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requires external signals (Benouaiche et al., 2008; Couly
et al., 2002; Le Douarin et al., 2004; Le Douarin and
Dupin, 2003; Vieux-Rochas et al., 2007) and data suggest-
ing that CNCCs are instead endowed with cell-autono-
mous information to generate craniofacial structures
(Schneider and Helms, 2003). As expected, early signals
(Edn1, FGF8, others) appear more conserved in different
animal classes, while subsequent complex regulations
might considerably vary from genome to genome and
could contribute to jaw diversification in vertebrates.

METHODS

Mouse Mutants

Animal procedures were approved by National and
Institutional ethical committees. Mouse strains were
maintained on B6/D2 F1 hybrid genetic background.
Ednl mutant mice were genotyped as indicated (Kurihara
et al., 1994). Mice with targeted disruption of DIx5 or
Dix5;Dlx6 were genotyped as previously reported (Acam-
pora et al.,, 1999; Beverdam et al., 2002; Merlo et al.,
2002b). The genotypes of embryos obtained from mixed
Dix heterozygous parents were determined using the
Dix5-lacZ or the Dlx5;Dlx6-mutant allele-specific forward
primers L-proF and G-proE respectively, and the lacZ
reverse primer, with the following sequence:

o L-proF (DiIx5 allele) 5 CGCAGTAGAAGAACAGC
CAC

o G-proF (Dix5;Dix6-mutant allele) 5'GAGCTATGAC
AGGAGTGTTTG

o KOG RFR2 (lacZ reverse) 5'GGCGATTAAGTTGG
GTAACG

Edn1™" animals were crossbred with Dix5'~ and

Dix5t'7,DInG™*’~ to generate double and triple heterozy-

gotes, and from these Edni*/":Dix5™'" and Edni1’’'™,

DIx5~/7;DIx6™™ animals were obtained.

Skeletal Preparations and In Situ Hybridization

Skeletal staining of E14.5 embryos and newborn animals
(Alcian Blue for E14.5 embryos, Alizarin Red/Alcian Blue
for newborns) was carried out as previously described
(Vieux-Rochas et al., 2007). A minimum of 4, with a maxi-
mum of 10, embryos/newborns per genotype were ana-
lyzed for skeletal phenotypes, per each genotype.

In situ hybridization was done with DIG-labeled RNA
probes corresponding to the antisense sequence of mu-
rine Dix3, Dix5, Dix6, Gsc and Hand2 (all previously
reported: (Charite ef al., 2001; Perera et al., 2004;
Radoja et al., 2007), using the procedure described by
Wilkinson and Nieto (1993). For each probe, at least
three normal and three mutant specimens were exam-
ined. For semi-quantitative comparisons, all the proce-
dures were carried out in the same vials on littermate
embryos; the time of chromogenic reaction was reduced
to avoid signal saturation.

Tissue Collection, RNA Extraction, and RT-gPCR

E9 or E10.5 embryos were genotyped by PCR on DNA
extracted from extra-embryonic tissues. The PAls were dis-
sected under stereomicroscope using fine scissors, further
separated into a proximal and a distal part (see Fig. 5¢).
The anatomic hallmark was the bulge formed at the PA1
end. Sections were carried out vertically in a rostro-caudal
way. Tissues were collected in RNA later (Ambion), pooled
according to the genotype, transferred in Tripure Reagent
(Roche) and processed for RNA extraction as indicated by
the manufacturer. A minimum of three PAls per genotype
were pooled in one sample, two biological replicates were
prepared. Each sample was analyzed in duplicates (techni-
cal replicates). RNA quality, primer efficiency and correct
product size were verified by RTPCR and agarose gel elec-
trophoresis, gPCR was performed with LightCycler
(Roche) using FastStart DNA MasterPLUS SYBR-Green 1
(Roche). Five microliter of cDNA were used in each reac-
tion, standard curve were done using WT ¢DNA with four
calibration points: TQ; 1:3; 1:9; 1:27. Specificity and ab-
sence of primer dimers was controlled by denaturation
curves. GAPDH mRNA was used for normalization. Results
of mutant tissues are expressed as fold-change relative to
the corresponding WT. For each target, the mRNA abun-
dance was calculated relative to GADPH, using the Light-
Cycler Software 3.5.3, based on the general formula A
(A CT). Because of the limited sample size (two replicates)
and the two steps of normalization, the Student £test could
to determine statistical significance could not be done.

GAPDH Sens 5'TGTCAGCAATGCATCCTGCA
GAPDH Antisens 5" TGTATGCAGGGATGATGTTC
Hand2 Sens 5 CCAGCTACATCGCCTACGTC
Hand2 Antisens S'TTGCTGCTCACTGTGCTTTT
WntSa Sens 5’ AGGAGTTCGTGGACGCTAGA
Wnt5a Antisens S’ ACTTCTCCTTGAGGGCATCG
Bmp7 Sens 5'GCGATTTGACAACGAGACCT
Bmp7 Antisens 5'AGGGTCTCCACAGAGAGCTG
DIx3 Sens 5'CGTTTCCAGAAAGCCCAGTA

DIx3 Antisens 5 CGTGGAATGGGAAGATGTGT
DIx5 Sens 5'CTGGCCGCTTTACAGAGAAG

DIx5 Antisens 5 CTGGTGACTGTGGCGAGTTA
DIx6-5F Sens 'CTCAATACCTGGCCCTTCC
DIx6-5R Antisens S’ AGAGCGCTTATTCTGAAACCAT
Meis2 Sens S'ATCTCAAGGCAAGGGGAAGT
Meis2 Antisens 5'GAGTAGGGTGTGGGGTCATC
Pitx1 Sens S'ATCGTCCGACGCTGATCT

Pitx1 Antisens 5'CTTAGCTGGGTCCTCTGCAC
Gsc Sens 5’ ACCGATGAGCAGCTCGAA

Gsc Antisens 5'GCGGTTCTTAAACCAGACCTC
Ednl Sens 5"TCCTTGATGGACAAGGAGTGT
Edn1 Antisens 5'TCGTACCGTATGGACTGGG
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