4).
Sensitivity and specificity: for detecting hemodynamically
relevant (>70%) stenosis was 100% and 92%, respectively.
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Fig. 4 Correlation between DE hard plaque removal CTA and DSA
for the stenosis measurements. Good correlation between the twa
methods is observed (+*=0.9504) for the quantification of carotid
stenosis

One vessel with severe stenosis (87.4% according to DSA)
was overestimated and displayed as a 99% stenosis-like
lesion on the DE hard plaque removal CTA images (Fig. 5).
Cohen’s kappa test revealed a high level of interobserver
agreement, with kappa coefficient being 0.91 for CTA and
0.73 for DSA, respectively (Table 1).

Fig. 5 a Conventional CTA
image: quantification of stenosis
is impossible. b CTA image
after DE hard plaque removak
the calcified plaque is almost
completely removed, yet parts
of the lumen are as well,
resulting in a display of a 99%
stenosis-like lesion. ¢ DSA
image shows a patent lumen
with 87% stenosis
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Discussion

Symptomatic patients with high grade carotid stenosis will
benefit from carotid endarterectomy- or stenting as second-
ary prevention of ischemic stroke [1-3]. The indication of
these therapies is decided according to the degree of
stenosis in addition to the symptoms experienced by the
patient, thus precise carotid stenosis quantification is
cssential. The accepted gold standard for evaluation of
carotid artery stenosis is catheter angiography; however,
many reports have suggested that the sensitivity of
multislice CTA (MSCTA) in evaluating the degree of
carotid artery stenosis has become comparable with that
of angiography while being associated with a lower level of
risk [4-9].

Bone-subtraction CTA (BSCTA), where a nonenhanced
scan is used to create a bone mask which is then subtracted
from the contrast-enhanced CTA data, has been proven to
be a robust method for the evaluation of intracranial vessels
[13—=15]. In this method, two volume datasets are matched
for subtraction but, regarding neck bone and carotid artery
calcification, misregistration etrors are inevitable because
neck bone and carotid arteries often move during pre- and
postcontrast scan due to pulsation or neck movement [15].
In addition, the neck is more difficult to immobilize than
the skull. .

Our study showed that calcified plaques were almost
completely removed from the carotids after applying DE
bone removal and hard plaque removal postprocessing to
dual-energy CTA images, and high quality DSA-like
imaging was achieved. The results were in good correlation




2064

Table 1 Interobserver agreement for assessment of stenosis on DE hard plaque removal CTA and DSA

CTA 0-25% 25-50%
0-25% 2

25-50% 3
50-75%

75-100%

Reader 1 2 3
Kappa coefficient=0.91

DSA 0-25% 25-50%
0-25% i 1
25-50% 1
50-75%

75-100%

Reader 1 I 2

Kappa coefficient=0.73

50-75% 75-100% Reader 2
2
3

9 1 10

3 3

9 4

50-75% 75-100% Reader 2
2

1 2

9 1 10
4

10 5

with DSA in terms of quantification of carotid artery
stenosis with dense calcifications. Although-axial source
image is reliable in grading stenosis, MIP reconstructions
can be helpful when horizontal or tortuous course of the
vessel or a very short stenosis can render the assessment of
the stenosis difficult on axial images [16]. We used MIP
images as the first-line method to quantify the degree of
carotid stenosis because this study focused on feasibility of
DE hard plaque removal. In clinical settings, axial source
images were used in grading the degree of carotid artery
stenosis in the presence of dense calcification,

Iodine shows a much larger increase in CT value with
decreasing X-ray tube voltage than bone and calcification,
which is the basis for iodine-bone separation using dual-
energy CT. The voxels detected as bone or calcifications
were displayed with a CT number of —1,000 HU on the DE
hard plaque removal CTA images [11]. We found that the
areas where bone or calcifications had been removed were
slightly larger than the calcified plaques observed in the
original images, meaning that calcifications seemed to be
overestimated. . This may be due to blooming artifacts or
partial volume effects. Although moderate or mild stenosis
measurements may  be accurate, severe: sténosis can be
overestimated when the stenotic part runs very close to
calcified plaque as was observed in one of our cases. This
result can: be: altered by applying  different kernels.
Application of a hard kernel might clarify the border
between calcification and iodine; however, we applied a
relatively soft kernel (D30) to obtain smooth 3D images.
According to theoretical considerations, image pixels with
a CT value greater than 100 HU in the 140-kV image would
be classified either "ds iodine pixels or bone pixels

depending on their CT values [12]. However, in patients
with severe stenosis, the contrast enhancement (CT value
increase) may be weak in the lumen at the position of
maximum stenosis because of the small number of iodine
pixels. Also, partial volume cffects. may lead to an
overestimation of plaque pixels resulting in an over-
estimation of severe stenosis. One solution may be to
increase ‘the injection rate of the contrast bolus to obtain
higher CT values in the cross sections of maximum
stenosis.

DE hard plaque removal offers the advantage that
images from one single CT acquisition (albeit with a dual
source) can be used for removing hard plaque and
estimating calcified carofid stenosis. The unenhanced CT
acquisition usually needed for BSCTA as a mask for
subtraction thus becomes unnecessary, which reduces
radiation dose to the patient and eliminates misregistration
due to neck movement or arterial pulsation. The radiation
dose of a dual-energy scan is comparable with a normal
single-source scan. In fact, the average CTDI,,o0f our
initial five carotid dual-source CTA studies was 11.1 mGy,
while. that of normal CTA with single-source scan was
approximately 10.6 mGy, at 120 kV, 300 mA s (effective).

Conclusion

With DE hard plaque removal CTA, calcified plaques
could be removed: from carotid CTA images and high
quality DSA-like imaging could be achieved. DE hard
plaque removal: is therefore useful for the evaluation of
carotid stenosis with severe calcification.
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Abstract

Purpose The liver is perfused through the portal vein and
hepatic artery. Quantification of hepatic glucose uptake
(HGU) using PET requires the use of an input function for
both the hepatic artery and portal vein. The former can be
generally obtained invasively, but blood withdrawal from
the portal vein is not practical in humans. The aim of this
study was to develop and validate a new technique to
obtain quantitative HGU by estimating the input function
from PET images.

Methods Normal pigs (n=12) were studied with ["*FIFDG
PET, in which arterial and portal blood time-activity curves
(TAC) were determined invasively to serve as reference
measurements. The present technique consisted of two
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characteristics, i.e. using a model input function and
simultaneously fitting multiple liver tissue TACs from
images by minimizing the residual sum of square between
the tissue TACs and fitted curves. The input function was
obtained from the parameters determined from the fitting. The
HGU values were computed by the estimated and measured
input functions and compared between the methods.

Results The estimated input functions were well repro-
duced. The HGU values, ranging from 0.005 to 0.02 ml/
min per ml, were not significantly different between the two
methods (#=0.95, p<0.001). A Bland-Altman plot demon-
strated a small overestimation by the image-derived method
with a bias of 0.00052 ml/min per g for HGU.

Conclusion The results presented demonstrate that the
input function can be estimated directly from the PET
image, supporting the fully non-invasive assessment of
liver glucose metabolism in human studies.

Keywords ['*F]FDG PET- ['®FIFDG uptake kinetic
modelling - Hepatic glucose uptake - Non-invasive -
Input function

Introduction

Abnormalities in hepatic glucose uptake (HGU) have been
implicated in the pathogenesis of liver steatosis, hyper-
triglyceridaemia and diabetes [2, 6, 10]. Thus, HGU may
become a prognostic indicator and useful marker during
progression or treatment follow-up. Positron emission tomog-
raphy (PET) in combination with ["®F]fluorodeoxyglucose
(["®F]FDG) is a potential tool to assess HGU, as shown by us
and others in humans [4, 11] and animals [13, 18].

The liver is characterized by a dual blood supply,
comprising the hepatic artery and the portal vein, draining
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venous blood from the gastrointestinal tract. Thus, in the  tissue model function based on the known kinetics of the
modelling of PET data from liver, two blood time-activity  tracer in the liver. Then the created model tissue function is
curves (TAC) are required to represent the input function.  used to simultaneously fit multiple tissue curves. To estimate
We have previously validated a technique for quantification  the input function for the liver ['*FIFDG data, the shape of
of HGU against organ balance measurements in large  the input curve and also the kinetic model of tracer in the
animals, by using arterial and portal blood sampling [13].  liver tissue are different as compared to those of H,"%0, thus
However, in humans the portal vein cannot be accessed, and the validity of the model-based method has to be tested. We
even blood withdrawal from a peripheral artery [5, 15, 16,  tested its validity in the assessment of HGU under fasting
23, 27] is not always successful or not risk free, and it requires ~ and insulin-stimulated conditions in pigs undergoing inva-
careful correction in time delay between the sampling site and ~ sive blood sampling together with PET imaging.
the tissue [8, 9]. It follows that obtaining quantitative data on
the hepatic dual input function in humans by a non-invasive
approach such as an image-derived method would optimize =~ Materials and methods
patient safety together with the quality of results.

We have recently reported a new method in which the  Theory and computation of non-invasive input function
arterial and portal inputs were estimated from multiple
tissue TACs in the quantification of hepatic blood flow A model function was introduced as the input function in
using H,'0 [17]. In the present study, we adapted the  the mixed form, resulting from hepatic artery and portal
method to liver ['®FJFDG data (collected during our  vein curves. First, a model function was created to shape
previous study [12, 13]). The method is characterized by  the ['8F]JFDG input function. The model function intro-
use of a model input function, which is used to create a  duced (Cy(¢)) was expressed as:

C](f) =0. (t < fl)
1- Hh— 1— - (exp(Ke(1— —1))—exp(B(t—
=A[ expuﬂih 1) 4 ot Z?fff{,‘; 1)) _ a(exp(Ke( n)(s?l_t;))})’ exp(B(h r)))] (6 <t < #)
exp(B(t2—1)) —exp(B(hi —1)) + a(l-exp((t—1))) a(exp(KeB(th—t2))—exp(B(ti—1)))
— A4 B a(l—a)B a(l—a)y (f > tv) |
+ alexp(Ke(1—a)t)—exp(Kg(1—a)t,)) (exp(Kg(1—a)t)—exp(yt2—pt))) - ( )
a(l-a)y

a:K,/KE, ﬂZKE-I-K[/(l, y:aKE+K,/a
a= (a’— 1 +KM/KE)/2+ \/a—l— (a— 1 +KM/KE)2/4

Details of derivation of this model function are given in the ~ ment model’ is used to express kinetics of ['*F]IFDG in
“Appendix” section. Briefly, the model function was  hepatic tissue and ‘three-compartment model’ is used to
created by assuming a three-compartment model in which ~ shape the model function of the input), assuming ['"*FIFDG
the tracer is administered in a rectangular form, it diffuses = metabolites as irreversible in hepatic tissue:

bidirectionally between arterial and whole body peripheral

tissue (second compartment) and is in part metabolized and  Cris(t) = h(t) ® Cy(¢) 2)
accumulated in the third compartment. 4 is a scalar h(1) = A,—Iiﬁ (ks + /"Zeﬁ(kﬂm)[)

parameter reflecting the given amount of tracer, and ¢,
and £,- t; represent the appearance time of the tracer and the
duration of administration. Kg (ml/min) and K; (ml/min)
represent the tracer bidirectional diffusion rates between

Including the blood volume term in this equation, the
model function describing ['*FJFDG in the hepatic region
measured by PET (Cpgt) can be expressed as

§11e1~1a1 blood and “{hole—body interstitial spaces, respec- . (1) = (1 = Vo)h(t) ® Ci(t) + VoCi(r) (3)
tively, and Ky (ml/min) represents the tracer metabolic rate

in the assumed whole-body compartment (i.e. the rate Steps to estimate the input function are simplified in the
constant from second to third compartment). flow chart in Fig. 1. Multiple tissue TACs from the liver

Using the model function, the tissue response function  image were used to estimate the input functions. First, the

for the tracer can be expressed by applying a two-tissue ~ model function in Eq. 3 was individually fitted to tissue
compartment model (in this report, ‘two-tissue compart-  TACs by a non-linear fitting method (Powell-Brent mini-

@ Springer
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Tissue TAC ﬁ N (N: number of TACs)

Step 1 ¥
Fit|Tissue TAC 1
Fit |Tissue TAC 2

1
: (Parameters are estimated using Eq (1))

(A, t1,t2,Ke, o, Kn, K1, k2,k3,V0)
(A, t1,t2,Ke, 0, K, K1, k2, k3, Vo)

1
Fit ITissue TAC NI(A, t1,82,Ke, o, Kn, K1, k2, k3, V0)
]

Mean of t1, t2, a and Ku

Omit TAC (¢ or t2 > SD of |1&3 WN,
respective means) v
yNo (N’:number of
Fix t1, t2, ¢ and Ku to their TACs omitted)
imean
Step 2 Y

A and Ke, and K1,k2,k3 and Vo
for each TAC, are estimated
N¢ by minimizing S2in Eq (4)

Tissue TAC ml-

v

Input from estimated parameters

Fig. 1 A schematic diagram of the procedure to estimate the input
functions using multiple tissue TACs. Step I: the model function (Eq.
3) was individually fitted to N tissue TACs. Then, means and standard
deviations of 1, &, a and K,; were calculated, and the tissue TACs
with values of #, or /,>one standard deviation of respective means
were excluded (indicated as N’ TACs). In the second step, assuming
that all parts of the liver share the same input functions, values of 1,
5, e and Ky, were fixed to their means and the other two parameters
(4 and Kg) were estimated by minimizing Eq. 4 by the grid search
method. Finally, the image-based input function was obtained by
substituting the estimated parameters into Eq. |

mization algorithm), and the set of ten parameters, 4, #;, &,
Kg, o, Ky, Ky, ks, k3 and ¥y, was obtained for each tissue
TAC. Then, means and standard deviations of 4, #;, 6, Kg,
o and K, were calculated, and the tissue TACs with values
of ; or 1,>one standard deviation of respective means were
excluded to avoid the potential influence of TACs outside
the liver. In the second step, assuming that all parts of the
liver share the same input function, values of ¢, £, « and
K, were fixed to their means and the other two parameters
(4 and Kg) in the model input function were estimated by
minimizing the following equation:

$ =3 (Ch - (- Vrea) +7GE) @)

ielis &

where CTisi"‘ is the activity concentration for kth frame in
ith tissue region of interest, ¢ is the corresponding time of
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kth frame and A'(t) is defined as in Eq. 2 with rate constant
values of XK'y, &', and K5, and blood volume of V', for ith
tissue region, respectively, In this procedure, S* was
minimized by the grid search method to avoid dependency
on initial guess, where 5% was calculated for 1,000 discrete
values of both 4 and Kg between ranges of three standard
deviations from respective mean values, omitting the
negative value. In this procedure, for a given input function,
i.e. once 4 and K, are given, then K';, k5, K5 and ¥, for ith
TAC were computed by the Powell-Brent minimization
algorithm, with acceptable ranges of 0—5 ml/min per g, 0—
5 min!, 0~1 min"! and 0-0.5 ml/mi, respectively, and then
substituted into Eq. 4. Finally, the image-based input
function was obtained by substituting the estimated
parameters into Eq. 1.

Simulation study

The influence of noise versus number of TACs on the
accuracy of the method was explored. As the noise on
tissue TACs increased, the standard deviation of uptake
ratio of tracer increased; as more regions were used, the
standard deviation tended to decrease. However, if the
number of TACs is larger, the noise on tissue is also large
and vice versa, Our simulation was intended to reveal an
optimal number of tissue TACs to be extracted from the
whole region of the liver. First, to this purpose, we selected
one mixed input function from one of the present experi-
ments and used it as true input function in this simulation.
One of the present experimental data sets was chosen and
100 tissue TACs were extracted as follows: a region of
interest (ROI) was placed on the whole area of the liver in a
summed image and subsequently divided into 100 subsets
of TACs. The subsets were created as follows: first, the area
under the curve (AUC) was computed for each pixel TAC.
Second, TACs were ordered based on the AUC value and
divided into 100 sets. Then, one TAC for each subset was
obtained by averaging respective TACs. Each subset
consisted of the same number of pixels. The rate constant
values and blood volume (K, &3, k3 and V) were computed
for each TAC using the corresponding input function by the
non-linear Gauss-Newton method, assuming Eq. 3 and
parameter values were obtained (means = SDs were 1.4+
1.0 mI/min per g, 2.1£1.3 min™', 0.018+0.008 min"' and
0.36%0.12 ml/ml for Ky, k,, k3 and ¥y, respectively).
Based on the obtained set of rate constant values and
blood volume, one set of 100 hepatic tissue TACs was
generated from the true input function using Eq. 3. Then,
tissue TACs with noise were generated as follows. Gaussian
noise at peak was imposed on the set of 100 hepatic tissue
TACs. Three levels of noise were introduced, corresponding
to 10, 20 and 80% of counts at the level of the peak and 10,
20 and 80% of the square root of counts at the other points.
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This procedure was repeated 100 times and 10,000 of noisy
tissue TACs, embracing a total of 10,000 pixels, were
obtained. Then, the TACs were ordered and averaged with
the same procedure as in the experimental study (see below),
i.e. the TACs were ordered based on the AUC and divided
into Ny (= 10, 15, 20, 50, 100 and 200) groups. The TACs
were averaged for each group to obtain N,;; TACs. For each
Ny and each level of noise, input function was estimated,
as described. Then, rate constant values were computed
using estimated input function and tissue TACs. This
procedure was repeated 100 times and the bias and
deviation in values of rate constant values were calculated.
Their bias and deviation were presented as a function of
Ntis~

Experimental study
Study design

Details of the study design are given in previous articles
[12, 13]. Briefly, after animal preparation, PET imaging
was performed to measure liver glucose uptake during
fasting (n=4), physiological (n=4) and supraphysiological
(n=4) euglycaemic hyperinsulinaemia. ['*F]JFDG was
injected, and its concentration in the carotid artery and
portal vein was frequently measured. Immediately after the
animals were sacrificed, the liver was explanted to measure
organ density. The protocol was reviewed and approved by
the Ethics Committee for Animal Experiments of the
University of Turku.

Animal preparation

Twelve anaesthetized, weight-matched pigs were studied
during fasting (weight: 29.840.6 kg), physiological
(1.0 mU - kg™ min™'; weight: 30.0+£0.5 kg) or supra-
physiological euglycaemic hyperinsulinaemia (5.0 mU -
kg™ - min™'; weight: 30.3£0.5 kg). Animals were deprived
of food on the day before the study at 5 p.m. Anaesthesia
was induced by injection of 1.0 g ketamine into the neck
muscles before transportation of the pigs to the operating
room. Throughout the experiment, animals were kept
anaesthetized with ketamine and pancuronium (total of
1.5 g and 40 mg, respectively) and mechanically ventilated
via tracheal intubation with oxygen and normal room air
(regulated ventilation, 16 breaths/min). Catheters were
placed in the femoral vein and carotid artery for the
administration of glucose, insulin and ['*F]FDG and for
sampling of arterial blood, respectively. Splanchnic vessels
were accessed by subcostal incision; after dissection of the
hepatogastric ligament, purse-string sutures were allocated
to allow catheter insertion via a small incision in the portal
vein. Doppler flow probes were placed around the portal
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vein and hepatic artery to monitor blood flow [12]. The
surgical access was closed, and the distal catheter extrem-
ities were secured to the abdominal surface to avoid tip
displacement. The animals were then transported to the
PET Centre for tracer administration, liver imaging and
blood sampling.

PET scanning

Scans were performed using an ECAT 931-08/12 scanner
(CTI Inc., Knoxville, TN, USA). After acquisition of a
transmission scan to correct for photon attenuation, ['*F]
FDG (274+7 MBq) was rapidly injected, and an 180-min
dynamic ['*F]JFDG PET scan was started (31 frames, 8x 15,
2%30, 2x120, 1x180, 6x300, 8x600 and 4x900 s). We
sampled 2 ml of arterial and portal venous blood frequently
(i.e. once every imaging time frame) for the determination
of plasma ['®*FJFDG radioactivity. The tube length was
260 mm. To keep tube patency, the line was flushed with a
bolus of saline (5 ml), and a slow saline infusion was
maintained. Vital signs, blood pressure and heart rate were
monitored throughout the study.

Image processing

Dynamic sinogram data were corrected for dead time in
each frame in addition to detector normalization, Random
counts were also subtracted based on random counting
obtained by the off-time coincidence method. Tomographic
images were reconstructed from corrected sinogram data by
the median root prior reconstruction algorithm (MRP) with
150 iterations and Bayesian coefficient of 0.3 [1]. Scatter
correction was not available; however, the MRP can
produce more accurate quantitative pixel values with high
resolution and good noise reduction than filtered back
projection (FBP) or maximum likelihood expectation
maximization (MLEM) reconstruction algorithms, and
reconstruction artefacts due to the FBP algorithm are
reduced [1]. Attenuation correction was applied with
transmission data. A reconstructed image had 128x128x
15 matrix size with a pixel size of 2.4 mmx2.4 mm and
6.7 mm with 31 frames. Spatial resolution in this scanner is
6.7 mm (axial) and 6.5 mm (in-plane) full-width at half-
maximum (FWHM). From this study, the first 60-min data,
i.e. 21 frames, were used in the current analysis.

Data processing

Measured arterial (Cy(£) Bq/ml) and portal (Cy(f) Bq/ml)
plasma TACs corrected for decay were mixed based on
flow rates in hepatic artery (¥, ml/min) and portal vein (F,
ml/min), as determined by the ultrasonography technique,
as follows: (Co(t) Fy + Co(8) Fp)/( £, + F). Then, the mixed

@ Springer



2018

Eur J Nucl Med Mol Imaging (2009) 36:2014-2026

blood curve was corrected for delay by fitting to a whole
liver tissue TAC based on a previous method [9], assuming
a two-tissue compartment model.

An ROI was placed on the whole region of the liver in a
summed image. The ROI for the whole region covered
(1.6+0.2)x10* pixels and was subsequently divided into 30
subsets of TACs. The subsets were created as follows: first,
the AUC was computed for each pixel TAC. Second, TACs
were ordered based on the AUC value and divided into 30
sets. Then, one TAC for each subset was obtained by
averaging respective TACs. Each subset consisted of the
same number of pixels. Representative TACs are shown in
Fig. 2.

Then, the input function was estimated using TACs in
each subset. In the first step, initial values and boundary
conditions for the non-linear fitting for each parameter were
20,000 between 0.02 and 200,000,000 Bq/ml for 4, 0.30
between 0.1 and 0.5 ml/min for Kg, 10 between —20 and
50 s for t;, 60 between 50 and 80 s for #,- #;, 0.50 between
0.40 and 2.00 for «, 0.085 between 0.05 and 0.50 for
Ky, 1.5 between 0.1 and 5 ml/min per g for K, 1.5
between 0.1 and 5 min™ for &, 0.01 between 0.0001 and
1.0 min™' for k3 and 0.15 between 0 and 0.5 ml/ml for V,,
respectively. In the second step, the S* value in Eq. 4 was
minimized, and the image-based input function was
obtained. AUC for measured and image-based inputs
were calculated for 0-60 min. Their % difference was
calculated.

The rate values of K, k» and k3 were computed by the
non-linear fitting method (Gauss-Newton method) using the
equation in combination with either the estimated input
function obtained from the present method or blood
withdrawal data. Then, hepatic fractional extraction values,
K=K ;ks3/(ky+ks), were calculated and compared between
the two methods. Also, K; values were computed by the
Gjedde-Patlak analysis method [7, 21, 22, 26] and values
were compared between methods.

Results
Simulation study

Figure 2 compares curves obtained from experimental data
and simulated data assuming 10% noise level. They show
similar shapes and distributions between the methods,
demonstrating that the simulation reproduced experimental
conditions.

The influence of noise and the number of tissue TACs,
i.e. the size of bias and deviation on overall rate constant
values, were minimal when the number of tissue TACs was
1040 and the influence was independent of noise level
(Fig. 3), although the optimal number of tissue TACs
depended on the rate constants Ky, &, k3 and K;. The result
suggested that the overall optimal number of tissue TACs to
be applied to preserve accuracy is in the above range.

Among the six parameters 4, #, £, Kg, o and K, the
four parameters 1, £, o and K, were determined with the
same accuracy, i.e. less than 1 s for ¢, less than 5 s for #,,
5% for « and 7% for K, respectively, independent of the
number of tissue TACs applied. The degree of deviation of
the remaining two parameters depended on the number of
parameters.

Experimental study

Reconstructed images are shown in Fig. 4.

The average of estimated delay time between the tissue
curve and measured input was 15+13 s.

In the first step, one- or two-tissue TACs were excluded
because the estimated #; value was smaller than the mean
subtracted by one standard deviation. The #; value in these
TACs were 8-16 s earlier than the mean, suggesting that
these TACs were located in a region overlapping the vena
cava. The estimated #,- t; was 66+8 s, which was similar to
the tracer administration duration.

Fig. 2 Comparison of tissue 100 100
curves obtained from experi-

mental (/eft) and simulated data

(right), showing similar shapes 80 80

and distributions between the
methods. The black solid curve
with an extremely large peak in
the early phase in the left panel
is from a region covering the
vena cava, distal to the injection
site. The curve was excluded in
the first step of the estimation
procedure
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Figure 5 shows a representative fitted curve of the model
input function (Eq. 3) directly fitted to the corresponding
measured input function, suggesting that the model function
was almost fully adequate to estimate the input.
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Estimated, image-derived hepatic input functions are
shown in Fig. 6. Those were almost identical to the
measured curves. The mean + SD of difference of AUC
was —3.6+8.0%, ranging from —10.8 to 12.3%.
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Fig. 4 Representative view of liver ['*FJFDG images obtained from one of the experimental studies. Each figure is represented in the same scale
and slice at the nth frame, which is indicated in the upper left corner of each image

The relationships and Bland-Altman plots between
values of hepatic K, &y, k3 and K, as estimated by using
the image-derived versus the measured blood curves, are
shown in Fig. 7. The plots demonstrate a small overesti-
mation by the image-derived method, with a bias of 0.03
and 0.00052 ml/min per g for K; and K; and of —0.043 and
0.00025 min"' for k, and ks, respectively. Respective
regression lines were: y=0.09+0.93x (»=0.96, p<0.001),
y=0.11+0.92x (»=0.94, p<0.001), y=0.0010+1.05x (r=
0.96, p<0.001) and y=0.00052+0.91x (+=0.95, p<0.001)
for K, ky, ks and K;, respectively. The paired ¢ test showed
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Fig. 5 TACs representing the mixed model input functions (Eq. 1), in
comparison with the measured input function (black circles),
generated by mixing the arterial and portal blood activity curves.
The inset shows the input functions in the early phase

@ Springer

70

no significant difference between the methods. Differences
were 2.5+19.9%, 0.5+18.1%, 1.9+15.7% and 0.6+11.2%
for Ky, k», k3 and K; values, respectively.

The regression line equation for K; values by Gjedde-
Patlak analysis was y=—0.00078+1.11x (+=0.89, p<0.001)
and the paired ¢ test showed no significant difference
between the methods. The difference between the methods
was 6.2+18.1%.

Discussion

In the current work, we validated a method to extract the
mixed input function from liver ['*FJFDG PET images in
experimental pig studies. The validity was shown in its
coherence with measured input functions and in the tight
correlation of hepatic glucose fractional extraction rate
constant values between the present non-invasive method
and the invasive blood sampling method. The results
presented demonstrate that the input function can be
estimated directly from PET images, supporting the fully
non-invasive assessment of liver glucose metabolism in
clinical applications. The perspective application attainable
here is dual. On the one side, the comparison between
measured arterial and estimated dual (arterial + portal)
tracer levels provides indirect information on gut metabo-
lism, and the gastrointestinal system is a metabolically
active organ, manipulating ingested substrates and regulat-
ing their absorption. This apparatus is generally difficult to
sample during imaging, due to its sparse location and thin
walls, and the current approach could be used similar to a



Bur J Nucl Med Mol Imaging (2009) 36:2014-2026

Fig. 6 Estimated input func-
tions from PET images and
their comparison with measured
input (plot) functions
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non-invasive arterial-venous balance through the organ. On
the other side, the liver controls blood substrate levels, and
its glucose uptake and phosphorylation appear to serve as
signals for hepatic glucose release, also participating in the
modulation of liver fatty acid and triglyceride metabolism.
Thus, the assessment of HGU may be a target process in the
pathogenesis and treatment of diabetes, dyslipidaemia and
the metabolic syndrome.

The current approach estimated the hepatic input
function from multiple tissue curves to calculate organ
glucose uptake. A high degree of overlap and tight
correlations were observed between the estimated input
functions and those obtained by the blood sampling/
counting during PET scans. Consequently, calculated rate
constant values were consistent between the methods. The
present approach was originally developed for hepatic
perfusion studies with H,'*O PET [17], in which we
documented optimal agreement between the estimated input
functions and those obtained by the blood sampling/
counting during PET scans, and between hepatic perfusion
by PET and by ultrasonography. In our previous report, the
arterial and portal inputs as well as the corresponding blood
flow values were estimated separately because water could
be assumed to be freely diffusible in the gut system and the
variation in gut uptake rate constant was small enough to
allow substitution of individual values with a fixed one.
Thus, we could express the portal input uniquely from
arterial input. In contrast, the extraction fraction of the
current tracer ranged from 0.05 to 0.20 (data not shown)
and the uptake rate constant value of ['*F]FDG in the gut
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system ranged from 0.20 to 0.80 min™', which cannot be
replaced by an assumed common value. Furthermore,
because the extraction fraction in the gut system is not
100%, and the shape of the arterial component flowing into
the portal input and not being extracted could be assumed
to be very similar to that of the arterial input, it is not
feasible to distinguish the two contributions in mathemat-
ical formulations. Thus, the present method provides
directly and solely a mixed input function.

As an alternative to the present procedure, a ROI-based
input extraction from PET images has been used for the
carotid artery in [''C]flumazenil brain studies [24], the
abdominal artery for kidney blood flow quantification with
H,'>0 [14], the aorta for cardiac ['*F]JFDG metabolism [25]
and for tumour blood flow using H,'’0O [28]. In these
approaches, ROIs are drawn in visible vessels and partial
volume correction is needed; their application to HGU
estimation is limited by the difficulty in identifying the
portal vein in PET images. Closer to the current analysis, Di
Bella et al. applied multiple tissue curves to estimate
quantitative kinetic parameters in the brain [3], and
reproduced the input function well for H,'°O, showing
the possibility to extract the input function from multiple
tissue TACs, by assuming a single-tissue compartment
model and a negligible blood volume component. The
applicability of their method to the present ['*F]FDG liver
study, which requires a two-tissue compartment model
accounting for a large blood volume of 0.3 mi/ml [13], is
unknown. Also, Sanabria-Bohdrquez et al. [24] applied
simultaneous fitting of multiple tissue TACs based on a
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Fig. 7 Relationship (Jeff) and
Bland-Altman plot (right) be-
tween K; (a), k> (b), &3 (¢) and
K; (d) values, as estimated with
measured and image-derived in-
put functions. The solid line in
left figures shows the regression
line obtained, i.e. y=0.09+0.93x
(r=0.96, p<0.001), y=0.11+
0.92x (=0.94, p<0.001), y=
0.0010+1.05x (r=0.96, p<
0.001) and y=0.00052+0.91x
(r=0.95, p<0.001), for K\, k>, k3
and K, respectively
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mathematical description of a model input function similar
to the present method and reproduced the input function
well for [''C]flumazenil. The method cannot be applied to
HGU studies, because the formulae for the input function
are partially based on the shape of image-derived curves
from ROIs on visible carotid arteries. Otherwise, the shape
of an arterial input function from multiple tissue TACs has
been well reproduced in brain ["*F]FDG or [''CIMPDX
studies, by using an independent component analysis-based
method (extraction of the plasma TAC using independent
component analysis, EPICA) [19, 20], still requiring one
arterial blood sample. The combination of the latter and the
current techniques may provide a further simplification and
deserves investigation, since it would entail neither a model
function nor direct blood measurements.

One advantage of introducing a model function was to
shape the curve of the input function by imposing
constraints on the parameters range. We expect no relevant
limitation in the extension of the assumptions concerning
the shape to other species, and in a majority of hepatic
conditions. A drawback in the use of a model function,
however, is that the feasibility is unknown for a group in
which the shape of input functions could be extremely
different or cannot be expressed by the present model
function. In this situation, the present method would require
and may still be adapted to the use of group-specific
parameter constraints or a modified model function. The
present model function (Eq. 1) was created by assuming
tracer bidirectional diffusion as well as metabolism in the
whole body. The input functions obtained in the present
study using this formula reproduced both the shape of
measured inputs at the peak and the rate constant
parameters well. In this study, the first 60-min data were
used in the analysis, because most previous studies for
quantification of HGU were performed using this scan
duration (40 min: Tozzo et al. {11], 63 min: Choi et al. [4]).
When the input functions were estimated using longer
time data, the estimated input functions were almost
superimposable until 90-120 min but they were higher
thereafter; namely, only two input functions were over-
estimated by 5 and 10% for 90- and 120-min data,
respectively, whereas a majority of input functions were
overestimated, though still by 5-10%, for 180-min data.
When estimation was limited to 40-min data, the height of
the peak was 10-30% lower than that of measured input
in three cases.

We considered the possibility to apply standardized input
function methods, which assume that input function across
subjects and conditions have an identical shape so that only
a scaling factor is needed, which could be derived from the
assessment of tracer concentrations in one or two blood
samples. However, the input function shape varied depend-
ing on the injection procedure and the individual physiol-
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ogy of study animals. In fact, both the shapes and the scales
were different (Fig. 6) among the weight-matched subjects
used in the present study.

The present estimation procedure followed two steps, as
designed to fit tissue curves individually and then simulta-
neously. The first step allowed careful exclusion of tissue
TACs showing ¢, or #, values over one standard deviation
from the mean, to eliminate the influence of radioactivity
outside the liver region. In fact, in the experimental
procedure, ['®F]FDG was injected into the femoral vein,
draining into the vena cava, and the tracer was expected to
show an early peak in the case of an anatomical overlap
with the vena cava. The second step was introduced to
facilitate the achievement of the convergence, by fixing the
values of #,, t, a and K, to their calculated means (as
shown in the simulation study, those parameters were less
divergent than the remaining two parameters) to estimate
the remaining two parameters. The shapes of input
functions were reproduced and rate constant parameters of
Ky, ky, ks and K; were consistent with those obtained by
using measured inputs. Thus, the correlation among
parameters, which may limit the identification of unique
solutions due to local minima, did not seem to affect the
estimation of HGU, though further study is required for
optimization.

Although a close agreement was shown between
estimated and measured input functions (Fig. 6), some
modelled input functions showed over- and underestima-
tions as compared to the measured ones, and the difference
of the AUC was —3.6+8.0%, ranging from —10.8 to 12.3%
between them. On the one side, this may be due to a model
function-related error. On the other side, the difference may
also be partly explained by inherent ultrasonography
measurement error [from multiple measurements of flow
data, the coefficient of variation was 13£5% for portal
flow and 18+10% for hepatic arterial flow in this study
(data not shown)], since ultrasonography defined the %
hepatic input contributions from arterial and portal blood
to construct the mixed input TAC from the measured
data. However, we found tight correlations in rate
constant values of K, ks, k3 and K; (»=0.96, 0.94, 0.96
and 0.95, respectively, and p<0.001 for all), as computed
by non-linear fitting assuming a two-tissue compartment
model. There are two mathematical approaches used to
quantify liver ['®FJFDG uptake and phosphorylation, i.e.
graphical analysis [11, 18] and two-tissue compartment
model [4, 11, 12, 18], the latter accounting for the potential
dephosphorylation of ['®F]JFDG-6-phosphate (['*F]JFDG-
6P) occurring in hepatocytes. Both provide an estimation
of a composite parameter (i.e. the fractional extraction of
the tracer) intended as a unidirectional influx rate constant,
which can be used to compute HGU once the lumped
constant (LC) is known. Further studies are required to
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compare quantitative accuracy obtained by different models
by using our image-derived input approach.

The validation of the current approach, as obtained in
this study, is especially valuable in the liver for multiple
reasons. First, the inaccessibility of the portal vein prevents
its direct blood sampling in humans. Arterial blood can be
obtained, but blood counting requires corrections for
dispersion [8] and delay [5, 9, 15, 16, 23, 27], and cross-
calibration between PET scanner and radioactivity count-
er, which are all potential sources of errors. Second,
HGU can be compromised both as a consequence and a
cause of hepatic disease and may become a prognostic
indicator and useful marker during progression or
treatment follow-up.

In conclusion, our results demonstrate that the concen-
tration of ['®F]JFDG reaching the liver as input function can
be estimated directly from tissue TACs obtained through
dynamic ['|FIFDG PET imaging. The calculated HGU
values using estimated and measured input functions were
similar.
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Appendix

A model function for hepatic input function for '*FDG was
created, by assuming a three-compartment model, in which
the tracer is administered in a rectangular form and diffuses
bidirectionally between arterial blood and whole-body
peripheral tissue compartments. Part of the tracer is
metabolized and accumulated in the third compartment.
Differential equations for the model function (Ci(¥)) can be
expressed as;

dCy(t) dF

L;t( ) _ S KeCi(t) + K Cya(t) )
1Cyp(t
(_%(—)— = KeCi(t) — KiCws(t) — Ky Cp(2) (©6)
@ Springer
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dF

= (<t <)

™)
0 (elsewhere)

where f; assumes the appearance time of administered
tracer and #-f, represents the administration duration, 4 is
scalar of input function. The equation F' (Eq. 7) represents
the bolus administration of tracer in the rectangular form
with duration #-t;. Cwg(f) is the expected tracer concen-
tration in whole-body peripheral tissues, Kg and Kj are
bidirectional tracer diffusion rates between blood and
peripheral tissue compartments, respectively, and Ky is
the metabolic rate of the tracer in assumed whole body.
Solving Eq. 6 for Cwg gives:

t
CWB(f) = Keed(KH‘KM).t/\ C[(T)G(KI+KM)'th (8)
0
The sum of Eq. 5 and a x Eq. 6 generates:
d(C; (¢ Cuplt dr
( I()"’a WB()):—+(G—I)KE(CI+CIC;V3) (9)
dt dt
where
a = (K[/KE -1 +[<A/I/KE)/2
+ \/KI/KE + (K /Kg — 1 +KM/KE)2/4 (10)
Thus,
dF
C](t) + KZCWB(I‘) B -C—it— & exp(«-(l - a)KEt) (1 1)

where ® indicates convolution integral. Substitution of
Cws from Eq. 8 into Eq. 11 after multiplying e®+5¥7
gives:

t
e(KI—!—KM)~tC1(t)+aKE/ C]('L’)e(KI-*KM)‘TdT
0

— e—(l—a)Ke-l+(KI+KM)-t '/t_‘_iie(l«a)Ke»th (12)

o dt

Differentiation with respect to ¢ after arrangement gives:

dCi(6)
dt

K, K, - "dF .
(—ai + K5> Ci(n) + = -—[—Iie*“‘“”“’" / L plt-akety o ar
0

dt dt

(13)
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Thus,
t T
C[(f)zﬁenﬂ't/ eKe-(a~l)-T+B-T/ d_FeKe-(l—a)AthdT
a 0 0 dt (14)
Tar
+e Pt [ KBy
o dt
where =(Ky/a+Kg). Solving Eq. 14, we obtain:
Ci(r)y =0. (t < n)
-~ I— t—t 1—exp(B(t1—1))) xp(Ke{l—a){(ti —1))—exp(B(t; —¢
_A[ cxr)(//;(n ) 4« 2)(({)~a)l]3 ) _ alexp(Ke( )é(ll_;;i exp(B( )))} (h <t<t)
4 2Ble=0)-ep(Blu-1) | a(l-exp(B(h—1))  alexp(Keplti—tr))—oxp(B(n—1)) (15)
— B a(1-a)p a(l-a)y

+ aexp(Ke(1—a)ty) —exp(Ke(1—a)t)) ) (exp(Ke (1 -a)t) —exp(ytr 1))

a(l—a)y

(t>n)

where o= K/Kp, and v=(K/a+aKg).
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Abstract

Purpose The quantitative assessment of renal blood flow
(RBF) may help to understand the physiological basis of
kidney function and allow an evaluation of pathophysio-
logical events leading to vascular damage, such as renal
arterial stenosis and chronic allograft nephropathy. The
RBF may be quantified using PET with H,'>0, although
RBF studies that have been performed without theoretical
evaluation have assumed the partition coefficient of water
(p, ml/g) to be uniform over the whole region of renal
tissue, and/or radioactivity from the vascular space (V5. ml/
ml) to be negligible. The aim of this study was to develop a
method for calculating parametric images of RBF (K}, k)
as well as V, without fixing the partition coefficient by the
basis function method (BFM).

Methods The feasibility was tested in healthy subjects. A
simulation study was performed to evaluate error sensitiv-
ities for possible error sources.
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Results The experimental study showed that the quantita-
tive accuracy of the present method was consistent with
nonlinear least-squares fitting, i.e. K| ppm=0.93K,,
ner—0.11 ml/min/g (7=0.80, p<0.001), ks grpa=0.96k,
NoF—0.13 ml/min/g (r=0.77, p<0.001), and Va4,
BrM=0.92V5 npr—0.00 ml/ml (#=0.97, p<0.001). Values of
the Akaike information criterion from this fitting were the
smallest for all subjects except two. The quality of
parametric images obtained was acceptable.

Conclusion The simulation study suggested that delay and
dispersion time constants should be estimated within an
accuracy of 2 s. ¥, and p cannot be neglected or fixed, and
reliable measurement of even relative RBF values requires
that ¥, is fitted. This study showed the feasibility of
measurement of RBF using PET with H,'°0.

Keywords Positron emission tomography - Renal blood
flow - Compartment model - Parametric image

Introduction

The quantitative assessment of renal blood flow (RBF) may
help to understand the pathophysiological basis of kidney
function and to evaluate pathophysiological events leading
to vascular damage, such as renal arterial stenosis and
chronic allograft nephropathy. The quantitative estimation
of RBF by the use of H,'°0 and dynamic PET has been
developed and demonstrated by Nitzsche et al. {1]. The
kinetic model of H,'>O is based on the assumptions that all
activity is extracted by the parenchyma, extraction is very
rapid, and tubular transport has not started or is insignifi-
cant at a level that does not influence the calculation of
RBF [1-5]. With these assumptions, RBF has been
estimated based on regions of interest (ROI) by the H,'°0
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dynamic PET approach [1, 3, 4]. Also, calculations to
produce parametric images of RBF has been reported [5].
However, the quantitative computation of RBF has so far
assumed that the blood/tissue partition coefficient of water
(p, ml/g) is uniform for the whole region of renal tissue [3,
4], and/or that the contribution of radioactivity from the
vascular space is negligible [5-7]. The influence on
quantitative accuracy of these assumptions is unknown,

In previous studies RBF has been computed from the
uptake rate (K;, ml/min/g) [1-7]. Some studies also
simultaneously computed the partition coefficient (p) [6,
7], and the apparent p values obtained ranged between
0.52 and 0.78 mi/g. From the published values of water
content for tissue (76%) and blood (81%) [8], the p value
can be physiologically determined as: pphys=0.94 ml/g [9].
The much smaller apparent p value might be due to the
tissue mixture (or a partial volume effect) {10, 11} because
of the composite structure of the kidney. The effects of the
tissue mixture affect mostly K and not clearance rate (k;
min ). Therefore the clearance rate of H,'50 (k, min™")
multiplied by ppnys could be used for the calculation of
blood flow rather than K; (ml/min/g) [11] when the effect
of the tissue mixture is not negligible, although it is
unknown how the glomerular filtration rate (GFR)
additionally contribute to k,. Thus, the influence of GFR
on k, should be evaluated and allowed for in the
computation of RBF.

The aim of this study was to develop a method to
simultaneously calculate parametric images of K, and k;, as
well as the arterial blood volume (¥, ml/ml). The
feasibility in terms of quantitative accuracy and image
quality of calculated images was experimentally tested in
healthy subjects. GFR was measured in each subject to
investigate how much it contributes to the clearance rate
(k, min"). A simulation study was also performed to
evaluate error sensitivities for possible error sources.

Materials and methods
Theory

The present formula was characterized by simultaneously
estimating multiple parameters of uptake rate constant
(K;, ml/min/g) and clearance rate constant (k, ml/g) as
well as activity concentration in the arterial vascular space
(Va, ml/ml). The kinetic model for H,'>0O was based on a
single-tissue compartment model as follows:

Ci(t) = (1 = V) Ky - Ay(t) @ e + V4 - 4,(2) (1)

where Ci(f) (Bg/ml) is radioactivity concentration in a voxel

of PET image, 4,(f) (Bg/ml) is the arterial input function,
and ® indicates the convolution integral.
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In the present computation, we applied a basis function
method (BFM) as introduced by Koeppe et al. [12] to
compute the cerebral blood flow parametric image as well
as the clearance rate constant simultaneously. Gunn et al.
[13] applied this method to parametric imaging of both
binding potential and the delivery of ligand relative to the
reference region. The computation method has also been
applied to myocardial blood flow studies to compute the
uptake, clearance rates and blood volume [14, 15]. The
BFM procedure for the present RBF computation is
illustrated in Fig. 1. The BFM method enables parametric
images to be computed by using linear least squares
together with a discrete range of basis functions as the
parameter value for k, incorporating the nonlinearity and
covering the expected physiological range. The
corresponding basis functions formed are:

Fllp,t) = Ay (1) @ e (2)

For a physiologically reasonable range of Iy, i.e. 0 <k, <
15.0 ml/min/g, 1,500 discrete values for k, were found to

The kinetic model for H,'%0 in kidney: Eq (1)

v

Read arterial input function

v

Precalculate the basis functions (Eq (2))
{k,: 1500 discrete values between 0 ~ 15 mi/min/g)

v

[ Read pixel G(f) from image I(
I Take one basis function I(
Estimate ©and ¥, for this basis
function using Eq (3) and
standard linear least squares

v

Determine by dlrect search the
basis function that minimizes s*

v

I Solve K, and V, from @ and ¥

v

Write K, , k, and V, into parametric
images

Repeat for all image pixels

Repeat for all
basis functions

Fig. 1 Schematic diagram of the computation procedure by the BFM
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be sufficient. Then Eq. 1 can be transformed for each basis
function into a linear equation:

Ci(t) = O - Flky, t) + ¥ - 4,(¢)
O=(1-Vy) K 3)
=1V,

Hence for fixed values of k,, the remaining two
parameters © and ¥ can be estimated using the given basis
function by standard linear least squares, and are repre-
sented as Oy, and W,. The value k, for which the residual
sum of squares

s(ka)’= > (Ci(t) = Opa - Flka, 1) — Wi - 4,(D)* (4)
t

is minimized is determined by a direct search, and

associated parameter values for this solution (K, k, Va)

are obtained.

Subjects

Six healthy human subjects (the demographics are shown
in Table 1) were studied under basal conditions and
stimulation (after enalapril infusion) conditions. All sub-
jects were nonsmokers and none of them was taking any
medication. All subjects gave written informed consent.
The study was approved by the Ethics Committee of the
Hospital District of South-Western Finland, and was
conducted in accordance with the Declaration of Helsinki
as revised in 1966.

Table 1 Baseline characteristics of the six subjects studied

Characteristic Mean+SD
Age (years) 5845
Plasma creatinine (umol/l) 85+10
Estimated GFR (ml/min)* 78+4
Weight (kg) 82.844.5
Body mass index (kg/m?) 26.6+2.2
Blood pressure (mmHg)

Systolic 136411
Diastolic 8244
Heart rate (min ") 5745
Fasting plasma total cholesterol (mmol/l) 5.3+1.0
Fasting plasma high density cholesterol (mmol/l) 1.5+0.4
Fasting plasma triglycerides (mmol/1) 1.240.4
Fasting plasma low density cholesterol (mmol/1) 3.240.8
Blood haemoglobin (g/1) 144412
Fasting plasma glucose (mmol/l) 5.4+0.4

# Estimated according to the Modification of Diet in Renal Disease
study equation.

PET experiments

PET was carried out in 2-D mode using a GE Advance
scanner (GE Medical Systems, Milwaukee, WI). After a
300-s transmission scan, two scans were undertaken with
injection of H,'*0 (1.0 to 1.5 GBq) into the cephalic vein
of the right forearm. The first scan was under resting
conditions and the other was under stimulated conditions,
namely 20 min after infusion of 0.5 mg enalapril. The scan
protocol consisted of 20 frames over a total of 240 s
(15x4 s, and 5x10 s). During PET scanning, blood was
withdrawn continuously through a catheter inserted into the
left radial artery using a peristaltic pump (Scanditronix,
Uppsala, Sweden). Radioactivity concentrations in the
blood were measured with a BGO coincidence monitor
system. The detectors had been cross-calibrated to the PET
scanner via an ion chamber [16]. GFR was also measured
in each subject [17]. To obtain the PET equivalent flow
ratio for GFR, a kidney weight of 300 g and a cortex ratio
of 70% were assumed {8].

Data processing

Dynamic sinogram data were corrected for dead time in
each frame in addition to detector normalization. Tomo-
graphic images were reconstructed from corrected sinogram
data by the OSEM method using a Hann filter with a cut-off
frequency of 4.6 mm. Attenuation correction was applied
with the transmission data. A reconstructed image consisted
128x128%35 matrix size with a pixel size of 4.3x4.3 mm
and 4.2 mm with 20 frames. Measured arterial blood time—
activity curves (TAC) were calibrated to the PET scanner
and corrected for the dispersion (=5 and 2.5 s for intrinsic
and extrinsic, respectively) [18] and delay [19]. The
corrected blood TAC was used as the input function.

A set of Ky, ky and V4 images was generated according
to the BFM formula described above, using a set of
dynamic reconstructed images and input function. Compu-
tations were programmed in C environment (gcc 3.2) on a
Sun workstation (Solaris 10 Sun Fire 280R) with 4 GB of
memory and two Sparcv9, 900-MHz CPUs.

Data analysis

A template ROI obtained by summing whole frames of a
reconstructed dynamic image was drawn on an image of the
whole region of each kidney (average ROI size for the all
subjects was 153443 cm®). Also, a ROI was drawn on a
region of high tracer accumulation on the summed image as
an assumed cortical region. Functional values of X, &, and
Va were extracted from both ROls, i.e. for the whole region
and the cortical region, respectively. Data re shown
individually or as means+SD. Student’s paired ¢ test was
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