g) BB
FFo oMk, RS L 2L, BICHBEBEZEL D 25 5. %@i?&%%f
FRRECIRERBEOERATDON S,
h) &l
S DS EMET & U CBEBRER chronic kidney disease - (CKD) »#EH &h Tk D,
MHEORBICILBEL S 226 FREET A LAER ATV S (OEEM). BHEEm
CKD 27 — V3BEDOIBKNEHOBMETREL, E5IHMAS CKD DER L% 5.
Silverberg 513, CKD -ZIi- 1M OARENBEWIIEEE L RITL, BREREZEKT 5 cardio -
renal anemia (CRA) FEMEREE VI H LWLEEZIRE LY, DARLEFICEW TR EAHL
TWAEIAE, 15~ 60 % EIREVREY S 228, LAROERELICHEY, AMOAHHHELE
RBLhD, IheDTenb, Eﬂﬁﬁﬁﬁ*ﬂ?‘féﬂﬂd)ﬁm%ﬁ@ﬁi"ﬂ‘é CHEBELEILOLND,
) [£538 clubbed finger
JTRER & dh & U 7= o BEIc L D, SBORRIAFEZOE D LS ICHINIZED AL
REET, WE 160 UTTHERBLMOLTAE, BEOAEEETIE 10" &BA RS
B 5. WHERRROBAE U TURERIZEK S 2 <, 4 & <14, %H‘t)bkﬁ%, BOHLD Y,
FOR/IZED LT,

2 /\4 9)11*3‘4’ VDR

...........

R Tl —ﬁﬁfﬁilﬁﬁf w:mw:n j’k%lﬁﬁ%f ;t/w 51)1/*7‘4 Vi Lt ib %é ﬁﬁﬁ
A5z 2EEAYEBRE LS540, ITERMCAETIEDTH S,
a) ME
ODEMEY 32 v 2T, < 6300 FMED 90mmHg £y, TEROMELD
30mmHg YL HETLTH D, 20&I HEFTCRIEREE T2 LA, MEAETLTY
BEADMEDH%E LT, EHIRA AT EE T U 60mmHg BLE, KEREIAR 2 fild0 vl 88 T
AUt 70mmHg LIE, B BIIR A MATITEE T b g 80mmHg DLEE Xh3, —FF, BEOH
BRI 5 RERAELR S afterload mismatch 12 & 2/ 0R2 T, MEEEETS 5. MEHE
B, R EEEOARLERTILENH 5.
b) kiR
@ R
U WRIROB A, AREEERS IES LR IERE 0y 7 OFEEERT 5. 20
X5 aipld, —BMOBBBERLLE (Adams - Stokes TEMRH) #2345 5. RERIK
OESEIZ L0, DHEEMET L, OARERHSEERAL 2 b EHUOK T2 E I b5,
—F BLUWHEROEA SHRIRE AR RSO BRBERLM, DAL ETIENH5.
HEIRITOREOERICE KD S5 55, DEMEY 2 v 70K ICOFREOBRELTERIS
@URL . |
YT AMNBEHELWEAS (8], ShTusBEas [FREB] EERUREBRE L8 L=

49813612 : 2. BRBROSHKHR

63



64

 DTROBE

P ODEHHSMUETRIRS — DI 72 K ST T 5 (R . & < HRAIPES 2O REEIR % S
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(Sp02). 72721, Sp0: 7390 % T% Pa0, i34 60mmHg IZE T LT3 Z & » 5, Spo, Db
PIREELE R Tid A b 2,

100 e

75

S02(%)

' Pao, & Sao, G)Eg{% (37 T ' pH 7.4,
0 27 40 60 90 100 Paco, 40 mmHg [CBIFdAEFOL
IR S PO, (mmHg) > BESRARREANAR)

DAREITE, f%x_&uuﬂ‘ v 71§§m®(ﬁfa7f§%%7§)W§’E L, }z‘u ﬁé“) < F Iit’?-”f“‘)'lﬁ /J>% i
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a) IFIRE respiratory sounds

I CHE L 5 553 OFENE breath sounds &, IEH TIXBEHLT & W EIREE adventitious
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Proteasome regulates diverse cellular functions by eliminating ubiquitinated proteins. Protein kinase A (PKA)
is a key regulator of proteasome activity. However, it remains unknown how PKA regulates proteasome
activity and whether it controls proteasome activity in in vivo hearts. Both the in vitro peptidase assay and
the in-gel peptidase assays showed that the treatment with PKA for 30 min dose-dependently activated
purified 26S proteasome. Simultaneously, PKA treatment enhanced phosphorylation and assembly of
Keywords: purified 26S proteasome evaluated by non-reducing native polyacrylamide gel electrophoresis, either of
Proteasome which was blunted by the pretreatment with a PKA inhibitor, H-89. in in vivo canine hearts, proteasome
PKA assembly and activity were enhanced 30 min after the exogenous or endogenous stimulation of PKA by the
Phosphorylation intracoronary administration of isoproterenol or forskalin for 30 min or by ischemic preconditioning (IP)
Assembly with 4 times of repeated 5 min of ischemia. The intracoronary administration of H-89 blunted the
Ubiquitinated protein enhancement of proteasome assembly and activity by IP. Myocardial proteasome activity at the end of
Ischemiafreperfusion ischernia was decreased compared with the control, however, it did not differ from the control in dogs with
IP. IP decreased the accumulation of ubiguitinated proteins in the canine ischemiafreperfusion myocardium,
which was blunted by the intracoronary administration of a proteasome inhibitor, epoxomicin. However,
proteasome activation by IP was not involved in its infarct size-limiting effects. These findings indicate that
PKA rapidly enhances proteasome assembly and activity in in vivo hearts. Further investigation will be
needed to clarify pathophysiological roles of PKA-mediated proteasome activation in ischemia/reperfusion
hearts.

© 2008 Elsevier Inc, All rights reserved.

1. Introduction

The ubiquitin-proteasome system plays a major role in intracel-
lular protein degradation and subsequently regulates cellular func-
tions in various cells [1-4]. 26S proteasome is composed of 20S
proteasome as its “core” catalytic unit capped on each end by 195
regulatory complex |5,6]. 26S proteasome is a cylinder-like structure
containing 4 concentric rings, each containing 7 subunits. We have
previously reported that impairment of proteasome activity may
contribute to the progression of cardiac dysfunction along with the
accumulation of ubiquitinated proteins in the pressure-overloaded
heart of mice [7]. In addition, Buiteau et al. clearly demonstrated the
deactivation of proteasome and the subsequent accumulation of
ubiquitinated proteins in ischemiafreperfusion myocardium [8].
These findings suggest that impairment of the ubiquitin-proteasome
system may be closely associated with cardiac diseases. Therefore, a

* Corresponding author. Tel.: +81 6 6879 3635; fax: +81 6 6879 3473.
E-mail address: minamino@medone.med.osaka-u.acjp (T. Minamino).

0022-2828/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi: 10.1016/j.yjmcc.2008.11.001

better understanding the regulation of the ubiquitin-proteasome
systemn may lead to new therapies for cardiac diseases. However, it
remains largely unknown how proteasome is regulated in in vivo
hearts.

There are several possible mechanisms that could regulate 26S
proteasome activity, including 1) changes in protein levels of pro-
teasome subunits, 2} post-transiational modification of proteasome
subunit such as phosphorylation/dephosphorylation, and 3) assem-
bly/disassembly of proteasome subunits [9,10]. Recently, protein
kinase A (PKA) is reported to be one of the key regulators of protea-
some activity in the in vitro studies [11,12]. PKA increases proteolytic
activities of the cardiac proteasome {11] and phosphorylation of the
19S proteasome subunit by PKA correlates with increased proteasome
activity [12]. However, it remains to be resolved whether PKA
increases proteasome activity by altering the status of proteasome
assembly or by phosphorylating proteasome subunits. Thus, in the
present study, we first investigated phosphorylation, assembly and
activity of purified proteasome when it was treated with PKA. Next,
we investigated proteasome assembly and activity in in vivo canine
hearts when cardiac PKA was stimulated endogenously and
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exogenously. We also checked the time-course changes in proteasome
activity during ischemia/reperfusion period in dogs with and without
endogenous PKA stimulation. Finally, we investigated the role of PKA-
mediated proteasome activation by IP in the accumulation of
ubiquitinated proteins and myocardial infarct size using a proteasome
inhibitor.

2. Methods
2.1. Materials

Epoxomicin {a proteasome inhibitor), PKA, isoproterenol, for-
skolin and 2,3,5-triphenyltetrazolium chloride (TTC) were obtained

from Sigma (St. Louis, MO, USA). A purified 26S proteasome from
human erythrocyte and Suc-Leu-Leu-Val-Tyr-7-amino-4-methylcou-

453

marin (proteasome peptidase substrates) were obtained from
Biomol International (Plymouth Meeting, PA, USA). H-89 (a
selective PKA inhibitor) and an antibody against serine/threonine
phosphorylated proteins were obtained from Upstate (Lake Placid,
NY, USA). Antibodies directed against ubiquitinated proteins (clone
FK2) and proteasome subunits {(Rpt5, a7, and B5) were purchased
from Biomol International. Clone FK2 recognizes both mono- and
poly-ubiquitinated proteins but not free ubiquitin, so the extent of
protein ubiquitination could be determined.

2.2, Measurement of 265 proteasome activity
2.2.1. In vitro peptidase assay

The purified erythrocyte 26S proteasomes treated with
various units of PKA with and without 100 pmol/L H-89

26S proteasome activily
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Fig. 1. Experimental protocols in canine model. (Protocol I) Effects of the intracoronary administration of saline (n=4), isoproterenol (n=5) or forskolin (1n1=5) (an exogenous stimulant
of PKA) on proteasome activity in canine hearts. {Protocol II) Effects of ischemic preconditioning (IP) (an endogenous stimulant of PKA) with the intracoronary administration of
saline (n=8 in LAD-perfused myocardium and n=>5 in LCx-perfused one) or H-89 (nn=5)(a PKA inhibitor) on proteasome activity in canine hearts. (Protocol Il) Time-course changes in
proteasome activity during ischemiajreperfusion period with and without IP (n=5 per each group). The triangle indicates the timing for myocardial biopsy. (Protocol V) Effects of
proteasome activation by IP on the accumulation of ubiguitinated proteins and infarct size in canine hearts. Sham operation was performed in 3 dogs. I/R and Epo indicate ischemia/

reperfusion and epoxomicin, respectively.
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Fig. 2. PKA enhanced the activity of purified 26S proteasome. (A) Purified 26S proteasome activity detected by the in vitro proteasome peptidase assay. (B} Representative
example of the 26S proteasome activity detected by in-gel peptidase assay using non-reducing gel electrophoresis. Purified 26S proteasome (1 pg) was applied to each lane. ©)
Quantitative analysis of the 265 proteasome activity detected by in-gel peptidase assay. *p<0.05 vs. control, #p<0.05 vs. PKA (1 Ufpg). n=5 per each group. Values are

normalized to controls.

were incubated in assay buffer (50 mmol/L Tris-HCl, pH 7.5,
20 mmol/L MgCl;, 1 mmol/L DTI, 50 pmol/L ATP) at 35 °C
for 30 min. Then, they were incubated with proteasome
activity assay buffer (50 mmol/L HEPES(pH 7.5), 5 mmol/L
MgCl2, and 1 mmol/L DTT, 50 pmol/L ATP, 40 upmol/L
LLVY-AMC) for 2 h at 37 °C. The fluorescence of each solution
was measured by spectrophotometry (HitachF-2000; Hitachi
Instruments, Tokyo, Japan) with excitation at 390 nm (Ex) and
emission at 460 nm (Em). All readings were standardized relative
to the fluorescence intensity of an equal volume of free 7-amino-
4-methylcoumarin (Sigma) solution (40 pmol/L).

2.2.2, In-gel peptidase assay

The purified 26S proteasome with different treatments were
separated by non-reducing native PAGE using a modification of
the method described previously [13]. We used a four gel layer
consisting of equal amounts, from the bottom up, of 7.5, 5, 4,
and 3% polyacrylamide. Non-reducing gels were run at 125 V
for 2.5 h. The gels were incubated on a rocker for 1 h at 37 °C
with 15 mL of 04 mmol/L Suc-LLVY-AMC in buffer (50 mmol/L
Tris-HCl, pH 7.5, 5 mmol/L MgCl,, 50 umol/l. ATP). Proteasome

bands, whose density indicates 26S proteasome activity, were
visualized on exposure to UV light and were photographed.

2.3. Evaluation of proteasome phosphorylation and assembly in vitro

MThe purified 26S proteasome with different treatments were
separated by non-reducing native PAGE described above, Proteins on
the non-reducing gels were transferred (110 mA) for 15 H onto
polyvinylidene difluoride membranes. Western blotting analysis was
carried out sequentially for detection of changes in phosphorylation
state with anti phospho-serinefthreonine antibody and for detection
of 26S proteasome with anti Rpt5 or o7-$ubunit antibody. Antigens
were visualized by a chemiluminescent horse-radish peroxidase
method with the ECL reagent. A parallel reducing gel was used to
confirm the total amount of 26S proteasome.

24. Animal instrumentation
Beagle dogs (Oriental Yeast, Osaka, Japan) weighing 8 to 12 kg

were anesthetized with sodium pentobarbital (30 mg/kg, intrave-
nously), and were prepared as previously described [14]. Briefly,
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the trachea was intubated and each dog was ventilated by using
room air mixed with oxygen. The chest was opened through the
left fifth intercostal space, and the heart was suspended in a
pericardial cradle. After heparinization (500 U/kg), the proximal
portion of the left anterior descending coronary artery {LAD) was
cannulated and perfused with blood via the carotid artery through
an extracorporeal bypass tube. Both the coronary perfusion
pressure (CPP) and heart rate (HR) were monitored during the
experiments. In all experiments, CPP and HR were set at about
100 mmHg and 130 beats per min, respectively. This model was
used to allow selective administration of agents to the LAD and
reproduction of ischemia/reperfusion by clamping the bypass tube
[15-17]. To examine the effects of PKA on proteasome activity in
vivo, we employed isoproterenol or forskolin for exogenous
stimulation of PKA and ischemic preconditioning (IP) for endo-
genous stimulation because PKA was reported to be activated by
IP in canine hearts [15]. All procedures were performed in
conformity with the Guide for the Care and Use of Laboratory
Animals (NIH Publication No. 85-23, 1996 revision) and were
approved by the Osaka University Committee for Laboratory
Animal use.

2.5, Animal study protocols

2.5.1. Protocol I: Effects of isoproterenol or forskolin on proteasome
activities in canine hearts

To assess the effects of exogenous PKA stimulation on proteasome
activity, we selectively administrated saline (n=4), isoproterenol
(n=5) or forskolin (n=>5) into the LAD for 30 min in dogs. We prelimi-
narily confirmed that the dose of ISO (10 umol/L) used increased cAMP
levels in the myocardium perfused by the LAD, but not in the
myocardium of the left circumflex coronary artery (LCx) (data not
shown). We determined the dose of forskolin (0.3 pg/kg/min) that
activates PKA in canine hearts according to the previous report [18].
After administration, we rapidly sampled myocardial tissue from the
LAD- and LCx-perfused myocardium as saline- or drug-treated
myocardium and control one, respectively. Samples were placed into
liquid nitrogen and stored at -80 °C (Fig. 1).

2.5.2. Protocol II: Effects of IP on proteasome activity in canine hearts
To assess the effect of endogenous PKA stimulation on the

proteasome activity, we petformed 4 cycles of 5 min coronary artery

occlusion and a subsequent 5-minute period of repetfusion (IP) with
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the intracoronary administration of saline (n=8) or H-89 (1.35 pg/kg
per min) (n=5) for 50 min in dogs. The dose of H-89 was selected
because the previous study showed this dose of H-89 inhibited the
PKA activity in canine hearts [15,16]. At 30 min after IP, we rapidly
sampled tissues from the LAD- and LCx-perfused myocar-
dium, placed the samples into liquid nitrogen, and stored them
at —-80 °C. To confirm that proteasome activation by IP was not
dependent on the myocardial area, we also performed the same IP
protocol in LCx-perfused myocardium instead of LAD-perfused one
in 5 dogs (Fig. 1).

2.5.3. Protocol IH: Time-course changes in proteasome activity during
ischemiafreperfusion period in canine hearts

To assess the time-course changes in proteasome activity
during ischemiafreperfusion period in canine hearts, we under-
went 90 min of ischemia followed by 6 h of reperfusion with and
without IP in 10 dogs. Myocardial biopsy specimens were taken
from LAD-perfused myocardium in each canine at 4 time-points:
at the control, just before ischemia (pre-ischemia), at the end of
90 min ischemia (post-ischemia) and 6 h of reperfusion (post-
reperfusion) (Fig. 1).

Fig. 5. PKA stimulation did not alter total protein levels of proteasome subunit in canine hearts. Representative example and quantitative analysis of Western blotting analysis of
protein levels for 195 proteasome subunit Rpt5 as well as 20S proteasome subunits o7 and 35 in canine hearts after saline treatment (A), isoproterenol (ISO) treatment (B), forskolin
(FOR) treatment {C), ischemic preconditioning (IP) (D), IP with H-89 (1P+H-89) (E). IP was performed in the LCx-perfused myocardium (F) instead of LAD-perfused one. CON and MW

indicate control and molecular weight, respectively.
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2.54. Protocol IV: Effects of proteasome activation by IP on the
accumulation of ubiquitinated proteins and infarct size in canine hearts

To assess pathophysiological roles of the proteasome in the
ischemiafreperfusion myocardium, we intracoronarilly adminis-
tered saline (n=9) or a proteasome inhibitor (epoxomicin at
2.5 pglkg) (n=7) for 50 min and then we performed 90 min of
ischemia followed by 6 h of reperfusion in dogs. To assess
pathophysiological roles of the proteasome activation by IP in
the ischemic/reperfused myocardium, we intracoronarilly admi-
nistered a proteasome inhibitor (epoxomicin at 2.5 pg/kg) for
50 min with {(n=7) and without IP (n=9) and then we
performed 90 min of ischemia followed by 6 h of reperfusion
in dogs. We preliminarily confirmed that this dose of epox-
omicin reduced 26S proteasome activity by 43.0£6.2% (n=3) in
the LAD-perfused myocardium compared with that in the LCx-
perfused one. After 6 h of reperfusion, we rapidly sampled LAD-
perfused myocardium, stored the samples at -80 °C, and
investigated the level of the ubiquitinated proteins. We also
evaluated the area at risk and the necrotic area after 6 h of
reperfusion by Evans blue/TTC staining as described previously
{19]. Myocardial infarct size was expressed as the necrotic areaf
area at rvisk (Fig. 1).

2.6, Purification of cardiac proteasome

Proteasome was purified from canine hearts according the
method reported previously [20]. The peptidase assay was
performed using the cytosolic fraction from the LAD- and LCx-
perfused myocardium of canine hearts or the fractions containing
26S proteasomes separated on a 10-40% glycerol gradient centri-
fugation according to the method described above.

2.7. Western blotting analysis

Western blotting analysis was performed as described pre-
viously [21]. Immunoreactive bands were quantified by densitometry
(Molecular Dynamics).

2.8, Statistical analysis

Data are expressed as the mean+SEM. Proteasome activities in
LAD- and LCx-perfused myocardium were compared by the paired
t-test. The time-course changes in proteasome activity during
ischemia/reperfusion myocardium were analyzed by the two-way
repeated analysis of variance (ANOVA) followed by Fisher's test.
Other results were compared by the one-factor ANOVA followed by
Fisher's test. In all analyses, p<0.05 was accepted as statistically
significant.

3. Results
3.1. PKA enhanced the activity of purified 26S proteasome

The in vitro peptidase assay (Fig. 2A) and the in-gel peptidase
assays (Figs. 2B, C) showed that the treatment of purified 26S
proteasome with PKA enhanced 26S proteasome activity in a dose-
dependent manner, while this effect was blocked by the pretreatment
with H-89.

3.2. PKA enhanced the phosphorylation and assembly of purified
268 proteasome

Western blotting analysis of non-reducing gels probed with the
antibody against serine/threonine phosphorylated proteins showed
that PKA dose-dependently enhanced the phosphorylation of purified
26S proteasome (Figs. 3A, B). The phosphorylation of 26S proteasome
was blocked by the pretreatment with H-89 (Figs. 3A, B). Interestingly,
Western blotting analysis of non-reducing gels probed with the
antibody against Rpts or o7 revealed that PKA dose-dependently
increased either protein level that corresponded to 26S proteasome,
which was blunted by H-89 (Figs. 3C, D upper panel). Western blotting
analysis of reducing gels showed that the purified 265 proteasome
were equally loaded to each lane (Figs. 3C, D lower panel). These
results suggest that PKA enhanced the phosphorylation and assembly
of proteasome, which may lead to the increase in proteasome activity.

3.3, PKA stimulation increased 265 proteasome activity in canine hearts

We found no differences in the proteasome activity in the saline-
treated (LAD-perfused) and the control (LCx-perfused) myocardium
(Fig. 4A). In contrast, exogenous and endogenous PKA stimufation by
the selective intracoronary administration of isoproterenol or for-
skolin and IP, respectively, significantly increased 26S proteasome
activity in LAD-perfused myocardium compared with that in LCx-
perfused one (Figs. 4B, C, D). The selective intracoronary administra-
tion of a PKA inhibitor, H-89, blocked proteasome activation by IP
(Fig. 4E). We confirmed that proteasome activation by IP in LCx-
perfused myocardium was the same as that in LAD-perfused one
(Fig. 4F). These results suggest that exogenous and endogenous PKA
stimulation increased 26S proteasome activity in canine hearts.

3.4. PKA stimulation did not alter total protein levels of proteasome
subunits in canine hearts

We found no differences in the total protein levels of proteasome
subunits in the saline-treated (LAD-perfused) and the control {(LCx-
perfused) myocardium (Fig. 5A). Then, we examined the changes in
protein levels of the proteasome subunits such as Rpt5, a7 and p5 in
LAD- and LCx-perfused myocardium when proteasome was activated
by exogenous and endogenous PKA stimulation in canine hearts.
Importantly, there were no differences in the total protein levels of 3
proteasome subunits (Rpt5, o7, P5) in groups tested (Figs. 5B-F).
These results suggest that exogenous and endogenous PKA stimula-
tion did not alter total protein levels of proteasome subunits in the
in vivo canine hearts.

3.5. PKA stimulation enhanced 26S proteasome activity and assembly in
canine hearts

Since we found 26S proteasome activity of canine hearts mainly in
the fractions 17~19 after glycerol gradient centrifugation (Figs. 6A-F,
upper panels), samples from fractions 15-21 in the LCx~ and LAD-
perfused myocardium were immunoblotted with antibodies against
Rpt5, a7 or P5 (Figs. 6A-F, lower panels). Consistently, Western
blotting analysis with SDS-PAGE gel showed that proteasome subunit
Rpt5, a7 or 35 was found mainly in fractions 17-19 (Figs. 6A~F, lower
panels).

Fig. 6. Exogenous and endogenous PKA stimulation enhanced 26S proteasome assembly in canine hearts. Representative analysis of 265 proteasome activity {upper panel) and
Western blotting analysis of proteasome subunits (lower panel) in the control and treated myocardium. The number indicated fractions separated on a 10-40% glycerol gradient
centrifugation. {A) saline, {B) isoprotereno! (150), {C) forskolin (FOR), (D) ischemic preconditioning (IP), (E) IP with H-89 (IP+H-89), {F) IP in LCx-perfused myocardium. (G)
Quantitative analysis of 26S proteasome activity in canine hearts. Proteasome activity was expressed as the surnmation of proteasome activity in fractions 17-19 in the treatment
myocardium which were divided by that in the same fractions in the control one {n=4 to 8 each). (H) Quantitative analysis of proteasome assembly in canine hearts. Proteasome
assembly was expressed as the summation of Rpt5 protein levels in fractions 17-19 in the treatment myocardium which were divided by that in the same fractions in the control ones

(n=4 to § each). *p<0.05 vs sham. #p<0.05 vs IP+H-89.
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Fig. 7. Time-course changes in proteasome activity during ischemia/reperfusion period.
Proteasome activity during ischemia/reperfusion period with and without 1P. Myocar-
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Fig. 6 showed the representative proteasome activity and assembly
using the myocardial sample of canine-1 in each groups in Fig. 5. Since
we confirmed that the total amount of proteasome subunits were
same in the control and treated myocardium, the alteration in protein
levels of proteasome subunits in proteasome enriched fractions 17-19
indicate the alternation in the status of proteasome assembly. No
differences were found in protein levels of proteasome subunits in the
saline-treated (LAD-perfused) and the control (LCx-perfused) myo-
cardium (Fig. 6A). Importantly, along with the increase in proteasome
activity, the exogenous and endogenous PKA stimulation by isopro-
terenol, forskolin and IP significantly increased the protein levels of 3
different proteasome subunits in fractions 17-19 in the LAD-perfused
myocardium compared with those in LCx-perfused one (Figs. 6B-D).
Moteover, the selective administration of H-89 blunted the increases
in protein levels of 3 different proteasome subunits and proteasome
activation by IP in fractions 17-19 in the LAD-perfused myocardium
(Fig. 6E). We also confirmed that the same findings were induced by IP
in LCx-perfused myocardium (Fig. 6F). Quantitative analysis also
showed that PKA enhanced proteasome activity and assembly, both of
which were expressed as the summation of proteasome activity and
Rpt5 protein levels in fractions 17-19 in the treatment myocardium
which were divided by that in the same fractions in the control one,
respectively (Figs. 6G, H). These results suggest that PKA stimulation
enhanced 26S proteasome assembly and activity in canine hearts
without alteration of total protein levels of proteasome subunits.

3.6. Time-course changes in proteasome activity during
ischemiafreperfusion period with and without IP

The analysis of consecutive myocardial biopsy samples also
revealed that IP increased the proteasome activity in the LAD-
perfused myocardium in the same dog (Fig. 7), In canine hearts with
IP, the proteasome activities at the post-ischemia and post-reperfu-
sion were significantly lower than that at the pre-ischemia (=just after
IP), but they did not differ from the control. In canine hearts without
IP, the proteasome activity at the post-ischemia was significantly
decreased compared with that at the control or pre-ischemia (Fig. 7).
Myocardial proteasome activity at the post-reperfusion did not differ
from that at the post-ischemia in groups with and without IP (Fig. 7).

3.7, IP blunted the accumulation of ubiquitinated proteins in
ischemia/reperfusion myocardium

To examine the pathophysiological role of proteasome activation
by 1P, we investigated effects of IP on the accumulation of ubiqui-
tinated proteins, which may predict recovery of postischemic cardiac
function (22}, in the ischemiafreperfusion myocardium in canine

model. Western blotting analysis revealed that ubiquitinated proteins
were increased in ischemia/reperfusion myocardium, while their
accumulation was attenuated by IP (Figs. 8A, B). The reduction in
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ischemic preconditioning and epoxomicin (a proteasome inhibitor), respectively.
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accumulated ubiquitinated proteins by [P was blunted by a protea-
some inhibitor, epoxomicin. These results indicate that proteasome
activation by IP alleviated the accumulation of ubiquitinated proteins
in canine ischemia/reperfusion hearts.

3.8, Proteasome inhibition did not alter infarct size in canine hearts with
and without IP

Fig. 8C showed the infarct size for each group in protocol IV, The
intracoronary administration of epoxomicin before ischemia did not
alter infarct size in this canine model. Consistent with the previous
reports [15], we found that IP reduced myocardial infarct size. The
infarct size-limiting effects of IP were not affected by the intraco-
ronary administration of epoxomicin during IP procedure.

4. Discussion

4.1. PKA rapidly enhances phosphorylation, assembly and activity of 265
purified proteasome

Proteasome regulates cellular functions by eliminating ubiquitinated
proteins [1-4]. Proteasome activity is enhanced by an increase in the
levels of proteasome subunit proteins and their assembly, as well as by
the post-translational modification of proteasome subunit through
processes such as phosphorylation/dephosphorylation {9,10]. Recent
studies have shown that PKA can phosphorylate several sites and increase
proteasome activity in vitro [11,12}. Furthermore, although the involve-
ment of PKA is not shown, the phosphorylation of proteasome subunits
alters the status of proteasome assembly [23,24], In the present study, we
firstly showed that PKA activation enhanced the proteasome assembly,
which contributed to the increase in proteasome activity. These findings
suggest that altering proteasome subunit configuration through directed
assembly by PKA may lead to the increase in proteasomne activity,
although we cannot exclude the possibility that PKA-mediated phos-
phorylation of proteasome subunits directly activates proteasome.
Further investigation will be needed to clarify what subunit of
proteasome is phosphorylated by PKA and the direct association between
phosphorylation and assembly.

4.2, PKA stimulation enhances assembly and activity in in vivo canine
hearts without affecting the total protein levels of proteasome subunits

Since proteasome activity is regulated by the multiple factors such
as intracellular ATP levels and post-translational modification of
proteasome [9,10], the in vitro findings of proteasome regulation are
not always applied in the vivo model. Thus, to clarify whether the in
vitro findings were also valid in vivo, we examined whether PKA
stimulation could modulate proteasome assembly and activity in
canine hearts. We employed two maneuvers to activate PKA in vivo,
which were isoproterenol and forskolin as an exogenous stimulant of
PKA [18,25] and IP as an endogenous stimulant [15]. We confirmed
that both exogenous and endogenous stimulation of PKA enhanced
26S proteasome activity at 30 min after administration without
changing the total protein levels of proteasome subunits in in vivo
canine hearts. To our knowledge, the present study is the first to show
the intervention to increase proteasome activity in vivo, suggesting

that the pathophysiological conditions due to proteasome dysfunction

in hearts could be treated.

We have found both 20S (o7 and B5) and 19S (Rpt5) subunit
proteins in fractions where proteasome activity was detected,
indicating that 26S proteasome was indeed eluted in these fractions.
We confirmed that exogenous and endogenous PKA stimulation
increased the protein levels of proteasome subunits in these fractions
without changing total amount of proteasome subunits. These findings
suggest that PKA stimulation enhanced 26S proteasome assembly as
well as activity in in vivo canine hearts,

4.3. Time-course changes in proteasome activity during
ischemiafreperfusion period with and without IP

To examine the time-course changes in proteasome activity during
ischemiafreperfusion period, we performed myocardial biopsy at 4
time-points during ischemia/reperfusion period: at the control, just
before ischemia {pre-ischemia), at the end of 90 min ischemia (post-
ischemia) and 6 h of reperfusion (post-reperfusion). Previous study
indicated that proteasome activity was decreased after ischemia/
reperfusion {8]. Consistent with the previous report, the proteasome
activity at the post-ischemia was significantly decreased compared
with that at the control or pre-ischemia in groups without IP, Mean-
while, the proteasome activity at the post-ischemia was significantly
lower than that at the pre-ischemia (=just after IP), however, it did not
differ from the control in groups with IP (Fig. 7). These findings suggest
that stimuli during ischemic period decreased myocardial proteasome
activity and that proteasome activation by IP during ischemic period
may play an important role in the protein turnover and cellular
functions in ischemia/reperfusion hearts. Myocardial proteasome
activity at the end of reperfusion did not differ from that at the end
of ischemia in groups with and without IP, suggesting that stimuli
during reperfusion did not significantly affect proteasome activity.
Unfortunately, due to the small volume of biopsy samples, we could not
check the time-course changes in the status of proteasome assembly.

4.4, IP blunts the accumulation of ubiquitinated proteins in
ischemiafreperfusion myocardium

Recently, the ubiquitination of proteins is important post-
translational processes that modify the functions of many proteins,
We and others have reported that the accumulation of ubiquitinated
protein in hearts was associated with the progression of cardiac
dysfunction due to apoptosis {7,26). In addition, the injured
myocardium by ischemiafreperfusion is concomitant with a reduced
proteasome activity [8]. Consistent with these previous reports, we
found the decreased proteasome activity and the accumulation of
ubiquitinated proteins in the ischemiafreperfusion myocardium.
Interestingly, we found the less accumulation of ubiquitinated
proteins in ischemia/reperfusion myocardium, which may be
attributable to the 40% increase in proteasome activity by endoge-
nous PKA stimulation. Since the accumulation of ubiquitinated
proteins may predict recovery of postischemic cardiac function
{21}, the removal of damaged proteins due to proteasome activation
by IP may contribute to improve postischemic cardiac function.

4.5. Proteasome inhibition did not alter infarct size in canine hearts with
and without IP

Finally, we examined whether proteasome activation by IP
contributed to its infarct-size limiting effects in the canine model.
The infarct-size limiting effects of IP were not prevented by the
intracoronary administration of epoxomicin, a proteasome inhibitor,
at the dose that reduces proteasome activity by 43%. These findings
suggest that proteasome activation by IP was not involved in the
infarct-size limiting effects of IP in the acute phase, Future studies will
be required about the pathophysiological role of proteasome activa-
tion in the chronic phase after myocardial infarction, Moreover, the
intracoronary administration of epoxomicin itself could not reduce the
infarct size in this model. This data was inconsistent with the previous
ones that the inhibition of proteasome could reduce myocardial
infarct size in rats and pigs [27,28]. The discrepancy between the
previous and our studies might be due to the differences in animals
used, experimental protocols and the drugs used. Further investiga-
tion will be needed to clarify whether reduced proteasome activity is
beneficial or detrimental in the ischemiafreperfusion injury in the
acute phase.
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In conclusion, the present study demonstrated that PKA rapidly
enhances proteasome activity and assembly in the in vivo heart.
Modulation of proteasome activity and assembly might be a
promising new therapeutic approach for cardiovascular diseases.
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