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Induction of Synaptic Changes in the Rat Primary Motor Cortex
through Electrical Stimulation synchronized with Lever Control

INE OB, Fl B, OBk BX, B OB
Takuya KOHAMA, Osamu FUKAYAMA, Takafumi SUZUKIL, Kunihiko MABUCHI

HEARFRFERE LSRR
Graduate School of Information Scxence and Technology. The University of Tokyo
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Abstract . In this study, we investigated the conditions inducing synaptic changes through intracortical
misrostimulation synchronized lever control in the rat. Invasive brain-machine interface approaches are generally
based on the process containing acquiring neural sygnals by implanted electrodes, estimating movement intention
by using these sygnals and controling an artificial device. In this process, it’s difficult always recording neural
sygnals from all electrodes, even though it is expected to acquire as many sygnals as possible to estimate more
precisely. To avoid causing extra damage to the brain by useless electrodes, we examined whether induction of
synaptic changes artificially occurred in the rat primary motor cortex though intracortical microsfiniulation.
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We assunie that the recorded neurons by electrodes are weakly
connected to {ask-related neurons. This idea is reférred from
Jackson et al.(2006).
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A study of stimulus condition for clear proprioception
generated by tendon vibration

O fE, Fl B #BRK BX B HE
Hiroaki YAGUCHI,  Osamu FUKAYAMA,  Takafumi SUZUKI, = Kunihiko MABUCHI

RIRE
The University of Tokyo

Abstract  Feedback of movement sensation from artificial limbs to the nervous system is promising to improve
the function of artificial limbs. Vibration to the distal tendon can induce movement illusion; but evoked sensation is
often ambiguous. If vibration to the proximal tendon can also induce movement illusion, movement illusion may be
evoked clearly by combination of vibration to the distal and proximal tendon. We vibrated the proximal tendon of
the biceps to test whether the vibration can evoke movement illusion. The vibration evoked movement illusion,
although the illusion was ambiguous.
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Development of Neural Interfaces for Regenerated Nerve with Microfluidic
- Evaluation of Axonal Regeneration and Deliberation of Electrode Placement -
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Hiroto YAMAZAKI, Naoki KOTAKE, Kosuke ITO, Takafumi SUZUKI, Kunihiko MABUCHI

BRRF
The University of Tokyo

Abstract

Prosthetics such as artificial arm can be controlled according to amputee’s intention by measuring an

electric signal that transmits in peripheral nerve and can generate artificial sensations by stimulating peripheral
nerve. There are various types of neural interfaces fo record from and stimulate peripheral nerve, however the
neural interface that can measure enough neural signal and can stimulate peripheral nerve to these usages doesn't
exist. In this study, we developed the neural interfaces for regenerated nerve using MEMS technology. The
electrode has fluidic channels as regenerate route of nerves. Moreover, we implant the electrode in tibial nerve of

rat to evaluate the axonal regeneration through the channels.
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Abstract: An online brain-machine interface (BMI) system for a rat in the form of
a small vehicle, which we call the RatCar, has been developed. It is
unique in that the BMI device is integrated with an animal body, which
induce remarkable functional changes in the motor regions. Although
functional changes in the brain while connected to a BMI system have
been hypothesized since neural control of a robotic arm was achieved
by Chapin in 1999, detailed phenomena have not yet been clarified. The
purpose of our research is to analyze functional stability and adaptation
of neural signals with our BMI system.

Eight rats were prepared for the experiment. Each rat had neural
electrodes implanted in the motor cortical regions of its brain to
chronically record extracellular action potentials. The electrodes were
formed with a sheet of flexible parylene polymers and gold signal
wires. The rats were then mounted one by one on a vehicular device 3
to 14 days after the implant surgery. The vehicle was designed to either
drive itself while sustaining the rat body or to be towed by the rat. A
linear state space representation model correlated the rat neural activity
and the locomotion of the vehicle. When the vehicle sustained the rat, it
was driven in accordance with locomotion estimated from the rat's
neural firing rates using the Kalman filter algorithm. The correlation
parameters were updated when the rat freely moved around towing the
vehicle. These two driving conditions were switched alternately, The
updated parameters were analyzed to detect functional transitions in the
neural representation of motor commands.

In the initial period of each trial with each rat, the correlation
parameters converged within 30 seconds as the rat freely moved around
towing the vehicle. Three types of transition were observed as each trial
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proceeded: (a) a sudden significant jump of partial parameters, (b) a
sudden significant jump of whole parameters, and (c) a slow variation
of whole parameters. Type (b) and (c) transitions had been expected as
artifacts caused by changes in the recording condition (e.g.,
displacement of electrodes) for (b) and instability of our model due to
lack of acquired information for (c). Type (a) transitions, however,
were not expected to be external factors. The results showed the ability
of our interactive BMI system to describe neural transitions.

Disclosures: O. Fukayama, None; T. Suzuki, None; K. Mabuchi, None.
Keyword(s): MOTOR CORTEX

RAT

LOCOMOTION
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Preliminary development of parylene flexible sensor for glutamate
detection
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*N. KOTAKE, T. SUZUKI, O. FUKAYAMA, S. TAKEUCH]I, K.
MABUCH];
The Univ. of Tokyo, Tokyo, Japan

Glutamate (Glu) is the major excitatory neurotransmitter in the central
nervous system. Recent studies have revealed that Glu is involved in
most aspects of normal and abnormal brain function.

Over the last decades, real-time Glu monitoring has been achieved
using enzyme-based sensors, but most of them were based on rigid
materials like silicon or ceramic. Since rigid materials do not deform in
the brain, the sensor causes a slight shift of measuring position and
some damage in the soft neural tissue. We propose a flexible Glu sensor
that can fit into the brain.

The sensor was fabricated by surface micromachining. A gold layer
(thickness: approximately 300 nm) was sandwiched between two 10-
pm-thick layers of parylene. This gold layer works both as conductors
and measuring sites, and the parylene layers insulate the gold layer
except at the measuring sites. We designed four-channel measuring
sites on the probe. The measuring sites were platinized and coated with
a mediator layer containing horseradish peroxidase and/or a Glu
oxidase layer using micropipettes. After modification with the enzyme,
the flexibility of the sensor was maintained. The sensor was connected
to a potentiostat, and Glu activity was measured by amperometry.

We are currently evaluating sensitivity, detection limits, and selectivity
of the sensor in vitro. We also are preparing for implantation into a rat
brain to evaluate the sensor in vivo.

N. Kotake, None; T. Suzuki, None; O. Fukayama, None; S.
Takeuchi, None; K. Mabuchi, None.
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Quick and Easy Fabrication of Flexible Microfluidic-

Electrode without the use of photolithography

Riho Goiol, Takafumi Suzuki’, Kunihiko Mabuchi’® and Shoji Takeuchi'
"Institute of Industrial Science, The University of Tokyo, JAPAN
? Dept. of Information Physics & Computing, Grad. School of Info. Sci. & Tech.,
The University of Tokyo, JAPAN

ABSTRACT

In this abstract we describe an inexpensive technique for rapidly fabricating
microelectrodes-microfluidic devices for injection into biological tissue. The total
processing time of our devices, including design and fabrication, is less than 90 min
(Fig.1). Since our method does not require photolithography it can be used by
medical doctors and biologist without access to microfabrication facilities. We use a
cutting-plotter machine to cut commercially available sclf-adhesive transparencics,
which we assemble to make the probe.

KEYWORDS: Quick and Easy Fabrication, Flexible Microclectrode,
Flexible Microfluidic-Electrode

INTRODUCTION

Injection devices that are easy-to-assemble and minimally invasive have the po-
tential to impact a number of medical procedures. For example, dopamine replace-
ment therapy is used in the early stages of Parkinson's disease but is less effective
over the long term [1]. Electrical deep-brain stimulation is a valuable

- — | culling-plotler maching
(0] RO =

flexitle micofluidic electiade

{e) Impadance M2
shant electrode 4072087
leng electroce 467 £ 163

insulaing layer 56731465

stack Jayers

Figure 1. Fabrication process. (a) Design and cut
transparency sheet into the electrode. (b) Peel
patterned mask sheet. (c) Gold deposition. (d)
Peel off mask sheet. (e) The three layers of the mi-
crofluidic device. (f) Stack the layers.

Figure 2. Electric properties

of the probe. (a-b) Image of

the fabricated probe. (c-d)
SEM image of the probe. (e)
Impedance data of the elec-
trodes.
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complement to dopamine treatments, however this procedure is highly invasive. We
have previously reported a procedure using photolithography to fabricate flexible
neural probes combined with a fluidic channel [2]. Although photolithography has
enabled rapid prototyping and fabrication of numerous micro-scale structures, the
hardware required is expensive and can be difficult to use for non-experts [3-6].
These difficulties have limited microfluidic techmology from reaching many
biologists and medical doctors. Here. we describe a method to quickly and easily
fabricate flexible microfluidic-electrodes without the use of photolithography,

EXPERIMENTAL

Our flexible probe is composed of a self-adhesive transparency film with two
electrodes and a microfluidic channel for injection (Fig.3). We fabricate the clec-
trodes using a commercially available cutting-plotter machine to cut channels into a
self-adhesive transparency film; we stack the layers to form the microfluidic channel
[Fig.3(a-d)]. We then cut a new sheet to use as a mask pattern for gold deposition
[Fig.3(a.e-g)]. After the deposition, we peel-off the mask to reveal the desired gold
pattern [Fig.3()]. Finally, we stack the channel and the electrode [Fig.3(i)]. The
cutting-plotter machine has a linear resolution of approximately 100 zm [Fig.2(b-c)].
which is lower than photolithography but is sufficient for simple chemical and
biological experiments. The completed probe is shown in Fig. 1(f). The electrode is
thin (250m) but robust enough to withstand normal operation.

{a) transparency film gghhg::;ngm
%Mnspamm plastic sheet
(PET)
microfiuidic flexible electrode )
(b) cut &l layers (€) cutlop layer
===
ic) fuidic patternng () mask palterning
< ]
) £ ng peclofl (S
',' T injection /) {d) stack layers (g) gold deposition
473 *Ilermcal / shmulallon 31d layer B
. e s | i) ==
wr.h ele(l:c-de 1st laym
- ) gold r':llelmng
eel off 5
hinlagical Rt j P ( %
bufferlissue :

Figure 3. Schematic diagram of the device m biological nissue and jabrication
process. (a) Self-adhesive transparency sheet. (b) Cut microfluidic channels into
the film. (c) Peel off the film cover and channel layer. (d) Siack the three layers.
(e) Cut the cover film sheet to form a mask for the gold pattern. (f) Peel off the
cover film. (g) Deposit gold. (h) Peel off the mask. (i) Merge microfluidic chan-
nel and flexible electrode by sticking them iogether.
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RESULTS AND DISCUSSION

We imaged our probe using a scanning electron microscope (SEM) to evaluate
the quality of the probe’s features [Fig.2(c-d)]. The impedances of the probes we
fabricated are approximately 4 MQ. We did not observe any significant difference
in the impedances compared to the conventional microelectrode (2 MQ)[7]. We also
verified that there is no electric leakage from the electrodes when submerged in sa-
line.

We demonstrate the utility of our device by injecting red ink through it. We
submerged the device in a saline bath and subsequently injected ink through the
channel using a syringe (Fig.4). Under these conditions. we observed red ink
emerging from the orifice of the microfluidic channel with no leakages.

CONCLUSIONS

In summary, we describe an [ g,
important advance over current
neural electrodes, in terms of cost
and ecase of fabrication, We
belicve that this technique can be
used by doctors and researchers
who are mnot familiar with
microfabrication processes and in

25sec

1.5 800 200

the classroom.
Figure 4. Photographs of the injection ex-
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Study on brain adaptation using rat-machine fusion systems
and multi functional neural electrodes

Takafumi Suzuki', Naoki Kotake?, Takuya Kohama',

Osamu Fukayama', Kunihiko Mabuchi'

"Department of Information Physics and Computing, Graduate School of Informiation Sciénce and Technology,
The University of Tokyo, Tokyo, Japan
(Tel: +81-3-5841-6880; E-mail: t.suzuki@i.u-tokyo.ac.jp, Takuya Kohama@ipe.i.u-tokyo.ac jp,
Osamu Fukayama@ipe.i.u-tokyo.ac.jp, Kunihiko Mabuchi@ipc.i.u-tokyo.ac.jp)
“Department of Advanced Interdisciplinary Studies, School of Engineering,
The University of Tokyo; Tokyo, Japan
(Tel ; +81-3-5841-6883; E-mail: Naoki. Kotake@ipc.1.u-tokyo.ac.jp)

Abstract: The goal of our research project is to elucidate the brain adaptation function using rat-machine fusion systems
and multi functional neural electrodes. To- achieve: this goal, we have developed fundamental techniques. These
techniques’ include A)- automatic adaptation: of vehicle .controller to time-varying neural signals recorded in these
rat-machine fusion systems, and B) elemental techniques about flexible neural probes with micro fluidic channels for

injection (or measurement) of medicines.

Keywords: BMI, rat-machine fusion system, multi functional neural electrode

1. INFTRODUCTION

The goal of our research project is to elucidate the
ability of the brain (especially the motor cortex) to adapt
to variable body environments by using a rat-machine
fusion . system. in which the body's environmental
conditions are changeable (or controllable) and also by
using multi- functional neural electrodes. We plan to
construct a rat car” vehicle system:in which the car is
controlled by neural signals in the motor cortices of rats:
The: system may allow: us to change the relationship
between the motor command sighals and the effectors
(the muscles or the: vehicle) arbitrarily.” By  using
multi-channel recordings of neural signals together with
injection and recording of certain medicines into the
brain, we plan to elucidate the brain property mentioned
above.

‘We have been: engaged in developing fundamental
techniques to achieve this goal. The techniques includes
A)automatic adaptation of ' vehicle controller to
time-varying - neural - signals *recorded - in these
rat-machine. ~fusion = systems,  and < B) ' elemental
techniques for long-term stable neural recording using
devices such as flexible neural probes with micro fluidic
channels for injection (or measurement) of medicines or
with a sensor for glutamate detection:

2. RATCAR SYSTEM [1, 4-5]

2.1 Introduction

We have developed a rat-machine fusion system in
the form of a small vehicle BMI system, which we call
the ‘RatCar".

Although a simple linear model that we proposed in
our fornier report[1] estimated an abstract loconiotion
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velocity of a rat according fo its neural firing rates, the
results with too rough fluctuations were not suitable to
control the RatCar vehicle. The model was divided into
two sections; a section to correlate rat's locomotion
velocity with each neural firing and another to estimate
locomotion velocity compiling the whole pattern. of
neural firings. It enabled stable control of the vehicle
even though the model precision had been inadequate.
In addition, changing states both in the brain and the
machine were observed through the model parameters.

2.2 Methods

First; tungsten wire electrodes (40 pm in diameter)
coated with parylene-c: polymer (5 pm: thick) were
implanted in the motor cortex and-basal ganglia regions
which were determined according to a: stereotaxic atlas
of the rat brain(Table 1)[3].

As the rat ran inside the wheel-formed device, those
clectrodes transmitted neural spikes to the outside of the
body followed by amplifier (5,000 times) and band-pass
filter (300 Hz - 5 kHz).

Table 1. Electrodes coordinate (to bregina)

region anterior lateral ventral
[nin} [mm] [mm]

Ml -0.7 25 1.6

STR 0.5 3.0 4.0

GP -0.7 3.4 6.0

STN -3.5 2.6 7.3

(Negative values in anterior represents posterior distance.)

Those spikes were then sampled (25 kHz) and sorted
to calculate firing rates's(f) = (5,(f) ... s,{7) in every 100
ms  bin for. each  neuron; Finally, - the principal
component analysis normalized and whitened variances



of those firing rates.
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Meanwhile, the actual - locomotion = velocity w(7)
recorded as a rotating speed of the wheel was applied to
identify or evaluate the model,

Our model to. estimate: locomotion velocity of a rat
has a state space representation deseribed as;
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In the algorithm, the equation (4) describes an update
of internal states consist of the rat's locomotion velocity
and its periodic differences. Meanwhile; the equation (5)
correlates. a combination of neural firings: to the
locomotion velocity with an output matrix H. Note that
the neural firings were given as residuals of an
auto-regression process {defined by parameters a,,)
applied to neural firing rates,

To solve the model (i.c., fo acquire v(t), H ay, ,), two
sections were applied as foliows Birst, H=(ly, ... )
and a,;; were identified by another state space
representation for each neuron as actual locomotion
velocity array x(£) was given:
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The measurement update algorithm: from Kalman
filter[2] were applied to identify un(t) and therefore a,;
and 7z,

Kalman filter algorithms (the time update and the
measurement update) were then applied to the former
state space model (4,5) to estimate locomotion velocity
v(t). Note that the algorithms were able to: continue the

estimation - of the locomotion. velocity: (1) “as the
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parameters a,; and H were updated.

Six male Wistar rats were used as subjects. They were
trained to walk inside the wheel-formed device
described above after two days after the implant surgery.
Although they had electrodes implanted both in motor
cortex and basal ganglia, we focused only on the motor
cortex in this experiment. The recording trials were
divided into approximately ‘1. minute periods to prevent
a rat from getting tangled in recording cables. While the
first trial was used to identify the model and to observe
varying parameters, the rest trials (fypically 2; 120 s)
evaluated a precision of the miodel.

2.3 Results

The result of an open estimation shows that rats D, E
and F gave a high correlation over 0.2, although these
trials . ‘contained - other .. movements.  unrelated to
locomotion,

More detailed estimation for rat B, which had a
highest correlation, showed that while estimated value
by our presented algorithm well followed start, stop and
drastic changes of actual locomotion; it tended to be 3 -
4 times larger in amplitude. As a whole for rat C,
however, the estimated velocity often failed to follow
the actual one which resulted in the low correlation.

2.4 Discussion and Conclusion

The results showed: that the first 10 - 15 seconds
period of the identification trial converged the initial
covariance components to achieve a basic estimation of
locomotion velocity. As long as these values stayed
constant, the model well estimated locomotion velocity
especially: for drastic changes. On the other hand, some
of them gradually changed after the initial identification
period had passed in the case of rat C, some, which
resulted in a weaker correlation with velocity.

These changes were caused either by plasticity of the
brain, modification in recording condition; or dynamics
in brain activity that our model did not take into account.
It is not able to clearly distingnish them with our
methods by themselves since our current results show
phenomenological correlations between  each neural
firing and the locomotion velocity. Our results, however,
still suggest that those changes were caused by some
sort of state transition in.the brain.

For future studies, continuous recording for long
hours’ with 'a rat mounted on the vehicle will suggest
quantitative results on dynamical changes and plasticity
of the brain as connected to BMI systen.

3. MULTI-FUNCTIONAL NEURAL
ELECTRODE

3.1 Introduction

We propose a flexible probe to record both neuro-
electrical and neuro-chemical activities as an example
of - the' multi-functional neural electrodes[6]. The
fabrication process is based on the method we have
reported previously[7]
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Fig. 1. Conceptual illustration of a probe. (a) Overview image of the probe. The probe is inserted into biological tissue. (b) Tip of the
probe with recarding electrodes and a fluidic channel. The fluidic chanuel is covered with a semipermeable membrane. When the

extracellular fluids-around the point of interest.[6]

(a)SU-8 patternig (c)Parylene deposition

probe is inserted into the brain, the microelectrodes record neural signals, and the fluidic channel collects neurotransmitter from the
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Fig. 3" The probe was fabricated on a 23-pun-thick parylene C substrate. (b) The fluidic channel is U-shaped at the tip of the probe:

(6]

3.2 Mecthods

Figure 2 shows the fabrication process of the probe.
First, an SU-8 mold (50 pm thick) was made on a
silicon wafer, Then, a 30-40 ym thick photoresist:layer
and a patterned gold layer were sandwiched between
two Parylene thin films (the first layer is 15 ym in
thickness; the covering layer is 10, jum in thickness) on
the mold. The photaresist was used as a sacrificial layer
to . form the fluidic channel. “Afier oxygen plasma
etching with aluminum as an etchmask, which defined
the shape of the probe and the opening sections of the
fluidic channel, the fluidic channel was opened by
dissolution of ‘the photoresist in an acetone bath, A
semipermeable membrane was prepared by spincoating
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an acetonesolution containing cellulose “acetate and
formamide. The membrane was then transferred onto an
another wafer with neural probe; and was fixed to the
probe. by drying: acetone; Finally, the structure was
peeled off from the SU-8 mold.

3.3 Results and Discussion

The whole structure of the probe is shown in Figure
3a. The Size of the probe is 1.2 mm in width, and 12
mny in length (excluding the conmecting site). The probe
has. a fluidic channel and  four rtecording electrodes
around the tip of the probe (Figure 3b). The size of the
fluidic channel was 170 pm in width, and 30-40 pm in
height. As a result of an in vitro perfusion fest, no



