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Some forms of acquired TTP (e.g., idiopathic TTP, ticlopi-
dine-induced TTP) are associated with the production of
autoantibodies against ADAMTS13.

Recently, murine models of ADAMTSI13 deficiency
have been developed by gene-targeting technique by two
independent groups [2, 3]. Models resulting from a natu-
rally occurring mutation have also been established [4].
These animal models have proven useful to elucidate
ADAMTS13 functions in vivo and the pathophysiology of
TTP. This review summarizes phenotypic characteristics of
Adamts]3-mutant mice, focusing on roles of ADAMTS13
in thrombosis, endotoxemia and inflammation.

2 The gene structure of mouse Adamts13

In mice, two kinds of Adamtsi3 gene are present in a strain-
specific manner (Fig. 1) [5]. The Adamts13 gene of the 129/
Sv, FVB/NIJ, and CAST/EiJ strains contains 29 exons like
the human ADAMTSI3 gene and encodes ADAMTS13
protein with the same domain constitutions as human
ADAMTS13, designated as ADAMTS13-L. On the other
hand, several strains of mice, including the BALB/c, C3H/He,
C57BL/6, and DBA/2 strains, harbor the insertion of an
intracisternal A-particle (IAP) retrotransposon into intron 23
of the Adamtsi3 gene. The inserted IAP is one of the
endogenous transposable elements present at approximately
2,000 sites in the mouse genome. Like retroviruses, the IAP
contains two long terminal repeats with signals for the ini-
tiation and regulation of transcription and for the polyade-
nylation of transcripts. The IAP insertion into the Adamtsi3
gene produces a cryptic splicing site followed by a premature
in-frame stop codon and a polyadenylation signal derived
from the long terminal repeat. As a result, ADAMTS13
protein that lacks the C-terminal two thrombospondin type 1
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Fig. 1 Gene and protein structure of two kinds of mouse ADAM-
TS13. In some strains of mice (e.g., C57BL/6), an IAP-retrotranspo-
son (IAP) is inserted into intron 23 of the Adamts13 gene (arrow) and
creates a pseudo-exon 24 including a premature stop codon.
ADAMTS13-S with truncated C-terminal domains is mainly
expressed in these strains. S Signal peptide, P propeptide, MP
metalloprotease domain, Dis disintegrin-like domain, 7 (numbered
1-8) thrombospondin type 1 motif domain, Cys cysteine-rich domain,
Sp spacer domain, CUB complement components C1r/Cl s, urchin
epidermal growth factor, and bone morphogenic protein-1 domain

motif (Tspl) domains and two CUB domains, designated as
ADAMTSI13-S, is predominantly expressed in these strains.

Both forms of mouse ADAMTS13 are mainly expressed
in the liver and retain a furin-recognition sequence in the
propeptide domain, a Zn*"-coordinating active site
sequence, the Met residue in a proposed Met-turn, and
structural Ca*" coordination residues in the metalloprotease
domain, and an RGD sequence in the Cys-rich domain. They
show VWF-cleaving activity in vitro but the truncated form
exhibits lower activity than the full-length form for purified
human VWF multimers [6].

3 Generation of ADAMTS13-deficient mice

Mice deficient in ADAMTS13 have been developed by con-
ventional gene-targeting approaches. Banno et al. generated
Adamts13™'~ mice on a 129/Sv genetic background [2].
Disruption of the gene by replacing exons 3-6, encoding the
metalloprotease domain, with a neomycin resistance cassette
results in the absence of ADAMTS13 mRNA in liver. AD-
AMTS|3 activity is not detected in plasma of Adamts13~'~
mice. Analysis of plasma VWF multimer patterns detects
UL-VWF multimers in Adamts/3~'~ mice but not in Adam-
ts13""" or Adamts13*'~ mice, suggesting that the deficiency
of ADAMTS13 alone can support the generation of plasma
UL-VWF multimers. However, Adamts 13/~ mice are viable
with no apparent signs of TTP. Blood platelet counts, plasma
haptoglobin levels and peripheral blood smears are normal in
Adamts13™"~ mice, suggesting a lack of thrombocytopenia
and hemolytic anemia. Although pregnancy is a triggering
event for TTP, Adamts13~'~ females survive pregnancy and
produce viable offspring of normal-sized litters. Renal his-
tology of pregnant Adamts13 ™'~ mice does not show thrombi
deposition or excessive VWF accumulation in microvessels.

Motto et al. [3] have generated AdamtsI13™'~ mice with
elimination of exons 1-6. On a mixed C57BL/6J and
129X1/Sv] genetic background, they are viable without
any TTP-like phenotypes, similar to Adamts13~'~ mice on
a 129/Sv genetic background. Thus, both studies clearly
indicate that ADAMTS13 deficiency alone is not sufficient
to cause TTP-like symptoms in mice. Factors in addition to
ADAMTSI13 deficiency may be necessary for the devel-
opment of TTP in mice.

4 The function of ADAMTS13 in thrombosis

4.1 Increased thrombogenesis in ADAMTS13-deficient
mice

While Adamts13~'~ mice do not spontaneously develop TTP,
they are in prothrombotic state. Banno et al. revealed that
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Fig. 2 Platelet thrombus formation in ADAMTS [3-mutant mice on
collagen surface under flow. a Thrombus formation at 1,000 s™'.
Whole blood samples from Adamts! 3L (Adamis13* ), Adamts135S,
or AdamtsI3™'~ mice containing mepacrine-labeled platelets are
perfused over an acid-insoluble type I collagen-coated surface at a wall
shear rate of 1,000 s~'. The cumulative thrombus volume, analyzed
using a multi-dimensional imaging system, is measured every 0.5 min
until 4 min. Data are the mean £+ SEM of 25 mice for each genotype.
b Thrombus formation at 5,000 s™'. Whole blood samples from
indicated mice are perfused over an acid-insoluble type I collagen-
coated surface at a wall shear rate of 5,000 s™'. The cumulative
thrombus volume is measured every 20 s until 80 s. Blood from two
mice is pooled and used for experiments. Data are the mean £ SEM of
15 samples for each genotype. Asterisks indicate significant differ-
ences at P < 0.05 in comparison to Adamts13“"™ mice

accelerated thrombogenic responses in AdamtsI3™'~ mice
under in vitro flow conditions (Fig. 2). When whole blood is
perfused over a collagen-coated surface in a parallel plate-flow
chamber at wall shear rates of 750-5,000 s~', cumulative
platelet thrombus volume is significantly higher in Adam-
ts13~'~ mice compared to Adamts13*"* mice [2, 4]. In vivo
consequence of a lack of ADAMTS13 was further evaluated
using collagen plus epinephrine infusion model experiments.
In this model, widespread intravascular thrombosis is induced
by intravenous infusion of collagen fibrils in combination with
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epinephrine, and the incorporation of platelets into thrombi is
monitored by the reduction in circulating platelet counts.
Following the infusion of collagen plus epinephrine, reduction
of platelet counts is more severe in AdamtsI3~'~ mice than
in Adamts13""" mice, suggesting that a complete lack of
ADAMTSI13 in mice results in a prothrombotic state.

Using the intravital microscopy, Motto et al. [3] have also
elegantly shown prothrombotic phenotypes of Adamts13 ™'~
mice in vivo. Upon activation of endothelial cells with
secretagogues such as histamine and calcium ionophore
A23187, UL-VWF multimers stored in Weibel-Palade
bodies are released into circulation. It was demonstrated in
vitro that quiescent platelets can rapidly bind to the UL-VWF
multimers resulting in formation of long platelet strings and
ADAMTSI13 can cleave anchored platelet strings on the
surface of endothelium [7]. Following stimulation with his-
tamine or A23187, long-lived platelet strings ranging from
30t0250 pum are observed only in Adamts13~'~ mice. These
strings remain anchored at one end and waved with another
end in the blood stream [3]. In addition, following superfu-
sion with A23187, prolonged platelet adhesion is observed in
Adamts13™'~ mice compared to Adamts13™* mice. Adhe-
sion is absent in stimulated veins of Viwf™'~ mice confirming
that prolonged platelet adhesion depends on VWF [3]. These
results are the direct evidence that ADAMTSI13 regulates
VWEF-mediated platelet adhesion in vivo.

After topical superfusion of A23187, spontaneous platelet
aggregation resulting in microthrombi formation is observed
in the microvessels (25-30 pum) of Adamts13 ~/~ mice [8]. In
Adamts13*"* mice treated identically, small platelet aggre-
gates can be seen attached to the endothelium for 1-2 s, but
thrombi do not form. When arterioles are injured by a FeCl;-
treatment, platelet binding to subendothelium is increased
and thrombus formation is significantly accelerated in
Adamts13™'~ mice compared to Adamts13™F mice [%]. In
another set of FeCls-induced vessel injury in Vwf™'™ mice,
most of the vessels do not occlude in either mice expressing
ADAMTSI13 or lacking ADAMTS13, demonstrating that
ADAMTSI13 deficiency is not sufficient to overcome the
VWEF deficiency in this system [9]. These results support that
ADAMTS13 down-regulates platelet adhesion and aggre-
gation in vivo, and ADAMTSI13 deficiency can provide
enhanced thrombus formation at the site of vascular lesions.
These findings also suggest that VWF, the only relevant
substrate for ADAMTS13, is critical in this model of
thrombus growth under arterial shear conditions.

4.2 TTP-like phenotypes induced by shigatoxin
challenge in ADAMTS13-deficient mice
on the specific genetic background

CASA/RKk strain is a wild-derived mouse strain of Mus
musculus castaneus that exhibits plasma VWF levels 5- to
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10-fold higher than C57BL/6J strain. The major genetic
factor that accounts for this difference is associated with a
gene modifier Mywf2, corresponding to the R2657Q muta-
tion in Vwf gene resulting in increased biosynthesis/secre-
tion of VWF [10]. Additional modifier loci correlating with
increased VWF levels are identified in CASA/Rk strain as
Mvwf3 on chromosome 4 and Mvwf4 on chromosome 13
[10]. The genetic background of CASA/RK strain has been
introduced onto the C57BL/6J and 129/Sv] mixed-back-
ground Adamts13™~ mice by backcrossing with wild-type
CASA mice for two generations. These mice are born in
expected Mendelian distribution, however, mean platelet
counts of the Adamts]3™'~ mice are significantly reduced
compared to Adamts]3'* littermates.

‘When challenged with shigatoxin produced by Shigella
dysenteriae and the Shigatoxigenic group of Escherichia
coli, a subset of this Adamts13~'~ mice show clinical signs
of TTP including thrombocytopenia, hemolytic anemia
with fragmented red blood cells, and VWF-rich thrombi in
multiple organs including brain, heart and kidneys [3].
Shigatoxin is toxic to endothelial cells and known to induce
hemolytic uremic syndrome (HUS) that exhibits similar
clinical and pathologic findings to TTP. Shigatoxin also
stimulates the release of UL-VWF multimers from human
umbilical vein endothelial cells and perfused quiescent
platelets immediately adhere to UL-VWF multimers,
resulting in formation of platelet strings [!1]. Thus, envi-
ronmental factors causing endothelial activation or damage
can trigger TTP in Adamts13~'~ mice. Because shigatoxin
challenge does not evoke TTP-like symptoms in Adam-
ts137'~ mice on the mixed background [3], introduction of
the CASA/Rk genetic background provides susceptibility
to TTP in Adamts13~'~ mice. Of note, there is no corre-
lation between plasma VWF level and degree of shiga-
toxin-induced thrombocytopenia or mortality, suggesting
that TTP-modifier genes that are not associated with
plasma VWF levels may be delivered from a CASA/Rk
genetic background [3].

In human, there is a large variation in the phenotypes of
TTP patients with ADAMTS13 deficiency [12]. Many TTP
patients with congenital ADAMTS13 deficiency have their
first acute episode in the neonatal period or early infancy,
but late-onset cases and asymptomatic carriers in adulthood
have been reported. Patients with identical ADAMTS13
mutations but different clinical courses have been descri-
bed, indicating that ADAMTSI13 deficiency brings a seri-
ous risk but is not a sufficient condition for TTP. Data from
AdamtsI13™'~ mice support this view, and Adamts13~"~
mice can contribute to the identification of additional
genetic and/or environmental TTP triggers.

The only known substrate for ADAMTS13 is VWF. To
investigate the absolute requirement of VWF in shigatoxin-
induced thrombocytopenia, VWF-null allele is crossed

onto the CASA/Adamts13~'~ background [9]. Challenge of
VWEF expressing (Vwf* or Viyf™'™) CASA/Adamts13™'~
mice with shigatoxin results in thrombocytopenia and
mortality. In contrast, littermate CASA/Adamtsl 37" mice
deficient for VWF (Vwf~'7) do not result in thrombocy-
topenia. These results clearly demonstrate that a threshold
of VWF is required for shigatoxin-induced thrombocyto-
penia and provide experimental evidence for the crucial
role of VWF in TTP pathogenesis.

5 Thrombogenic phenotypes in congenic mice
having C-terminal truncated ADAMTS13-S

The specific functions of each of the ADAMTS13 domains
in the VWF-cleavage have been studied using different
types of in vitro assays. These studies have shown an
essential role of the N-terminal domains from the metal-
loprotease to the spacer domains in substrate recognition
and proteolysis [1]. However, physiological significance of
the remaining C-terminal Tspl and CUB domains was not
clearly defined in vivo. Taking advantage of the presence
of the spontaneous IAP-insertional mutation in the Adam-
ts13 gene of some laboratory mouse strains, a congenic
mouse strain (Adamts13%®) that has ADAMTS13-S on
129/Sv genetic background has recently been established
[4]. In this model, C57BL/6-Adamtsl3 gene with IAP
mutation has been applied to 129/Sv mice by ten-genera-
tion backcrossing.

Similar to wild-type 129/Sv mice (Adamts13-™),
Adamts13%® mice do not have UL-VWF multimers
in plasma, in contrast to 129/Sv-genetic background
ADAMTS 13-deficient mice (Adamtsl 37/7) [4]. Hence, the
C-terminal domains of ADAMTS13 are not necessary for
removal of UL-VWF multimers in plasma under physio-
logical conditions. However, parallel plate flow chamber
experiments show that blood from Adamts13%° mice is
more thrombogenic under flow at a high shear rate of
5,000 s~! in compared to blood from Adamts13“"™ mice
(Fig. 2) [4]. In addition, both in vivo thrombus formation in
FeCls-injured arterioles and thrombocytopenia induced by
collagen plus epinephrine challenge are accelerated in
Adamts13%"® mice compared to Adamts13™" mice [4].
These results provide in vivo insights on physiological
significance of the C-terminal domains of ADAMTS13 in
down-regulating thrombus growth.

6 The function of ADAMTSI13 in sepsis
and endotoxemia

Some of the recent studies have found reduced ADAM-
TS13 activity in patients with acute systemic inflammation
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or sepsis, suggesting a role for VWF-ADAMTSI13 axis in
sepsis [13]. To investigate the functions of VWF and
ADAMTSI13 in sepsis and endotoxemia, two different
groups have done independent studies using two different
models; one by LPS-induced sepsis [¢] and the other by
cecum ligature and puncture (CLP) in mice [14]. When
Vwf* or Vwf '~ mice are challenged with LPS, there is
no significant difference in LPS-induced thrombocytopenia
or mortality up to 4 days of observation period [9]. In
contrast, in CLP-induced sepsis model there is a decrease
in mortality of VWEF-deficient mice compared to wild-type
mice, suggesting important role for VWF secretion in
sepsis-induced mortality [14]. The different finding in two
independent studies illustrates the importance of different
models used for sepsis.

There is also no significant difference in LPS-induced
mortality in VWF expressing mice that are either lacking or
expressing ADAMTS13. Additionally, mice deficient for
VWF and ADAMTS13 also exhibited similar thrombocy-
topenia and mortality. These observations in mice suggest
that neither absolute VWF deficiency nor ADAMTS13 has
effect on LPS-induced sepsis [9]. These findings are in
agreement with the report that complete deficiency of
ADAMTSI13 in mice is not associated with excess mor-
tality in CLP-induced sepsis [!4]. However, they have
found a decrease in ADAMTS13 activity in wild-type mice
after CLP-induced sepsis, similar to that reported previ-
ously in human sepsis [13]. However, deficiency of
ADAMTS13 in mouse does not modulate CLP-induced
sepsis. The decrease in ADAMTS13 activity in CLP-induced
sepsis is most probably due to consumption of ADAMTS13
to VWF released in large amounts.

7 The function of ADAMTS13 in inflammation

Recently, Chauhan and colleagues [i5] have investigated
the role of ADAMTSI3 and its substrate VWF in
inflammation by studying leukocyte rolling and adhesion
in AdamtsI3T/VwftT, Adamts1377IVwftt, Adamts-
I3 /vwf™= and  AdamtsI3™7/Vwf™" mice using
intravital microscopy. They have shown that ADAMTS13-
deficiency in mice results in higher numbers of leukocytes
rolling on the unstimulated endothelium compared to wild-
type. The increase in the leukocyte rolling observed in
Adamts137'~ mice is VWF-dependent.

There is also an increase in endothelial P-selectin
expression, soluble P-selectin and VWF in plasma of
Adamts13™'~ mice. These observations raise the question
how ADAMTSI3 deficiency results in increased plasma
VWEF. One of the reasons could be that ADAMTSI3
deficiency results in slower clearance of UL-VWF multi-
mers from the circulation and thus elevated VWF levels.
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Fig. 3 Increased leukocyte adhesion in the TNF «-stimulated mes-
enteric venules of ADAMTS3-deficient mice. Mice are treated with
the inflammatory cytokine TNF-a for 3.5 h before intravital micros-
copy. A single mesenteric venule (25-30 pm diameter) is studied per
mouse. a Representative images are shown. Arrows indicate leuko-
cytes adhering to inflamed endothelium. b Quantification of the
adherent leukocytes. The number of adherent lenkocytes is markedly
increased in the microvenules of AdamtsI3™'~ mice compared to
Adamts13™"" mice. In contrast, the number of leukocytes adhering in
venules of Adamtsi3™'~/Vwf™™ mice is similar to Adamts13*t/
Viwf~'~ mice, suggesting that VWEF plays a role in increased leukocyte
adhesion in AdamtsI3™"" vessels. Data represent the mean + SEM.
NS, P> 0.05

Alternatively, UL-VWF multimers activate platelets,
which in turn may activate the endothelium. Previously, it
has been shown that activated platelets, by binding to
leukocytes, promote Weibel-Palade bodies release and
stimulate leukocyte rolling [16]. Interestingly, depletion of
platelets in AdamtsI3~'~ mice results in normalization of
leukocyte rolling as compared to wild-type mice. This
indicates that platelets, likely activated by UL-VWF either
in circulation or directly on endothelium, stimulate Weibel-
Palade body’s secretion. Moreover, when AdamtsI3™'~
mice veins are stimulated with histamine, a secretagogue of
Weibel-Palade bodies, in order to release UL-VWF mul-
timers, leukocyte rolling velocity is slower when compared
to wild-type mice veins where platelet strings do not form
[15]. These in vivo findings are in agreement with previous
in vitro studies where it was shown that platelets bound to
endothelial UL-VWF could support leukocyte tethering
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and rolling and that VWF acts as a ligand for leukocyte
receptors PSGL-1 and 2 integrin [17].

Inflammatory cytokines TNF-o¢ and IL-8 have been
shown to release UL-VWF from human umbilical vein
endothelial cells in vitro [18]. When Adamis13™'~ mice are
challenged with TNF-o, the number of adherent leukocytes
increases approximately twofold in activated venules of
Adamts13™'~ mice when compared to wild-type mice [15].
This process is dependent on VWF (Fig. 3). In addition,
ADAMTSI13 deficiency in mouse results in increased
extravasation of neutrophils in both thioglycollate-induced
peritonitis and wound healing [15]. These in vitro and in
vivo studies suggest that UL-VWF multimers released
from Weibel-Palade bodies by many stimuli including
hypoxia, changes in shear stress, and inflammatory cyto-
kines could accelerate inflammatory responses in diseases
such as atherosclerosis and stroke when not digested by
ADAMTSI13,

The results from the Adamts13~'~ mice suggest that, by
cleaving hyperactive UL-VWF multimers, ADAMTS13
not only down-regulates thrombosis but also inflammation.
The studies reported here may provide new insights on the
possible uses of ADAMTS13 as a therapeutic agent.
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The neocortex and the hippocampus comprise several specific layers containing distinct neurons that
originate from progenitors at specific development times, under the control of an adequate cell-division
patterning mechanism. Although many molecules are known to regulate this cell-division patterning process,
its details are not well understood. Here, we show that, in the developing cerebral cortex, the RP58
transcription repressor protein was expressed both in postmitotic glutamatergic projection neurons and in
Keywords: their progenitor cells, but not in GABAergic interneurons. Targeted deletion of the RP58 gene led to dysplasia
RP58 of the neocortex and of the hippocampus, reduction of the number of mature cortical neurons, and defects of
laminar organization, which reflect abnormal neuronal migration within the cortical plate. We demonstrate
an impairment of the cell-division patterning during the late embryonic stage and an enhancement of
apoptosis of the postmitotic neurons in the RP58-deficient cortex. These results suggest that RP58 controls
cell division of progenitor cells and regulates the survival of postmitotic cortical neurons.

© 2009 Elsevier Inc. All rights reserved.
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(CP). Late-born neurons then migrate past the early-born neurons to
form the upper layers of the CP, beneath the MZ. In contrast,
GABAergic neurons and Cajal-Retzius cells are generated from
progenitor cells outside the neocortex, in the ganglion eminence

Introduction

Glutamatergic cortical neurons are generated from progenitor cells
in the cortical germinal zone and migrate radially in an inside-to-

outside gradient. The earliest neurons form the preplate (together
with the Cajal-Retzius cells) and the neurons born subsequently
migrate past the earliest-born neurons to intercalate within the
preplate, divide it into the marginal zone (MZ; layer 1) and the
subplate (layer 6b), and form the lower layers of the cortical plate
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and in the cortical hem, respectively, and migrate tangentially into the
neocortex (Bayer and Altman, 1991; Allendoerfer and Shatz, 1994;
Molyneaux et al., 2007). The radial glial progenitors (RGPs) in the
ventricular zone (VZ) give rise to cortical neurons, while the
progenitor cells in the subventricular zone (SVZ) produce a sub-
stantial number of upper-layer neurons (Smart and McSherry, 1982,
Tarabykin et al, 2001, Sugitani et al, 2002). Some of the SVZ
progenitor cells are intermediate progenitors (IMPs), which originate
from the VZ and produce neurons by dividing limited times (Noctor et
al., 2004; Haubensak et al, 2004; Miyata et al, 2004). In the
hippocampus, pyramidal neurons of the Cornu Ammonis (CA) are
generated from the VZ of the hippocampus, whereas the precursors of
the granular neurons of the dentate gyrus (DG) originate in the
neuroepithelium near the cortical hem, migrate towards the anlage of
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the DG, continue to divide, and undergo further migration to the
granule layer of the DG (Forster et al., 2006; Li and Pleasure 2007).

These cortical progenitor cells generate a vast diversity of
terminally differentiated neuronal phenotypes. The balance between
exit from and reentry into the cell cycle is important for the formation
of these cell types at appropriate times; however, the molecular
mechanism underlying this regulation is not completely understood
(Dehay and Kennedy, 2007).

We have previously described a novel DNA binding protein, RP58
(also known as ZNF238), which shares homology with the POZ
domain of a number of zinc finger (ZF) proteins, which are termed
POZ-ZF proteins (Aoki et al., 1998). RP58 exhibits a sequence-specific
transcriptional repressor activity (Aoki et al., 1998) and probably acts
by binding to the DNA methyltransferase Dnmt3a, which associates
with histone deacetylase and acts as a corepressor (Fuks et al., 2001).
POZ-ZFs are important for many biological pracesses, which include
B-cell fate determination, DNA damage responses, cell-cycle progres-
sion, and a multitude of developmental events (Kelly and Daniel,
2006). Among the POZ-ZF proteins, the promyelocytic leukemia zinc
finger {PLZF) is essential for stem cell self renewal in the murine testis
(Buaas et al., 2004; Costoya et al. 2004), Miz1 plays an essential role in
the control of the exit from the cell cycle during the hair cycle
(Gebhardt et al., 2007), and ZENON is involved in the maintenance of
panneuronal features and/or in the survival of mature neurons (Kiefer
et al., 2005).

We demonstrated that RP58 transcripts are highly expressed in the
cerebral cortex in the embryonic mouse brain (Ohtaka-Maruyama et
al., 2007). In addition, RP58 is expressed weakly in the VZ and
intensely in the SVZ, intermediate zone (1Z), and CP in the embryonic
cortex, which suggests that RP58 is important for the early develop-
ment of cortical neurons. In adult cerebral cortex, the expression of the
RP58 transcript is maintained in glutamatergic neurons, but not in
GABAergic neurons.

In the present study, we investigated the role of RP58 in the
development of the cerebral cortex by generating and analyzing RP58-
deficient mice. Our results demonstrate that RP58 deficiency causes
enhanced apoptosis and impairs the cell-division patterning in the VZ
during late development, which suggests that RP58 is a novel regulator
of glutamatergic neuron survival and of progenitor cell division.

Materials and methods
Generation of RP58-deficient mice

Similarly to what is observed for the human RP58 gene, the
sequence of the mouse RP58 gene that encodes the functional protein
is uninterrupted over its entire 4.2 kb length (Meng et al.,, 2000). A
gene-targeting construct was prepared by deletion of the entire exon
(5.4 kb). The resulting RP58 targeting vector (Supplementary Fig. 1A),
which was constructed from a mouse strain 129 library (Stratagene)
and consisted of a 4.2 kb homology arm derived from the 5’ end of the
exon, a PGK promoter-neomycin expression cassette, and a 2.7 kb
homology arm from the 3' end of the exon, was linearized with Xbal
and introduced into GSI ES cells (derived from the 129/Sv] mouse
strain) by electroporation. Colonies that survived after selection were
picked and expanded for DNA analysis. Targeted ES cells were injected
into the blastocoel cavity of C57/BL6 embryos using a piezo-driven
micromanipulator (PrimeTech, Tsuchiura, Japan) to generate chimeric
mice, which were then crossed with C57/BL6 females to obtain
heterozygous RP58"/~ mutant animals. These mice were, in turn,
interbred to produce homozygous RP58~/~ mice at the expected
Mendelian frequency.

Southern blot analysis of genomic DNA isolated from the tails of
embryonic day (E) 18.5 fetuses confirmed the homologous integration
of the target vector (Supplementary Fig. 1B), which resulted in the
replacement of the entire RP58 exon (5.4 kb) with the neomycin

resistance gene. Northern blot analysis of total RNA extracted from
genotyped embryonic brains (Supplementary Fig. 1C) showed that the
RP58 transcript was present only in wild-type and heterozygous
embryos. In homozygous mutant embryos, no RP58 transcript of any
size was observed. Embryonic brain extracts were incubated with
anti-RP58-conjugated Sepharose 4B beads. The beads were washed
extensively and boiled in SDS sample buffer. After centrifugation, the
supernatant was analyzed for the presence of RP58 by immunoblot-
ting, as described previously (Ishida et al., 2002). To confirm the
specificity of the interactions between the antigen and the antibody,
the peptide (CLPTVRDWTLEDSSQELWK) used for the generation of
the anti-RP58 antibody was added during the immunoprecipitation
experiment. Antibodies specific to RP58 detected the protein in brain
extracts from wild-type, but not homozygous mutant, embryos
(Supplementary Fig. 1D). The day after the mating was designated
EO0.5.

Immunohistochemistry

Heads of embryos were removed, fixed in Bodian's fixative (3.7%
formaldehyde, 80% ethanol), embedded in paraffin, and sectioned at
an 8 pm thickness. A few embryos were perfused with 4%
paraformaldehyde and sectioned using a cryostat (10-25 um thick-
ness). In most cases, the antigens in these sections were reactivated by
heating in 10 mM citrate buffer (adjusted to pH 6.0) using a
microwave or an autoclave.

We used the following antibodies: rabbit anti-mouse RP58 (1:500,
Takahashi et al,, 2008), mouse anti-reelin (1:200, Chemicon), rabbit
anti-MAP2 (1:500, Chemicon), rabbit anti-Tbr1 (1:500, Chemicon),
rabbit anti-Prox1 (1:1000, Covance), chicken anti-Tuj1 (1:200,
Chemicon), mouse anti-BrdU (1:50, Becton-Dickinson), rat anti-
BrdU (1:200, Abcam), mouse anti-o-synuclein, mouse anti-B-synu-
clein (1:200, BD Transduction Lab), rabbit anti-Pax6 (1:200, Chemi-
con), mouse anti-PCNA (1:200, Chemicon), mouse anti-nestin (1:200,
Rat-401), mouse anti-NeuN (1:100, Chemicon), mouse anti-Ki67
(1:100, Novocastra), rabbit anti-Ki67 (1:500, Novocastra), goat anti-
NeuroD (1:100, Santa Cruz Biotechnology), guinea pig anti-DIx2
(1:1000, gift from Dr. Yoshikawa; Kuwajima et al., 2006), mouse anti-
Neurogenin2 (1:5, gift from Dr. Anderson), rabbit anti-phosphohis-
tone H3 (P-H3) (1: 200, Upstate), rabbit anti-neurofilament (1:500,
Fukuda et al, 1997), rabbit anti-ssDNA {1:400, DAKO), rabbit anti-
active caspase 3 (1:400, R&D), and goat anti-Unc5d (1:200, R&D).

Anti-IgG antibodies conjugated to biotin (Vector, 1:200), Alexa
488, Alexa 546, Alexa 555, Cy3, or Cy5 (1:500) (Molecular Probes or
Jackson Laboratories) were used as secondary antibodies and the ABC
kit (Vector) or the TSA Fluorescence System (PerkinElmer) were used
to detect biotin. After nuclear staining with DAPI and Topro3, the
sections were mounted with PermaFluor (Immunon) or were
dehydrated and mounted with Entellan Neu (Merk). A laser-scanning
confocal microscope was used to image fluorescence signals.

To perform RP58/Pax6 and RP58/Tbr2 double labeling using rabbit
polyclonal antibodies, we used the TSA or TSA Plus Fluorescence
System (PerkinElmer), according to Friocourt et al. (2008). Sections
were first incubated with diluted anti-RP58 antibody (1:8000), for the
TSA Plus Fluorescence System, and were then incubated with rabbit
anti-Pax6 antibody (1:200), anti-Thr2 antibody (1:200), or no
antibody (negative control). For RP58/P-H3 double labeling, sections
were first incubated with anti-RP58 antibody (1:500), for the TSA
Fluorescence System, and were then incubated with rabbit anti-P-H3
antibody (1:200). For Pax6/Tbr2 double labeling, sections were first
incubated with diluted anti-Pax6 antibody (1:30000), for the TSA Plus
Fluorescence System, and were then incubated with rabbit anti-Thr2
antibody (1:200). For Pax6/Tbr2/Unc6d triple labeling, sections were
first incubated with diluted anti-Pax6 antibody (1:15000), for the TSA
Plus Fluorescence System, and were then incubated with rabbit anti-
Thr2 (1:200) and anti-Uncd5 (1:200) antibodies.
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RNA in situ hybridization

We used single-stranded digoxigenin (DIG)-UTP-labeled RNA
probes generated from the mouse RP58 cDNA (approximately
1.6 kb); mouse ER81 (a gift from Dr. Jessell; Arber et al, 2003);
mouse RORB (a gift from Dr. McConnell; Weimann et al., 1999); Svet1
(a gift from Dr. Tarabykin; Tarabykin et al., 2001); NT3 (a gift from Dr.
Aizawa; Shinozaki et al,, 2004); rat SCIP (a gift from Dr. Lemke), mouse
o-crystalline (a gift from Dr. Funatsu; Funatsu et al,, 2004), rat KAT (a
gift from Dr. Boulter; Better et al, 1990), for mouse Tbrl, mouse
mSorLA: mouse CTGF, and mouse Tailless (gifts from Drs. Y Sugitani and
T Noda; Sugitani et al., 2002); HES5 c¢DNA (a gift from Dr. Guillemot;
Cau et al., 2000). Some probes were hydrolyzed to a length of about
200-500 bp. RNA in situ hybridization was performed on Bodian's-
fixed paraffin sections, according to the method of Ohtaka-Maruyama
et al. (2007), and on 4% paraformaldehyde-fixed frozen sections,
according to the method of Sugitani et al. (2002). In some cases, the
counterstaining was performed using Nuclear Fast Red (Kernechtrot).

BrdU- and IdU-labeling experiments

Bromodeoxyuridine (BrdU) or iododeoxyuridine (IdU) (50 mg/kg
of body weight) were injected intraperitoneally into pregnant mice at
various developmental stages. To estimate the rates of cell-cycle exit,
randomly selected BrdU-poesitive cells (about 50 cells) were examined
for PCNA or Pax6 immunoreactivity 24 h after the incorporation of
BrdU. In particular, the rates of cell-cycle exit were estimated in the
lower region (which corresponded to the VZ) and in the upper region
(which corresponded to the SVZ and 1Z) of E16.5 embryos in which
BrdU was incorporated on E15.5. The total number of BrdU-positive
cells was counted and examined for Pax6 immunoreactivity (which
corresponds to 0.09 mm of the ventricular surface). The SVZ was
identified by staining with Unc5d/Svetl.

To estimate the production of progenitor cells, randomly selected
Ki67-positive cells were examined for BrdU immunoreactivity 0.5 h
after the incorporation of BrdU.

The estimation of cell-cycle kinetics was performed according to
Martynoga et al. (2005). Peeys Was estimated by counting the total
number of cells in the prospective VZ within the sampling area.

TUNEL assay

Apoptosis was detected using a TUNEL assay kit (Dead End
Fluorometric TUNEL system, Promega). Deparaffinized sections were
treated with proteinase K (20 pg/ml) in 100 mM Tris-Cl and 50 mM
EDTA (pH=8.0) for 15 min at room temperature (RT), followed by
treatment with FITC-nucleotide containing TdT or H,0 (as a negative
control), and counterstaining using propidium iodide.

Results
Targeted disruption of the RP58 gene

To study the role of RP58 in the development of the central nervous
systemn, we disrupted the RP58 gene in embryonic stem cells using the
target vector (see Supplementary Fig. 1A and “Materials and methods”
section). Heterozygous (RPS8%/~) mice were phenotypically indis-
tinguishable from their wild-type littermates, whereas all homo-
zygous (RP58/~) mice, which were generated from intercrosses of
the heterozygotes, died shortly after birth. The cause of the death
remains unknown and is currently under investigation.

Hypoplasia of the hippocampus and neocortex in RP58-deficient mice

Because RP58 transcripts are expressed abundantly in the brain of
the wild-type mice (RP58"/T; Ohtaka-Maruyama et al, 2007) and

RP58~ '~ mice die shortly after birth, we performed histological
analyses of brains isolated from null, heterozygous, and wild-type
animals at neonatal and embryonic stages. We observed hypoplasia of
the neocortex and hippocampus in RP58~/~ mice, whereas the brains
of RP58™/~ mice appeared to be normal (Fig. 1; Supplementary Figs.
1E-M). Therefore, we compared RPS8™/~ mice with either wild-type
or RP58%/~ mice in subsequent experiments. The neocortex of
RP58~/~ mice displayed a reduced thickness and its layers were
disorganized. Furthermore, the VZ appeared to expand radially in the
mutant cortex (asterisk in Fig. 1). In the mutant hippocampus, the
pyramidal cell layer and the typical V-shaped granule cell layer of the DG
were not evident (Fig. 1). Additionally, the cerebellum of RP58~/~ mice
lacked the typical foliation observed in wild-type and heterozygous
animals (see Supplementary Figs. 1K-M). In the present study, we
focused our analysis on the neocortex and hippocampus of mutant mice.

Reduced numbers of mature neurons in the mutant neocortex
and hippocampus

Double staining of the neocortex with MAP2 and B-IlI-Tubulin
(Tuj1) showed that postmitotic neurons were present in the
mutant neocortex; however, the subplate layer was incompletely
formed in the medial region of the mutant neocortex (arrowheads
in Supplementary Figs. 2A-B").

To further characterize this abnormality of the neocortex, we
examined the expression of various layer markers. The number of E19
subplate neurons positive for the connective tissue growth factor
(CTGF), which labels maturing subplate neurons in layer 6b
(Friedrichsen et al, 2003; Heuer et al, 2003), was drastically
decreased in the mutant neocortex when compared with the wild
type (Figs. 2A and B). To detect the subplate neurons at the earlier
stage, we examined the staining for B-synuclein, which is an inhibitor

Fig. 1. Defects in brain formation in RP58~/~ mice at PQ. Nissl-stained coronal sections
of forebrains from (A) wild-type (+/+) and (B) RP58-deficient (—/—) mice showed
cytoarchitectural abnormalities in the neocortex and hippocampus of the mutant
animal. In the mutant, the thickness of the neocortex was reduced and the ventricular
zone (VZ) (marked with an asterisk) was expanded. Cresyl violet staining. Scale bar,
1 mm (A, B).



H. Okado et al. / Developmental Biology 331 (2009) 140-151 143

Neocortex
CTGF

Reelin/Thr1 ER81

++

neocortex
BrdU

BrdU/ IdU+BrdU

Hippocampus
Reslin/Tbr1

RoR 3 mSorLA

§i

Dix2

Prox1/NeuroD

NeuroD/ Tbr

Fig. 2. Dysplasia of the neocortex and hippocampus in RP587/~ mice. (A-L) The disorganized laminar structures of the neocortex and hippocampus of the mutant were
demonstrated by various layer-specific rarkers at E19 (A and B) or E18.5 (C-L) in the wild-type (/) and RP58-deficient (—/—) neocortex. (A and B) CTGF-labeled subplate
neurons, (C and D) reelin-labeled layer 1 Cajal-Retzius neurons and Tbr1-labeled layer 6 cortical neurons, (E and F) ER81-labeled layer 5 cortical neurons, (G and H) RoRp3-labeled
layer 4 cortical neurons, (I and J) mSorLA-labeled layer 2/3 cortical neurons, and (K and L) DIx2-labeled GABAergic neurons. In the mutant neocortex, the subplate neurons were
sharply reduced in number (A and B), Cajal-Retzius neurons were normal (C and D), Tbr1-positive cells were shifted more superficiaily and were more widely scattered when
compared with the wild type (C and D), ER81- and mSorLA-positive cells were located diffusely and in reduced numbers {arrows in F and ]), the expression level of RoRp was
dramatically reduced (G and H), and Dix1-positive cells were roughly normal {K and L). Scale bar, 0.1 mm (A-L).

of the aggregation of a-synuclein (Hashimoto et al. 2001), as a marker
for subplate neurons. Since B-synuclein is mostly detected in the
deepest region of layer 6, identified with Tbr1 immunoreactivity, -
synuclein-positive cells correspond to the subplate neurons in the
wild-type cortex at E16.5 (arrows in Supplementary Figs. 2E-E"). In
mutant neocortices, the number of subplate neurons was severely
reduced and a part of the surviving subplate neurons was displaced
superficially at E16.5 (Supplementary Figs. 2C-F). In addition, in the
RP58 mutants, a fraction of the neurofilament-positive thalamocor-
tical fibers (Kawano et al., 1999), which use subplate neurons for their
pathfinding, abnormally projected towards the surface of the
neocortex (Fig. 3).

Reelin-positive Cajal-Retzius neurons (Ogawa et al,, 1995) devel-
oped normally in layer 1 in the E18.5 mutant (Figs. 2Cand D, green). In
the E18.5 mutant cortex, the majority of the Tbr1-positive cells was
located in the deeper part of cortical plate (Fig. 2C; Supplementary Fig.
4E); however, many of these cells were also detected diffusely
throughout the CP (Fig. 2D; Supplementary Fig. 3F). ER81, which is a
layer 5 marker {Sugitani et al., 2002), was expressed in many cells in
the wild-type CP (Fig. 2E); in contrast, this marker was expressed in
only a few cells in the E18.5 mutant CP (arrows in Fig. 2F). Cells in the

mutant cortex were only faint positive for RORB, which labels layer 4
neurons {Weimann et al.,, 1999) (Figs. 2G and H). mSorLA labels layer
2/3 neurons (Fig. 21, Sugitani et al., 2002; Hermans-Borgmeyer et al,,
1998); mSorLA-positive cells in the mutant cortex were diffusely
distributed and dramatically reduced in number (arrows in Fig. 2]). In
contrast, GABA-positive (data not shown) and DIx2-positive (Figs. 2K
and L) inhibitory interneurons of the mutant neocortex did not display
any distinct abnormalities, although their distribution pattern
appeared slightly disturbed. These results suggest that mature
subplate neurons and mature CP neurons, which form the future
cortical layers 2-5, were reduced in number in RP58™/~ mice.

The diffuse distribution of Tbr1-positive and other cortical neurons
in the mutant cortex raised the possibility that the RP58 deficiency
impaired the inside-out layer formation. To examine this possibility,
we performed double labeling by injecting iododeoxyuridine (IdU) at
E12.5 and 5-bromo-2-deoxyuridine (BrdU) at E14.5, followed by
examination of the brains at E19 (Figs. 2M-N’). Most late-born cortical
neurons (Figs. 2M’ and N’, yellow) crossed over early-born cells (Figs.
2M’ and N', red) in the wild-type cortex, while many late-born
neurons were abnormally located beneath early-born cells in the
mutant cortex. The defects of laminar organization observed in the
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Fig. 3. Abnormality of the thalamocortical pathway formation in the RP58-deficent
cortex. Coronal sections from E18.5 wild-type (A, A’) and RP58™/~ (B, B*} brains stained
with anti-neurofilament (NF) antibodies and TOPRO3 (nuclear stain) (A", B'). In the wild
type, thalamocortical axons that were immunoreactive for neurcfilament ran along the
subplate beneath the cortical plate (arrowheads in A), while in the RP58™/~ brain,
some labeled axons ran along the subplate beneath the cortical plate (arrowheads in B),
whereas the other axons invaded the cortical plate towards the pial surface (arrows in
B). Scale bar, 0.1 mm (A-B').

RP58 mutant cortices suggest that RP58 may play a role in neuronal
positioning or migration.

The RP58-deficient hippocampus was reduced in size and had no
identifiable CA pyramidal layer or DG granular layer in sections
stained with Niss! (Fig. 1), NeuN (Supplementary Figs. 2G" and H’), or
MAP2 and Tuj1 double stain (see Supplementary Figs. 2A-B").

Cajal-Retzius cells play an important role in the normal layer
formation of the hippocampus. The Tbrl/reelin double staining
revealed that Cajal-Retzius cells (Nakajima et al, 1997), some of
which were Tbr1-positive, were present in the mutant (Fig. 2P). The
hippocampal fissure, which is characterized by Reelin-positive cells,
was poorly developed (asterisk in Figs. 20 and P). In the developing
p73~/~ hippocampus, the most striking abnormality is the absence of
the hippocampal fissure, which suggests a role for p73 in cortical
folding (Meyer et al, 2004). Therefore, p73 and Reelin expression
were examined at the cortical hem (see Supplementary Fig. 4), which
revealed that the expression of p73 and reelin was both normal in
RP58-deficient cortical hem. We next examined the CA and DG. The

KA1

E185 «-Crystallin

+/+

pan-hippocampal plate marker, a-crystalline (Funatsu et al,, 2004),
was expressed in a more dorsal cortical region in the mutant than in
the wild type (arrows in Figs. 4A and E). Since o-crystalline is also
expressed in the neocortex as well as in the hippocampus, we used
another hippocampal marker, a-synuclein, together with the DG
marker, Prox1. We found that a-synuclein was expressed in the
hippocampal region and its staining did not overlap with the Prox1-
positive region in the wild-type brain. In contrast, aithough o-
synuclein expression was detected in the more dorsal cortical region
in the mutant brain, it did not overlap with the Prox1-positive dentate
region (see Supplementary Figs. 5A-B™). These results suggested that
the hippocampus was formed in a more dorsal region in the mutant,
probably because of an insufficiency in hippocampal folding; however,
the basic positional relationship between the CA and DG remained
intact.

Furthermore, we examined whether specific hippocampal sub-
fields were generated in the RP58-deficient mice. The expression of
the CA3-specific marker KA1 (Grik4) (Bettler et al,, 1990) was almost
undetectable (an arrow in Figs. 4B and F). The CA1-specific marker
SCIP (Pou3f1) (Frantz et al., 1994; arrows in Fig. 3C) was not detected
(Fig. 4G). NT3, which is expressed in the cingulate neopallium
(Friedman et al., 1991; Lee et al,, 2000; an arrow in Fig. 4D), was also
not detected in the mutant (Fig. 4H). To examine the DG, we used
Prox1 and NeuroD (Figs. 2Q-T), which are markers of immature
dentate granule cells (Pleasure et al,, 2000; Galichet et al, 2008). In
the wild type, Prox1- and NeuroD-positive cells formed a V-shaped
structure, which is typical of the DG, whereas in the mutant they
formed an inverted V-shaped structure {arrowhead in Figs. 20-T). The
DG region that was positive for Prox1 appeared to extend throughout
the RP58 mutant hippocampus (Supplementary Fig. 6), suggesting
that loss of RP58 function may result in an increase in the number of
Prox1-positive dentate granule cells. It is reported that Thrl is
expressed after onset of NeuroD expression (Hevner et al, 2006).
Tbr1 was expressed in many NeuroD-positive dentate granule cells in
the wild type, whereas its expression was severely reduced in the
mutant {Figs. 2S and T), suggesting that the production of mature
neurons is impaired in the mutant dentate granule cells. These results
suggest that, although major areas of the hippocampus were probably
retained in the mutant, the CA1, CA3 fields, the cingulate cortex, and
DG were not, indicating that the hippocampal neurons had matura-
tion defects like those seen in the neocortex.

Expression pattern of RP58 protein

The abnormality of neurons generated in the mutant cortex
indicates that RP58 functions during the development of the neocortex

3CIP NT3

Fig. 4. Field specification impairment in the hippocampus of RP58-deficient E18.5 mice. o-crystalline, which is a pan-hippocampal marker, was detected in the hippocampal region of
the wild-type brain (arrows in A), whereas it was detected in the more dorsal region in the RP58-deficient brain (arrows in E). The expression of the CA3-specific marker KA1 (an arrow
in B) was almost not detected in the mutant brain (an arrow in F). In the wild-type brain, SCIP was expressed in CA1 sector of the hippocampus (arrows in C) and in the adjacent cortex,
while it was not detected in the mutant brain (G). NT3, which is a cingulate neopallium marker (an arrow in D), was not detected in the mutant (H). Scale bar, 1 mm (A-H).
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and of the hippocampus. To further understand the function of RP58,
we examined the expression patterns of the RP58 protein using an
RP58-specifc antibody (Takahashi et al,, 2008). The immunostaining
pattern obtained was almost identical to that of the RP58 mRNA in situ
hybridization pattern (Figs. 5A and B). The specificity of the RP58
antibody was confirmed by immunostaining of an RP58~/~ brain (Fig.
5C). Double staining using the nuclear marker TOPR3 showed that
RP58 was localized in the nucleus and that it was absent from the
cytoplasm (Supplementary Figs. 7B and B™). At E12.5, RP58 was
detected in preplate neurons and in some cells in the VZ (arrows in Fig.
5D). At E16.5, RP58 was present in the CP, IZ, SVZ, and in some cells in
the VZ {arrows in Figs. 5E and E’}, but not in cells of the MZ (Fig. 5E).
Double staining with B-synuclein or Reelin indicated that RP58 was
expressed in subplate neurons (arrows in Fig. 5F), but not in Cajal-
Retzius cells (Fig. 5G; Supplementary Fig. 8). RP58 was not detected in
DIx2-positive cells {arrows in Fig. 51), which correspond to GABAergic
neurons. In the E16.5 hippocampus, RP58 was detected in most
developing neurons and in some progenitor cells in the VZ (Fig. 5]). At
E18.5, RP58 was detected in migrating neurons, pyramidal layer cells of
the CA, and dentate granule cells (Fig. 5K), which were identified by
immunoreactivity for NeuroD (Figs. 5L and L'). RP58 was not detected
in reelin-positive Cajal-Retzius cells in the hippocampal fissure
(asterisk in Fig. 5K). Therefore, RP58 is expressed in migrating and

RP58 mRNA RP58/ TOPROS

RPS58 protein RP58/ TOPRO3

ST

RP58/ TOPRO3

postmigratory glutamatergic neurons, which are impaired in the
mutant, whereas RP58 is not expressed in the Cajal-Retzius cells and
GABAergic neurons, which are not impaired in RP58-deficient animals,
as shown in Fig. 2. Interestingly, RP58 is also expressed in the
progenitor cells in the VZ. Interestingly, some cells in the VZ expressed
the RP58 protein at a high level (arrows in Fig. 5H; Supplementary Figs.
7A-B™), and other cells expressed this protein at a low level
(arrowheads in Supplementary Figs. 7A~B™). As all of these cells
were positive for Ki67, a nuclear protein expressed only in cycling cells,
this result suggests that RP58 is expressed by neural progenitors.

To examine whether the VZ cells that express RP58 are RGPs and/
or IMPs, we performed double labeling of RP58 with Pax6 (which is an
RGP marker) and Thr2 (which is a pan-IMP marker). Most of the
RP58-positive cells in the VZ were Tbhr2-positive (arrows in Supple-
mentary Figs. 9C-C™), whereas some RP58-positive cells were Pax6-
positive {arrows in Supplementary Figs. 9A-B™) and the others were
Pax6-negative (arrowhead in Supplementary Figs. 9A-B™). RP58 was
expressed in P-H3-positive cells in the basal regions of the VZ, but not
in the apical region of the VZ (Supplementary Fig. 10). RP58 was also
detected in some of Ngn2-positive cells (Supplementary Fig. 11).
These results suggest that the onset of RP58 expression happens
during the transition from Pax6-positive cells to Thr2-positive cells, or,
in other words, at the initial stage of IMPs.

RP58/ 3Syn RP58/ Reelin

Fig. 5. RP58 expression patterns in the wild-type cerebral cortex. (A} RNA in situ hybridization analysis shows that RP58 transcripts were strongly expressed in cortical cells in the CP,
12, SVZ, and weakly in the VZ of E15.5 wild-type mice. (B and C) RP58 protein was detected at high levels in the CP, 1Z, and SVZ, and weakly in the VZ of E15.5 wild-type mice (B). No
signal was detected in RP58 /™ brain (C). (D, E, and E') RP58 protein was intensely expressed in developing neurons in the preplate (ppl) at E12.5 (D), in the CP, IZ, and SVZatE16.5
(E), and in progenitor cells in the VZ at E12.5 (arrows in D) and E16.5 (arrows in E and E). (F-T) RP58 was detected in >-synuclein-positive subplate neurons at E15.5 (F) and was not
detected in the reelin-positive Cajal-Retzius cells at E16.5 (G). Ki67, which is a cell cycling marker, was detected in RP58-positive cells in the VZ at E15.5 (H). A higher magnification
view of the region marked by an arrow with an asterisk (*) indicates that RP58 protein was expressed in Ki67-positive progenitor cells, RP58 was not detected in DIx2-positive
GABAergic neurons in the E18.5 neocortex (1). (J) RP58 was expressed in progenitors cells in the VZ (arrows in J) and in the developing neurons of the E16.5 hippocampus. (K-L') RP58
was not detected in reelin-positive Cajal-Retzius cells in the hippocampal fissure (asterisk, K) at E18.5. RP58 was detected in NeuroD-positive DG granute cells (L, L'} at E18.5. Scale

bars, 1 mm (A-C); 0.1 mm (D and E’), (E), and (J-L); and 0.05 mm (F, G and 1), (H).
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Enhanced apoptosis in the RP58-deficient cortex

Next, we examined whether enhanced cell death or reduced
production of cortical neurons in the mutant cortex were responsible
for the fewer numbers of mature subplate and specified CP neurons
observed in the mutant cortex. A larger number of TUNEL-positive
cells were found in the postmitotic zone of the mutant neocortex at
E15.5 and E18.5 when compared with the wild type, but no differences
were observed in the proliferative zone (Figs. 6A, B, E, and F;
Supplementary Fig. 12). The mutant hippocampus displayed a
significant increase in the number of TUNEL-positive cells at E18.5
when compared with the wild type (Figs. 6M and N). Active-caspase3
immunoreactivity was also enhanced at E16.5 (Figs. 6C, D, I, and J) and
E19 (Figs. 6G, H, O, and P) in both the neocortex and the hippocampus
of the mutant mice, which suggests that caspase-dependent apoptosis
is enhanced in the mutant. Apoptosis was detected in the anterior and
posterior neocortex to the same degree (data not shown). Further-
more, single-strand DNA (ssDNA) staining using an anti-ssDNA
antibody documented the presence of fragmented DNA (Figs. 6K
and L), which confirmed the results of the TUNEL analysis. These
results suggest that RP58 deficiency enhances caspase-dependent
apoptosis in the cerebral cortex, which may reduce the number of
mature cortical neurons.

Neocortex E15.5-E16.5
TUNEL
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Expansion of the VZ/SVZ in the RP58-deficient cortex

In addition to enhanced apoptosis, we found that the VZ was likely
to be expanded in the postnatal day (P) 0 mutant cortex (asterisk in
Fig. 1B). We therefore examined the expression of several markers of
the VZ, which included Pax6 (Englund et al., 2005). Pax6 expression
expanded radially in the mutant cortex at E19 when compared with
the distribution of this protein in the wild-type cortex at E19, as did
PCNA immunoreactivity (Figs. 7A-B"). Furthermore, the expression of
HES5, which is a basic helix-loop-helix transcription repressor
expressed in the VZ (Ohtsuka et al., 2006), and of Tailless, which is
an orphan nuclear receptor restricted to the VZ (Monaghan et al.,
1995), was also enhanced in the mutant neocortex (Figs. 7C-F). The
VZ was expanded in the hippocampus as well as in the neocortex, as
determined by double staining of Pax6 with PCNA or Ki67 at E18.5
(Supplementary Fig. 13).

Next, we examined whether IMPs were increased in the mutant.
Tbr2-positive cells, which are detected in IMPs and postmitotic
immature neurons (Englund et al., 2005), were increased in the E18.5
mutant (Supplementary Figs. 14A and B). The phosphohistone H3 (P-
H3)-positive mitotic cells in the SVZ, which correspond to mitotic cells
of IMPs, were also increased, together with PCNA-positive cells (see
Supplementary Figs. 14C-D’). These results suggest that IMPs were

E185-E18

TUNEL active Caspase3

E18.5-E19
TUNEL

M E185 | O

active Caspase3

Fig. 6. Enhancement of apoptosis in the RP58-deficient cortex. (A-H) In the mutant neocortex, the number of TUNEL-positive cells was higher than in wild type at E15.5 (A and B) and
E18.5 (E and F), and the number of active-caspase 3-positive cells was higher at E16.5 (Cand D) and E19 (G and H). (1-P) In the mutant hippocampus, active-caspase 3-positive cells (I
and J) and ssDNA-positive cells (K and L) were increased at E16.5 and TUNEL-positive cells and active-caspase 3-positive cells were also increased at E18.5 (M-P). Scale bars, 0.1 mm

(A, B.E F,M,and N), (C, D, G, H, O and P), and (I-L).
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Fig. 7. Expansion of the ventricular zone in the RP58-deficient cortex. (A-B") PCNA-positive cells and Pax6-positive cells were increased in the RP58~/~ cortex (A-B') and most Pax6-
positive cells were immunoreactive for PCNA (A” and B"). (C-F) The RP58 '~ cortex (D and F) exhibited more HES5-positive cells (C and D) and Tailless-positive cells (E and F) than

the wild-type cortex (C and E). Scale bar, 0.1 mm (A-F).

increased in the mutant. To examine the developmental stage of IMPs,
we performed double staining of Tbr2 and Pax6 (Fig. 8), as Pax6+/
Tbr2+ cells and Pax6—/Tbr2+ cells are early-stage IMPs and late-
stage IMPs, respectively (Sasaki et al., 2008). The double staining
revealed that, in the E18.5 mutant, Tbr2-positive cells and Pax6-
positive cells were increased in number, that both Pax6-+/Tbr2— cells
and Pax6+-/Tbr2+ cells were also increased, whereas Pax6—/Tbr2+
cells were not (Fig. 8). This result suggests that RGPs and early-stage
IMPs were increased in the mutant, whereas late-stage IMPs were not.
To examine the identify of the SVZ, we preformed Svetl in situ
hybridization near the section of the Pax6/Tbr2 double staining from
E15.5 to E18.5, which revealed that impairment of the mutant VZ/SVZ
progressed from E15.5 to E18.5 (Supplementary Fig. 15). In particular,
a tripartite appearance of inner Pax6-dominant/intermediate Tbr2-
dominant/outer Pax6-dominant zones was observed in the mutant in
later developmental stages (Supplementary Fig. 15). To directly
associate these zones with Svetl expression, we performed a triple
staining of Pax6, Tbr2, and Unc5d that corresponds to Svet1 (Sasaki et
al., 2008) (Supplementary Fig. 16). Unc5d/Svet1 staining was
detected in the upper region of the Tbr2-positive zone in the wild
type, while it was also detected, albeit weakly and diffusely, in the
upper region of the intermediate Tbr2-positive zone and contained
the outer Pax6-dominant zones in the E16.5 mutant mice (Supple-
mentary Figs. 16 A-B’), which suggests that the outer Pax6-dominant
zone was located in the SVZ. In the E18.5 mutant, the expression of
Unc5d/Svetl was more diffusely detected in the outer Pax6-
dominant/intermediate Tbr2-dominant zone, which suggests that
the mutant VZ/SVZ was severely impaired in the late development
stages of the mutant (Supplementary Figs. 16 C-D').

The impairment of cell-cycle exit in the RP58-deficient VZ/SVZ during
late development

We next examined whether the expansion of the VZ/SVZ of the
mutant cortex was due to enhanced proliferation and/or impairment
of cell-cycle exit. To examine cell proliferation, we counted the
number of BrdU-labeled cells in a random selection of 50 Ki67 (which
is a proliferating cell marker)-positive cells (which are considered to

be progenitor cells) after a 30 min pulse of BrdU. The percentage of
progenitor cells labeled with BrdU was not altered in the mutant
cortex at E15.5, which suggests that proliferation was not altered in
the mutant cortex (Figs. 9A-C). To examine the possibility that the
division pattern of progenitor cells was impaired in the mutant cortex,
we counted the number of PCNA-negative and Pax6-negative cells in
a random selection of 50 BrdU-labeled cells, after a 24 h pulse of
BrdU; this corresponds to the fraction of cells exiting the cell cycle.
At E16.5, we found that the PCNA—/BrdU+ and Pax6—/BrdU+
ratios were about halved in RP58 mutant progenitor cells when
compared with their normal counterparts, which suggests that cell-
cycle exit is inhibited in the mutant VZ progenitor cells in both the
medial and lateral neocortices (Figs. 9D-I). This was confirmed by
examining the total number of BrdU-positive cells in an area of
0.25 mm?, which showed an increase in the number of PCNA— or
Pax6+ cells; this suggests that reentry into the cell cycle is enhanced
in the mutants (Supplementary Fig. 17). Furthermore, as the
characteristic outer Pax6-dominant zone was observed in the mutant
cortex (Supplementary Fig. 16B), we examined whether the outer
Pax6-dominant zone was involved in the reduction of cell-cycle exit.
The Pax6—/BrdU+- ratio was dominantly reduced in the upper region
(1Z/SVZ), which contained the abnormal outer Pax6-dominant, when
compared with the lower region (VZ) (Supplementary Fig. 18).
Therefore, it is possible that the abnormal outer Pax6-dominant
zone observed in the mutant reflects the reduction of cell-cycle exit. In
contrast, neither proliferation at E12.5 (Supplementary Figs. 19A-C)
nor cell-cycle exit at E13.5 (Supplementary Figs. 19D-1) was impaired.
These results suggest that cell-cycle exit is reduced in the mutant
cortex at late neocorticogenesis. The reduction of the cell-cycle exit
causes an increase in VZ progenitor cells and thereby leads to the
expansion of the VZ. Therefore, it is likely that the reduction of cell-
cycle exit, in addition to the enhanced apoptosis, decreases the
number of differentiated late-born neurons in the mutant CP.

As cell-cycle kinetics may affect cell-cycle exit, we estimated the
duration of the S-phase (Ts) and of the total cell-cycle time (Tc) using
a BrdU/IdU double labeling paradigm (Martynoga et al., 2005), which
revealed no obvious differences in Ts, Tc, and Ts/Tc between wild-type
and mutant cortices (Supplementary Fig. 20); however, because this
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Pax6+

Pax6/Tbr2 Topro3

Tbr2+ Pax6+/Tbr2+ Pax6+/Tbr2- Pax6-/Tbr2+

Fig. 8. Both Pax6-positive and Tbr2-positive cells were increased in the RP58-deficient cortex. Double staining (A", B") of Pax6 (A, B) and Tbr2 (A", B') with the TOPRO3 nuclear stain (A™,B"™)
showed that both Pax6-positive and Tbr2-positive cells were increased in the RP58-deficient cortex. Scale bars, 0.1 mm (A-B™). (C) The number of Pax6+, Tbr2+, Pax6+/Tbr2+, Pax6+/
Tbr2—, and Pax6—/Tbr2+ cells was counted in a 0.0083 mm? area of the wild-type (open column) and of the mutant neocortex (gray column). Faint staining of Pax6 was regarded as
negative. Six regions of three mutant brains were compared with six regions of three wild-type brains. The data are presented as means 4+ SD. **P<0.01 (Student's  test).

estimation rested on the assumption that all cells in the VZ are
proliferating and that the precursor cells consist of a single
proliferating population with the same cycling kinetics (Martynoga
et al., 2005), further analyses may be necessary to assess the
possibility that RP58 is involved in cell-cycle kinetics.

Discussion

In the present study, we characterized mice carrying disrupted
alleles for the POZ/zinc finger transcriptional repressor gene, RP58. We
found that homozygous mutants display severe hypoplasia of the
cerebral cortex and of the hippocampus, in association with enhanced
apoptosis and expansion of the VZ/SVZ. We showed that RP58 is
specifically required for the maturation and survival of the excitatory
neurons of the cerebral cortex. Furthermore, the present study
demonstrated that RP58 is a novel factor that controls the balance of
cell division of neuronal progenitors, which remains poorly under-
stood to date.

In the RP58 null mutant, the VZ was expanded and the dorsal
cortex appeared like a wild-type younger brain. Therefore, the
possibility of developmental delay cannot be excluded. We examined
the expression of Tbr1 in the mutant cortex at E13.5, E15.5, and E18.5,
which suggested that there is no clear time lag in the Tbr1 expression
pattern (Supplementary Fig. 3). In addition, the Tc may cause a
developmental delay. The Tc was not altered in the RP58-deficient
mice (Supplementary Fig. 20). These results do not support the
contention that developmental delay mainly occurs in RP58 null mice.

It seems more likely that reduction of produced matured neurons and
enhancement of apoptosis causes the impairment in cortical devel-
opment observed in these animals.

One of the main phenotypes in the RP58-deficient cortex was a
reduction in the number of mature cortical neurons. In addition to a
substantial reduction in the number of neurons in the subplate and
layers 2-5 of the CP in the neocortex, Tbr1 expression was strongly
suppressed throughout the cortical anlage, with the exception of the
Cajal-Retzius cells in the hippocampus. The pyramidal layer of the CA
was absent and Tbr1 expression was severely reduced in NeuroD-
positive granule cells of the DG. NeuroD is expressed after Pax6, but
before Tbr1 (Hevner et al., 2006), which suggests that RP58 deficiency
suppresses the production of mature dentate granule neurons.

In the early embryonic stage, RP58 deficiency did not impair cell-
cycle exit, although apoptosis was enhanced in the mutant neocortex
at E15. Therefore, the decreased number of mature subplate neurons
produced at early embryonic stages could be caused by enhanced
apoptosis. On the other hand, the VZ was expanded at later embryonic
stages in the mutant, the cell-cycle exit was inhibited in RGPs, and the
level of apoptosis remained high, which suggest that enhanced
apoptosis and/or defective cell-cycle control reduce the production of
mature cortical neurons at later development stages.

Transgenic mice expressing [-catenin precursors also show
reduced cell-cycle exit and develop enlarged brains with reduced
cortical thickness (Chenn and Walsh, 2002). In contrast, RP58~/~ mice
showed no enlargement of the brain, although the thickness of the
neocortex was reduced. This discrepancy may be due to the reduction
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Fig. 9. Impairment of cell-cycle exit in the RP58-deficient cortex in late neocortical development. (A-C) Double {abeling with BrdU and Ki67 in the lateral region of the wild-type (A)
and mutant (B) caudal neocortex at E15.5, 0.5 h after BrdU incorporation. The fraction of BrdU-positive cells among the Ki67-positive cells was not altered in the medial and lateral
regions of the mutant cortex (C), which suggests that proliferation is not affected in the mutant cortex. Fifty Ki67-pesitive cells were randomly examined. Four regions of two mutant
brains were compared with six regions of three wild-type brains. (D-1) BrdU was incorporated at E15.5 and the lateral region of the caudal neocortex was double stained for BrdU and
PCNA (D and E) or Pax6 (Fand G) in the lateral region of the wild-type (D and F) and the mutant (E and G) at E16.5. The fraction of PCNA-negative cells and Pax6-negative cells among
the BrdU-positive cells was reduced in the caudal RP58-deficient cortex in both the medial and lateral regions of the mutant caudal neocortex (H and I), which suggests that cell-cycle
exit was reduced. Fifty BrdU-positive cells were randomly examined. Three regions of three mutant brains were compared with three regions of three wild-type brains. Scale bar,
0.1 mm (A-D, G, and H). The data are presented as means + SD. *P<0.02, **P<0.01 (Student's ¢ test).

of cell-cycle exit only at late embryonic stages and/or the presence of
high levels of apoptosis in the RP58~/~ cortex. We consider RP58 a
candidate molecule for the control of the number of mature cortical
neurons, as RP58 deficiency decreased the number of mature neurons
because of enhanced apoptosis and of defects in cell-cycle exit.

A delicate balance in cell proliferation and subsequent cell-cycle
withdrawal and differentiation into specific neurons is essential for
corticogenesis. The present study indicates the possibility that RP58
regulates this balance, at least at the late embryonic stage. In the wild-
type E15.5 VZ, some RP58-positive cells showed weak Pax6 immunor-
eactivity, and almost all RP58-positive cells exhibited Thr2 immunor-
eactivity (Supplementary Fig. 9), which suggests that the onset of
RP58 expression happens in IMPs, at the initial stage, when Pax6 and
Tbr2 may be coexpressed (Englund et al., 2005).

Pax6-+ cells were increased in the RP58 null mutant, as were both
Pax6-/Tbr2— and Pax6+/Tbr2- cells. The increase in the number of
Pax6-+/Tbr2— cells in the mutant is explained by the reduction of
cell-cycle exit of VZ progenitors. It is likely that there are extrinsic
actions that allow RP58 to activate the expression of extrinsic factors
that control cell-cycle exit, because RP58 is not detected in most
Pax6+ cells. In fact, it is reported that the generation of projection

neurons from cortical progenitors appears to be governed by both
cell-intrinsic and environmental cues (Mizutani and Gaiano, 2006);
however, we cannot exclude the possibility that a few Pax6+ cells
abnormally proliferated in the mutant, as RP58 was detected in
some Pax6+ cells in the wild type.

Pax6+/Tbr2— and Pax6+/Tbr2+ cells were increased in the
mutant VZ/SVZ, whereas Pax6—/Thr2+ cells were not increased.
Therefore, it is possible that Pax6 is ectopically expressed in Thr2+
IMPs in the mutant, and that the transition from Pax6-+-/Tbr2+ cells
to Pax6—/Tbr2+ cells was inhibited in the mutant, which raises the
possibility that RP58 may be an important molecule for the
maturation of IMPs. It was reported that (1) Svet1 is a spliced intronic
sequence from Unc5d (Sasaki et al, 2008) and (2) Svet1/Unc5d
staining is a specific marker of late-stage IMPs, It is likely that Svet1/
Unc5d expression was reduced in the mutant, which supports the
possibility that RP58 is most important for maturation process from
early-stage IMPs to late-stage IMPs; however, as the expression of
Svet1/Unc5d is also observed in young neurons (Kawaguchi et al,
2008), the possibility that the reduction of Svet1/Unc5d signal in the
mutant reflects the reduction of the number of generated neurons
cannot be excluded.
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The expression of Pax6, Tbr2, and Svet1/Unc5d reveals that the
formation of VZ/SVZ was impaired in the mutant (Supplementary
Figs. 15 and 16). The outer Pax6-dominant zone in the E16.5 mutant
may be caused by the reduced cell-cycle exit (Suppiementary Fig. 18).
The outer Pax6-dominant zone in E16.5 was not distinct when
compared with that of the E18.5 animals. Therefore, the outer Pax6-
dominant zone observed in the E18.5 mutant may partially explain the
reduced cell-cycle exit.

Tbr2-pasitive cells were increased in the mutant VZ/SVZ, as were
Pax6-+/Tbr2+ cells, but not Pax6—/Tbr2+ cells. Tbr2+ IMPs are
originated from Pax6- RGPs. Therefore, the increase in Pax6-+/Thr2+
cells in the mutant may be explained by the increase in Pax6+/Tbr2—
cells.

We showed that RP58 was expressed in some Ngn2-positive cells
(Supplementary Fig. 11). RP58 acts downstream of Ngn2 (Seo et al.,
2007), which is involved in the initial commitment to a neuronal
fate. Therefore, RGPs neuronally committed by Ngn2 probably
express RP58 in the VZ in a sustained manner. As RP58 functions
as a transcriptional repressor, it is possible that RP58 suppresses the
expression of a few genes, which may include Pax6, Thr2, and Ngn2.
In vitro analysis indicated that the transcription of Ngn2 was
suppressed by RP58 and that Ngn2-positive cells were increased in
the RP58-null mutant cortex {data not shown; Ohtaka-Maruyama et
al,, in preparation). It was reported that Thr2 is a target of Ngn2
(Ochiai et al,, 2009). Therefore, the increase in Thr2-positive cells in
the RP58 mutant can be explained by the enhancement of Ngn2
expression, probably because of a lack of transcriptional suppression
by RP58.

On the other hand, the overexpression of some genes, which
include Pax6, Thr2, and Ngn2, may explain the abnormalities observed
in the RP58-deficient brain. The overexpression of Pax6 affects the
proliferation of neuronal progenitors and causes failure of neuronal
differentiation (Bel-Vialar et al, 2007) and Tbr2 misexpression
inhibits cell-cycle exit (Sessa et al., 2008). We are now analyzing
whether the phenotype of the RP58 mutant brain can be explained by
the enhanced expression of those genes.

In conclusion, we found that RP58 deficiency reduces the number
of mature cortical neurons via strongly enhanced apoptosis and
impaired cell-cycle exit, which suggests that RP58 plays a key role in
the survival of cortical neurons and in the development of neuronal
progenitors.
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Abstract

We performed a cell transplantation study to treat the brain involvement in lysosomal storage diseases. We used acid B-galac-
tosidase knock-out mice (BKO) from CS7BL/6 as recipients. To minimize immune responses, we used cells derived from transgenic
mice of C57TBL/6 overexpressing the normal human B-galactosidase. Fetal brain cells (FBC), bone marrow-derived mesenchymal
stem cells (MSC), and mixed FBC and MSC cells were prepared and injected into the ventricle of newborn BKO mouse brain.
The mice were examined at 1, 2, 4, and 8 weeks and 6 months after injection. In each experiment, the injected cells migrated into
the whole brain effectively and survived for at least 8 weeks. Decrease in ganglioside GM1 level was also observed. FBC could sur-
vive for 6 months in recipient brain. However, the number of transplanted FBC decreased. In the brains of MSC- or mixed cell-
treated mice, no grafted cells could be found at 6 months. To achieve sufficient long-term effects on the brain, a method of steering
the immune response away from cytotoxic responses or of inducing tolerance to the products of therapeutic genes must be
developed.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Enzyme replacement therapy (ERT), hematopoeitic
stem cell transplantation (HSCT), and gene transfer have
been studied in animals and in humans with lysosomal
storage disease (LSD). ERT is now available clinically
for Gaucher disease, Fabry disease, Pompe disease, and
MPS L, I1, and VIin many countries, and has been success-
ful in visceral organs. HSCT is also effective against the
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somatic involvements in Gaucher disease and MPS I, 11,
and VI. However, HSCT exhibits little efficacy in condi-
tions such as Fabry disease and Pompe disease, when
enzyme secretion from donor cells is poor or the uptake
of enzyme proteins by the affected host cells is inadequate.
In addition, efficacy in individual organs differs markedly,
in both ERT and HSCT, depending on accessibility of
blood flow and the density of mannose-6-phosphate
receptors. Neither HSCT nor ERT exhibits efficacy
against the brain involvement in Gaucher or MPSs
because of the poor access due to the blood—brain barrier.

Many experimental studies have been carried out,
involving methods such as gene therapy [1-5], cell



