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9 Reprogramming

To date, several different approaches can be applied to
the reprogramming of somatic cells to a pluripotent state
[144, 145]. Briefly, a somatic cell nucleus transferred to
an unfertilized egg acquires pluripotency and develops
into a blastocyst, allowing cloned ES cells to be estab-
lished. Alternatively, somatic cells can be reprogrammed
by cell-cell hybridization (cell fusion). The disadvantages
of these techniques are the destruction of the embryo (i.e.
ethical problem) and the tetraploid karyotype of the fused
cells (i.e. risk problem in transplantation), respectively.
Because these problems can be avoided using iPS cells,
most recent reprogramming studies have utilized iPS cell
systems.

In iPS induction, Oct3/4. Sox2, Kif4, and Myc (4 factors)
are simultaneously introduced into somatic cells, and the
reprogrammed cells are selected by marker gene expres-
sion and/or morphology [146]. Retroviruses were initially
used to introduce the four factors, but the resulting iPS
cells showed numerous insertions in the chromosome,
raising safety issues. Currently, iPS cells can be established
by a DNA-free method, in which the proteins of the four
factors are tagged with an arginine stretch that confers
membrane permeability [ 147, 148]. The cell types in which
successful reprogramming have been reported include
fibroblasts, primary hepatocytes, and compietely differen-
tiated B lymphocytes, suggesting that all the cell types in
the body can be reprogrammed using the iPS technique
[149-151]. The progression of reprogramming in iPS
induction is relatively slow when compared with other
techniques. In cell fusion, the upregulation of QOct3/4 in
completely differentiated cells is observed within 2 days
[152], whereas in the iPS process this upregulation is first
detectable 16 days after induction [153].

The molecular mechanism of this reprogramming is not
clear at present. The efficiency of iPS establishment is low,
Iess than a few percent of cells treated [154], indicating that
in most cells the reprogramming is aborted even in the
presence of the four factors. The function of Myc for iPS
induction is dispensable, although it enhances the efficiency
of the iPS establishment, probably through repressing the '
expression of differentiated cell-specific genes while pro-
moting binding of Oct3/4, Sox2, and KIf4 (OSK) to their
target genes [75, 155]. In fact, in partially reprogrammed
cells OSE does not bind to the target genes (which are thus
not expressed), suggesting that the cellular environment
ensuring access of these factors to the target genes is rate
limiting in reprogramming [155]. In addition, administra-
tion of chemical inhibitors targeting epigenetic factors that
are associated with transcriptional repression is effective for
enhancing iPS cell induction. These inhibitors include
BIX-01294 (G9a inhibitor) {156], AZA (5-aza-cytidine,

Dnmts inhibitor) [154, 157]. VPA (valproic acid, Hdac
inhibitor) [158], and TSA (trichostatin A, Hdac inhibitor)
[158], and such findings suggest that target accessibility
accompanying the global transcriptional activation seen in
ES cells is critical to the initation of the pluripotency
transcriptional network. During iPS induction, OSK acti-
vity is enhanced by the transcription factors known to
co-regulate with OSK, which include Esitb, Sall4 and Tef3
(via Wnt signaling), since forced expression of those fac-
tors can enhance the efficiency of iPS induction [80, 142,
159-1611.

Collectively, the mechanism of reprogramming in iPS
induction can be hypothesized as follows. Upon introduc-
tion of the four factors, the endogenous genes for the
transcription factors necessary to pluripotency are primed
and gradually induced to express through the regulatory
region targeted by OSK. Subsequently, the transcriptional
circuit begins to self-stabilize via increasing expression of
the endogenous core transcription factors, through a posi-
tive-feedback loop, while repressing the developmentally
regulated genes through recruitment of epigenetic factors
and various protein complexes such as PaflC and NODE.
Once the stable transcriptional network is established/self-
stabilized, exogenous cDNA expression is no longer nec-
essary, and iPS celis indistinguishable from ES cells can be
obtained after seclection based on the expression of
endogenous Oct3/4 and/or Nanog. This outcome is the
result of concerted action by a group of molecules that play
a central role in pluripotency.

10 Conclusion

Pluripotency of ES cells is externally regulated through
several molecules, including Wnt and Lif, whose signaling
pathway activates transcription factor genes such as Kif4
and Nanog in the nucleus. The core transcription factors,
including Oct3/4, Sox2, and KIf4 positively self-regulate
while also repressing developmentally regulated genes by
co-occupation with a variety of protein complexes. Intro-
duction of Oct3/4, Sox2, and KIf4 into the somatic cells
gradually reconstitutes the above transcriptional network
with the aid of Myc and epigenetic modifiers, which might
allow the regulatory regions of the target genes more
access to these transcription factors.
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