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Gab family proteins are essential
for postnatal maintenance of cardiac function
via neuregulin-1/ErbB signaling
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Grb2-associated binder (Gab) family of scaffolding adaptor proteins coordinate signaling cascades down-
stream of growth factor and cytokine receptors. In the heart, among EGF family members, neuregulin-1p
(NRG-1p, a paracrine factor produced from endothelium) induced remarkable tyrosine phosphorylation of
Gab1 and Gab2 via erythroblastic leukemia viral oncogene (ErbB) receptors. We examined the role of Gab
family proteins in NRG-1f /ErbB-mediated signal in the heart by creating cardiomyocyte-specific Gab1/Gab2
double knockout mice (DKO mice). Although DKO mice were viable, they exhibited marked ventricular dila-
tation and reduced contractility with aging. DKO mice showed high mortality after birth because of heart
failure, In addition, we noticed remarkable endocardial fibroelastosis and increase of abnormally dilated ves-
sels in the ventricles of DKO mice. NRG-1p induced activation of both ERK and AKT in the hearts of control
mice but not in those of DKO mice. Using DNA microarray analysis, we found that stimulation with NRG-1§
upregulated expression of an endothelium-stabilizing factor, angiopoietin 1, in the hearts of control mice
but not in those of DKO mice, which accounted for the pathological abnormalities in the DKO hearts. Taken
together, our observations indicated that in the NRG-18/ErbB signaling, Gabl and Gab2 of the myocardium
are essential for both maintenance of myocardial function and stabilization of cardiac capillary and endocar-

dial endothelium in the postnatal heart.

Introduction

Dilated cardiomyopathy (DCM) is an common cause of heart
failure. Epidemiological studies suggest that 25%-30% of DCM is
inherited. Among the mutations associated with DCM in humans
and mice, several involve genes encoding cytoskeletal proteins
and sarcomere-related proteins (1); however, mutations in these
known genes account for only a minor proportion of the heritable
cardiomyopathies in humans. Cardiac function is maintained
by cytokine- and growth factor-triggered intracellular signal-
ing. Genetically modified mice, in which intracellular signaling
molecules are either activated or perturbed, also exhibit cardiac

Nonstandard abbreviations used: Angl, angiopoietin 1; ANP, atrial natriuretic
peptide; DCM, dilated cardiomyopathy; DKO, cardiomyocyte-specific Gab1/Gab2
double knockout; EFE, endocardial fibroelastosis; EphA4, Eph receptor A4; ErbB,
erythroblastic leukemia viral oncogene; Gab, Grb2-associated binder; Gab1CKO,
cardiomyocyte-specific Gab1 conditional knockout; Gab1KO, conventional Gab1
knockout; HB-EGF, heparin-binding EGF-like growth factor; LIF, leukemia inhibitory
factor; «-MHC, a-myosin heavy chain; NRG-1, neuregulin-1; «-SKA, skeletal a-actin;
TSP1, thrombospondin 1.
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dysfunction, suggesting that coordination of signal transduction
systerns is critical for the preservation of cardiac funcrion (2).

The Grb2-associated binder (Gab) family proteins, which serve
as scaffolding adaptor proteins, crucially intervene between recep-
tors and intracellular signaling molecules to coordinate the signal-
ing cascades of cytokines, growth factors, antigens, and numerous
other molecules (3-5). Multiple phosphorylated tyrosine residues
of Gab proteins become docking sites for Src homology-2 domain-
containing molecules. Docking of Gab to tyrosine phosphatase
SHP?2 and the p85 regulatory subunit of PI3K leads to the activation
of ERK and AKT, respectively (4, S). Three Gab family members,
Gab1, Gab2, and Gab3, have been identified in mammals and are
structurally similar (4, 5). Conventional Gab1 knockout (Gab1KO)
mice display embryonic lethality with impaired development of
heart, placenta, skin, and muscle (6, 7). Gab2KO mice do not show
any obvious developmental defects but display impaired allergic
responses and osteoclast defects (8-11). Gab3KO mice exhibit no
obvious phenotype (12).

We previously demonstrated the importance of Gab1-ERKS
signaling in cardiomyocyte hypertrophy through the leukemia
inhibitory factor-gp130-dependent (LIF-gp130-dependent)
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Gab1 and Gab2 are engaged in coordination of NRG-1p/ErbB signaling pathway in the myocardium. Tyrosine phosphorylation of Gab1 (A) and
Gab2 (B) and their association with SHP2 and p85 were analyzed by IP of the heart lysates. Mouse heart lysates were prepared at 5 minutes
after injection with the cytokines and growth factors listed at top. Heart lysates were subjected to IP with anti-Gab1 (A) or anti-Gab2 (B) serum,
followed by IB analysis using the Ab indicated at the left. (C) Activation levels of ERK and AKT were assessed by phospho-specific Ab. Tyrosine
phosphorylation of Gab1 (D) Gab2 (E) and their association with SHP2 and p85 was examined by IP of cell lysates from neonatal rat cardio-
myocytes (CM) or noncardiomyocytes (non-CM) stimulated with either NRG-1p (50 ng/ml) or HB-EGF (50 ng/ml) for 5 minutes. IP complexes
were subjected to IB using the Ab indicated at the left. (F) NRG-1p- and HB-EGF-dependent activation of ERK and AKT was examined in CM
and non-CM as in C. Tyrosine phosphorylation of Gab1 (G) and Gab2 (H) and their association with SHP2 and p85 in the mouse hearts were
analyzed after injection with 5 ug of NRG-1p as in A and B, respectively. Heart lysates were prepared at the indicated time after injection. Gab1
and Gab2 underwent tyrosine phosphorylation and associated with SHP2 and p85 in a time-dependent manner upon NRG-1f stimulation. (1)
Activation of ERK and AKT were assessed as in C. Arrows denote 2 isoforms of Gab1. Representative blots of 3 experiments are shown. PY99,
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signaling pathway (13). Gab family proteins are also involved in
EGF family-erythroblastic leukemia viral oncogene (EGF fam-
ily-ErbB) receptor family signaling (6, 14, 15). EGF family-ErbB
receptor signaling plays crucial roles in heart development and
preservation of adult cardiac function (16, 17). Among the EGF
family members, neuregulin-1 (NRG-1) (18) and heparin-binding
EGF-like growth factor (HB-EGF) (19) are particularly important
agonists for ErbB receptors on cardiomyocytes. NRG-1 serves as a
paracrine factor that is shed from the endothelium and activates
the ErbB4 homodimer or ErbB2/ErbB4 (also known as HER2/
HER4) heterodimer on cardiomyocytes (16, 17, 20, 21). NRG-1-,
ErbB2-, and ErbB4-deficient mice display embryonic lethality and
similar defects in ventricular trabeculation (22-24). HB-EGF-
deficient mice also display abnormal valvular development and
cardiac dysfunction (25, 26).

The importance of ErbB signaling in the adult heart was first
revealed by the unforeseen adverse effects of trastuzumab (Her-
ceptin), a monoclonal Ab against ErbB2 used in the treatment
of breast cancer. Trastuzumab induces heart failure when com-
bined with anthracycline treatment (17, 27, 28). In addition to
this clinical evidence, cardiomyocyte-specific ErbB2- and ErbB4-
deficient mice both exhibit DCM (29-31). However, the precise
intracellular signaling responsible for ErbB-regulated cardiac
function is still unclear.
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In the present study, we used myocardium-specific deletion of
Gab family proteins in the mice to demonstrate that Gabl and
Gab2 in the myocardium are essential for transmitting the signal
from NRG-1B/ErbB to directly maintain myocardial function and
to subsequently stabilize capillary and endocardial endothelium
in the postnatal heart.

Results
Gabl and Gab2 are engaged in coordination of NRG-1B/ErbB signaling
pathway in the myocardium. We aimed at exploring the function
of Gab family proteins in the heart. Thus, we first examined the
expression of Gab family transcripts by RT-PCR and detected the
mRNA of Gab1 and Gab2, but not that of Gab3, in the murine
heart (Supplemental Figure 1; supplemental material available
online with this article; doi:10.1172/JCI30651DS1). To elucidate
how Gab1 and Gab2 are involved in the intracellular signaling in
the heart, mice were injected with various cytokines and growth
factors. Among these agonists, ErbB receptor-activating agonists,
including NRG-1B, HB-EGF, and EGF, induced strong tyrosine
phosphorylation of Gab1 and Gab2 and the subsequent associa-
tion of Gab1 and Gab2 with SHP2 and p8S (Figure 1, A and B).
We identified 2 Gabl isoforms, high-molecular weight (high-
MW) Gab1 (120-130 kDa) and low-MW Gab1 (100 kDa). Nota-
bly, the high-MW Gab1 underwent tyrosine phosphorylation
Volume 117
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upon stimulation exclusively with NRG-1p, while low-MW Gab1
was phosphorylated by NRG-1p, HB-EGF, and EGF (Figure 1A).
We confirmed that the high-MW Gabl is a cardiac-specific iso-
form using molecular mass spectrometric analysis, which showed
that the high-MW band that was recognized by anti-Gab1 Ab in
Western blot analysis indeed contained the partial amino acid
sequence of Gab1 (Supplemental Figure 2, A-C). Activation of
both ERK and AKT was found only when stimulated with NRG-1,
HB-EGF, and EGF (Figure 1C), although activation of AKT was
most strongly induced by IGF-1.

We examined whether the difference in Gab1 phosphorylation
was due to the diversity of the cell types. To distinguish the sig-
naling processes in cardiomyocytes from those in noncardiomyo-
cytes, including fibroblasts, endothelial cells, and vascular smooth
muscle cells in the heart, we analyzed the action of NRG-1p and
HB-EGF in neonatal rat cardiomyocytes and noncardiomyo-
cytes that had been isolated using the Percoll gradient method
(32). NRG-1p induced tyrosine phosphorylation of Gabl and
Gab2, the subsequent association of Gab1 and Gab2 with SHP2
and p8S, and the activation of ERK and AKT in cardiomyocytes
but not in noncardiomyocytes (Figure 1, D-F). In clear contrast,
HB-EGF induced those changes more strongly in noncardiomyo-
cytes than in cardiomyocytes (Figure 1, D-F). It should be noted
that tyrosine phosphorylation of the high-MW Gab1 in cardiomy-
ocytes was induced after stimulation with NRG-1p but not with
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Figure 2

Generation of DKO mice. (A) Schematic illustration of genomic struc-
ture of the Gab1 wild-type, Gab1 flox, and Gab7-deleted alleles and
a targeting vector. loxP sequences are indicated by black triangles.
Restriction enzyme sites for EcoRI and Hindlll are indicated as R and
H, respectively. Fragments detected by the probe (short bold line) used
for Southern blot analysis after digestion of genomic DNA with EcoRl
and Hindlll are indicated as solid lines measuring 4.3 kb, 3.8 kb, and
5.7 kb. HSV-TK, herpes simplex virus—thymidine kinase. (B) Southern
blot analysis demonstrated recombination of the Gab7" allele in the
heart, but not in the kidney, of Gab1fxiox mice, which possessed the
a-MHC-Cre allele. (C) Following IP, expression of Gab1 and Gab2
was examined by IB using anti-Gab1 (top row) and anti-Gab2 (middle
row) serums. SHP2 was examined as a loading control (bottom row).
Note that 2 isoforms of Gab1 were detected at the different MW exclu-
sively in the heart (arrows) and that the high-MW Gab1 isoform in the
heart was completely depleted in Gab1CKO and DKO. The low-MW
Gab1 was also reduced by 80% in the heart of Gab1CKO and DKO
mice compared with control and Gab2KO mice.

HB-EGF (Figure 1D). These findings suggest that NRG-1p acts as
a highly selective agonist for cardiomyocytes, in agreement with
previous reports (33).

Therefore, we focused on the NRG-1B-dependent signaling
pathway through Gab1 and Gab2 in the murine hearts. Gab1 and
Gab2 underwent tyrosine phosphorylation and associated with
SHP2 and p85 after injection with NRG-1p in a time-dependent
manner (Figure 1, G and H). In addition, both ERK and AKT were
also activated by NRG-1 in a time-dependent manner (Figure 11I).
We also checked the activation of ErbB family receptors of murine
hearts stimulated with NRG-13. NRG-1f induced tyrosine-phos-
phorylation of ErbB2 and ErbB4 but not that of ErbB1 (EGFR)
or ErbB3 in accordance with a previous report in which cardio-
myocytes were used in vitro (Supplemental Figure 3, A-D) (21).
Furthermore, Gab1 associated with ErbB4 in a phosphorylation-
dependent manner after injection with NRG-1p (Supplemental
Figure 3E). These data suggest the engagement of Gab family pro-
teins in the coordination of NRG-1f/ErbB signaling pathway.

Generation of cardiomyocyte-specific Gabl conditional knockout mice.
To elucidate the function of Gab family proteins in myocardi-
um, we first generated cardiomyocyte-specific Gabl conditional
knockout (Gab1CKO) mice using the Cre-loxP system. Using
homologous recombination in embryonic stem cells, we created
a Gab1/* allele by introducing 2 loxP sites into introns flanking
exon 2, which encodes part of the pleckstrin homology domain
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July 2007 1773



Gab1CKO Gab2KO

Control

(Figure 2A). The protein expression of Gab1 in all tissues of mice
homozygous for the Gab1-loxP-targeted allele (Gab1o¥/flox mice)
was almost the same level as in wild-type mice (data not shown).
To cause recombination of the floxed allele exclusively in cardio-
myocyte lineage, Gab1/*¥/fox mice were crossed with transgenic mice
expressing a-myosin heavy chain promoter-driven Cre recombinase
(o-MHC-Cre mice) (34, 35) (Figure 2A). We confirmed the Cre-
mediated recombination during embryogenesis (E10.5 and E14.5)
by crossing a-MHC—-Cre mice with enhanced GFP reporter mice
(Supplemental Figure 4A). The Gab1CKO (Gab1/¥/flex o-MHC-
Cre(+)) mice were born normally at the expected Mendelian fre-
quency, whereas Gab1KO mice were embryonically lethal (6). In
addition, the Gab1CKO mice displayed normal appearance and
normal cardiac morphology at birth (Supplemental Figure SA).
We observed the expected genetic recombination at the Gabl
locus in the ventricles of Gab1CKO mouse hearts but not in other
tissues (Figure 2B). In order to estimate the expression of Gab1 pro-
tein, immunoblot analyses were performed using the extracts from
heart, liver, and kidney (Figure 2C). As described above, 2 isoforms
of Gab1 proteins were detected in hearts, while low-MW Gab1 was
commonly detected, suggesting that the high-MW Gab1 is a cardi-
ac-specific isoform. Moreover, high-MW Gab1 protein was deleted
in Gab1CKO hearts, suggesting that high-MW Gabl1 is a product of
the same Gab1 gene that has low MW. In addition, we used Percoll
gradient centrifugation to analyze the expression of Gabl1 in car-

1774 The Journal of Clinical Investigation

heep://www.jci.org

Figure 3

DKO mice display dilated cardiomyopathic features accompa-
nied by EFE. (A) Representative images of whole hearts from 4
groups at 10 weeks of age. (B) Transverse sections of the hearts
were stained using the elastica van Gieson method. DKO hearts
showed marked biventricular dilation and slight wall thinning
compared with the other 3 groups of hearts. (C and E) Higher
magnification of elastica van Gieson-stained section of DKO
heart shows the focal accumulation of elastic fibers (black) in
the endocardium (arrows in B and C). (D) Masson's trichrome—
stained section of DKO heart shows focal accumulation of col-
lagen (blue) in the endocardium (arrow in D). (E and F) Boxed
regions of C and D, respectively, are enlarged. Scale bars: 1 mm
(A and B); 20 um (C-F).

diomyocytes and noncardiomyocytes isolated from neonatal
rat hearts (32) and detected the high-MW isoform of Gab1
exclusively in cardiomyocytes (Supplemental Figure 2D).

In Gab1CKO mice, the high-MW Gab1 was completely
deleted and the low-MW Gab1 was reduced to about 20% of
control (Gab 1/o¥/flex) littermates. The residual low-MW Gab1
protein might be attributed to the noncardiomyocytes pres-
ent in the heart. These data indicated the successful depletion
of Gabl1 in the cardiomyocytes (Figure 2C), because a-MHC
promoter functions exclusively in the myocardium. In 3-day-
old Gab1CKO mouse hearts, we detected an extent of Gab1
protein depletion similar to that of 3- or 10-week-old mice
(Supplemental Figure 4B).

Generation of cardiomyocyte-specific Gab1l/Gab2 double knock-
out mice. In murine hearts, mRNAs of Gabl and Gab2 were
detected by RT-PCR (Supplemental Figure 1). Gab2 can
rescue the loss of Gabl1 for activation of ERK in the EGF
signaling pathway (36). We thus assumed that Gab2 might
compensate for the deletion of Gab1 in the cardiomyocytes
of Gab1CKO mice.

To completely deplete Gab family proteins in cardiomyocytes,
Gab1CKO mice were crossed with Gab2KO mice. We created
Gab1fe/flexGab2-/-0-MHC-Cre(+) mice by crossing Gabl*f*Gab2-/~
0o-MHC-Cre(+) mice with Gab1e¥/flexGab2-/-a-MHC-Cre(-) mice in
the final breeding. The offspring of these crossings were recovered
at expected Mendelian ratios as follows: Gab1*//**Gab2~-0-MHC-
Cre(—) (n = 44; 24.6%); Gab1*/f*Gab27/-0-MHC-Cre(+) (n = 46;
25.7%); Gab11e¥/foxGab2~/-a-MHC-Cre(~) (n = 39; 21.8%); Gab1fo+/flox
Gab27/-a-MHC-Cre(+) (n = 50; 27.9%). Thereafter, we analyzed
the following 4 groups of mice: Gab1¥/fexGab2*/*0-MHC-Cre(-)
(control); Gab1fex/flexGab2/*0-MHC-Cre(+) (Gab1CKO); Gab 1/lox/flox
Gab2/-a-MHC-Cre(—) (Gab2KO); and Gab1¥/flexGab2~/~0-MHC—
Cre(+) (DKO). Both Gab2KO and DKO mice displayed normal
appearance and normal cardiac morphology at birth (Supple-
mental Figure SA). Gab2 protein was completely depleted in the
Gab2KO and DKO mice, indicating the successful depletion of
Gab1 and Gab2 in the cardiomyocytes of DKO mice (Figure 2C).

DKO mice display dilated cardiomyopathic features accompanied by
endocardial fibroelastosis. We performed gross morphological exam-
ination of the hearts of the 4 groups at 10 weeks of age because
we did not find any morphological abnormalities in the hearts of
Gab1CKO, Gab2KO, or DKO mice at birth (Supplemental Fig-
ure SA). Although there was no morphological difference among
Gab1CKO, Gab2KO, and control mice (Figure 3A), DKO mice
exhibited significantly higher heart weight-to-body weight ratios
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Figure 4

DKO mice exhibit dilated cardiomyopathic features. (A) Representative examples of M-mode echocardiographic images of LV from each group
of mice at 10 weeks of age. LVEDD, LV end-diastolic dimension; LVESD, LV end-systolic dimension. (B) Heart weight/body weight (HW/BW)
ratio of control mice (n = 9), Gab1CKO mice (n = 6), Gab2KO mice (n = 6), and DKO mice (n = 10) at 10 weeks of age. (C) LVEDD, (D) frac-
tional shortening (%FS), and (E) interventricular septal thickness (IVST) of control mice (n = 8), Gab1CKO mice (n = 8), Gab2KO mice (n = 7),
and DKO mice (n = 14) at 10 weeks of age. There were no significant differences in BW or heart rate among the 4 groups. (F) The maximum
first derivative of LV pressure (LV dP/dtmax) and (G) the minimum first derivative of LV pressure (LV dP/dtmin) were obtained by catheterization
of LV from right carotid artery in control mice (n = 7), Gab1CKO mice (n = 6), Gab2KO mice (n = 7), and DKO mice (n = 7) at 12 weeks of age.

*P < 0.01 compared with all other genotypes.

than the other 3 groups without significant differences in body
weight (Figure 3A and Figure 4B). Histological examination also
demonstrated both left and right ventricular enlargement in DKO
mice similar to DCM (Figure 3B).

A significant accumulation of elastic fibers and collagen was
observed exclusively in the endocardium of DKO mice (Figure 3,
B-F), while fibrotic replacement was not found in the interstirial
spaces of the ventricles of DKO mice (Supplemental Figure 6, A and
B). There was no significant increase in the number of apoptotic
myocardial cells in the hearts of DKO mice compared with those
of control mice (Supplemental Figure 7, A and B). The endocardial
deposition of elastic fibers and collagen was not found in the neo-
nates of DKO, but was found to some extent in all of the DKO mice
after 3 weeks (Supplemental Figure SA and data not shown). These
endocardium-specific changes were coincident with the pathologi-
cal features of endocardial fibroelastosis (EFE), the genetic causality
of which has not been fully elucidated to date (37, 38). We further
examined the vasculature in the heart by immunostaining with anti-
vWF Ab. Intriguingly, we found abnormally dilated vessels positively
stained with anti-vWF Ab exclusively in the LV of DKO mice but not
in those of control, Gab1CKO, or Gab2KO mice (Figure SA). These
dilated vessels in DKO mice exhibited the impairment in recruitment
of a-SMA-positive VSMCs (Figure S, B and C). These findings indi-
cate that the maintenance system for both endocardial and vascular
endothelium might be disturbed in the DKO mouse hearts. Further-
more, EFE and increased abnormal vessels in the hearts of DKO mice
were indirectly ascribed to the lack of Gab1 and Gab2 in the myocar-
dium because there was no abnormality in the other 3 groups.

We assessed in vivo cardiac function by echocardiography and
cardiac catheterization. Echocardiography revealed a signifi-
cant increase in LV end-diastolic dimension (Figure 4, A and C),
decreased fractional shortening (Figure 4, A and D), and decreased
interventricular septal wall thickness (Figure 4E) in 10-week-old
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DKO mice compared with age-matched mice of the other 3 groups.
Although we did not find a significant changes of LV end-diastolic
dimension or fractional shortening between the DKO and control
mice at 3 weeks of age, we did observe these changes after 6 weeks
of age (Supplemental Figure 8, A and B). Consistent with the echo-
cardiographic findings, cardiac catheterization at 12 weeks of age
revealed a marked reduction of the maximum first derivative of LV
pressure exclusively in DKO (Figure 4F), demonstrating a reduc-
tion in myocardial contractility of the DKO hearts. The accompa-
nying reduction of the minimum first derivative of LV pressure in
the DKO mouse hearts indicated the impairment of LV relaxation
(Figure 4G). There were no significant differences in heart rate
or LV peak pressure among the 4 groups (data not shown). This
relaxation failure was supported by the electron microscopic find-
ings. We noticed that sarcomere length was reduced in the DKO
mouse hearts, which indicated the hypercontraction phenotype
(39), although we could detect slight changes in the mitochondria
of DKO mouse hearts (Supplemental Figure 7, C and D). In agree-
ment with the reduced contractility and relaxation reflecting heart
failure, the fetal cardiac gene program was reactivated, as evidenced
by the significant increase in both atrial natriuretic peptide (ANP) and
skeletal a-actin (a-SKA) mRNAs in DKO mice (Figure 6, A-C).
Approximately 70% of the DKO mice died, presumably of heart
failure accompanied by pleural effusion, between 3 and 72 weeks
of age (Figure 6D). We observed remarkably dilated ventricles in
DKO mice that had died of heart failure (Supplemental Figure
5B, right panel). The other 3 groups of mice lived normally during
the observation period of 500 days (Figure 6D). In agreement with
this survival analysis, we did not observe any enlargement of the
hearts of Gab1CKO and Gab2KO mice at 300 and 500 days of age.
(Supplemental Figure 5B and data not shown). These data indicate
that depletion of both Gab1 and Gab2 in the myocardium result in
DCM:-like phenotype accompanied by EFE.
Volume 117 ~ Number 7
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Figure 5

DKO mice display vascular abnormalities in the ventricles. (A) Heart sections from 4 groups of mice at 6 weeks of age were immunostained with anti-
VWF Ab. vWF-positive, abnormally dilated vessels were observed in the left ventricles of DKO mice (arrows) but not in those of control, Gab1CKO,
or Gab2KO mice. Representative photographs are shown. (B and C) Heart sections from control (B) and DKO (C) mice at 6 weeks of age were
immunostained with anti-vWF and anti-«-SMA Abs. The abnormally dilated vessels in DKO mice were not surrounded by o.-SMA-positive VSMCs
in most cases (C, top panels), although vessels of normal diameter near the epicardium in DKO mice were surrounded by «-SMA-positive VSMCs
(C, bottom panels) as observed in control mice (B). Representative images are shown. Scale bars: 200 um (A); 20 um (B and C).

Gab1 and Gab2 are required for NRG-1B/ErbB signaling in the heart. To
determine requirements of Gab1 and Gab2 in NRG-1p-triggered
signaling in the myocardium, we examined the activation of ERK
and AKT after injection of NRG-1p. NRG-1p-induced activation of
ERK and AKT was completely abrogated in DKO mice but notin the
other 3 groups (Figure 7, A-C), suggesting a compensatory function
of Gabl and Gab2 in the heart. Consistently, tyrosine phosphoryla-
tion of Gab1 and subsequent association with SHP2 and p8S were
observed in control and Gab2KO mice but not in Gab1CKO or
DKO mice (Figure 7D). Tyrosine phosphorylation of Gab2 and sub-
sequent association with SHP2 and p85 were conversely observed in
control or Gab1CKO mice but not in Gab2KO or DKO mice (Figure
7E). Tyrosine phosphorylation of ErbB2 and ErbB4 was comparable
among the 4 groups (Figure 7F). IGF-1- and HB-EGF-dependent
activation of ERK and AKT were not affected in the hearts of DKO
mice (Supplemental Figure 9, A and B). These data indicate that
Gab1 and Gab2 are required exclusively for NRG-1B/ErbB signal-
dependent activation of ERK and AKT in the heart.

Angiopoietin 1 upregulation induced by NRG-1p is impaired in Gabl/
Gab2-deficient myocardium. Because we observed no cardiac abnor-
malities in Gab2KO mice, we determined that the primary cause
of EFE and abnormal vessels in DKO mouse hearts was not the
lack of Gab2 in endothelial cells. To identify the potential signal
defect that caused EFE and malformed vessels downstream of the
NRG-1B/ErbB-Gab1/Gab2 signaling pathway in the myocardium,
we used microarrays to carry out a global survey of mRNA in con-
trol and DKO mice treated with or without NRG-1 for 8 hours.
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We found several transcripts that were upregulated by stimulation
with NRG-1 in the hearts of control mice but not in those of DKO
mice (Figure 8A). Among these transcripts presented in the cluster
diagram, we considered thrombospondin 1 (TSP1) and angiopoi-
etin 1 (Angl) to be potential paracrine factors from myocardium
and Eph receptor A4 (EphA4) to be important for the intercellular
communication between cardiomyocytes and surrounding cells.

To address the pathogenesis of endocardial and vascular abnor-
malities observed in DKO mouse hearts, we focused on Angl
because it has an important role in maturation of both vascular
endothelium and endocardial endothelium in vivo (40-42). We
confirmed by northern blot analysis that NRG-1p upregulated
Angl mRNA in the hearts of control mice, but not DKO mice
(Figure 8, B and C). NRG-1f consistently induced significant
upregulation of Angl mRNA in cultured cardiomyocytes but not
in noncardiomyocytes (Figure 8, D-F). In association with defec-
tive expression of Angl, CD31-positive capillary density was sig-
nificantly decreased in the LV of DKO mice compared with control
(Figure 8, G and H). Taken together, these findings suggest that
the lack of NRG-1B-induced upregulation of Angl might be one
of the possible causes for pathogenesis of EFE and abnormal vas-
culatures in DKO mouse hearts.

Discussion
To our knowledge, the present study is the first to reveal the
essential roles of Gab family proteins for NRG-1B/ErbB signal-
ing pathway in the heart. Gabl and Gab2 were markedly tyro-
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sine phosphorylated in the myocardium after stimulation with
NRG-1f among various growth factors and cytokines. Tyrosine-
phosphorylated Gabl and Gab2 subsequently associated with
SHP2 and p85, resulting in strong activation of both ERK and
AKT in the myocardium. NRG-1B-dependent activation of ERK
and AKT was almost completely abrogated in the DKO mouse
hearts. In agreement with NRG-1p-dependent downstream sig-
naling defects, DKO mice displayed DCM-like phenotypes and
EFE with aging. Interestingly, DKO mouse hearts also displayed
abnormally dilated vessels with the loss of VSMCs. To address the
mechanism for the abnormality in endocardial/vascular endotheli-
um in DKO mouse hearts, we performed DNA microarray analysis
and found several vasculature-regulating gene transcripts, such as
Ang]1, upregulated by NRG-1p in control, but not in DKO, mouse
hearts. Thus, Gab family proteins mediate NRG-1p-dependent
stabilization of endocardial/vascular endothelium through the
paracrine system from cardiomyocytes in the heart.

Gab1 and Gab2 are specifically required for coordination of
NRG-1B/ErbB-dependent signaling pathway in the myocardium.
NRG-1p shed from endothelial cells activates ErtbB2/ErbB4 het-
erodimer or ErbB4 homodimer on the cardiomyocytes (16, 17,
21). Consistent with this notion, we found that NRG-1f induced
prominent tyrosine phosphorylation of Gabl and Gab2 in car-
diomyocytes but not in noncardiomyocytes. In addition, the car-
diomyocyte-specific, high-MW isoform of Gab1 was tyrosine
phosphorylated after stimulation with NRG-1f but not with other
agonists including HB-EGF and EGF. It has been reported that
HB-EGF-deficient mice develop heart failure (25, 26). Given that
HB-EGF induced a much stronger tyrosine phosphorylation of
Gab1 and Gab2 in noncardiomyocytes than in cardiomyocytes in
our study and that valvular structures are developed from noncar-
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Figure 6

DKO mice die of heart failure. (A) Northern blot analyses of the hearts
from control, Gab1CKO, Gab2KO, and DKO mice (n = 3 for each
group) at 12—-14 weeks of age showed the increased expression of
mRNAs for ANP and a-SKA in DKO mice. GAPDH mRNA was also
measured for sample loading control. (B and C) The relative levels of
ANP and a-SKA mRNA (normalized to GAPDH mRNA levels) were
quantified from 3 mouse hearts in each group. (*P < 0.01 compared
with all other groups.) (D) Kaplan-Meier curves showing survival rate in
control mice (n = 30), Gab1CKO mice (n = 30), Gab2KO mice (n = 30),
and DKO mice (n = 66) mice by 500 days. The number of dead DKO
mice was 48 (72.7%); P < 0.001 for DKO versus control, Gab1CKO,
and Gab2KO mice by log-rank test.

diomyocytes (19), the heart failure observed in HB-EGF-deficient
mice might have resulted from abnormal signaling in the develop-
ment of the valvular apparatus. Therefore, the cardiac phenotypes
observed in DKO mice were mainly ascribable to the defects of the
NRG-1B/ErbB signaling pathway in the myocardium. Consistent
with this, similar DCM-like phenotypes are found in cardiac-spe-
cific ErbB2- and ErbB4-deficient mice (29-31).

NRG-1 activates both ERK and PI3K/AKT pathways in cardio-
myocytes in vitro, both of which have been implicated in modula-
tion of cell survival and protein synthesis (21, 43). NRG-1f actu-
ally induced strong activation of ERK and AKT in the hearts of
control, but not DKO, mice. This finding provides what we believe
to be the first in vivo evidence that Gab1 and Gab2 are required for
transmission of the NRG-1f/ErbB signal to downstream signal-
ing pathways, ERK and AKT. DKO mice progressively developed
DCM phenotypes, demonstrating clearly that Gabl and Gab2
were essential for maintenance of myocardial function through
transmission of NRG-1p/ErbB signaling pathway (Figure 9).

DKO mice also exhibited abnormal deposition of elastic fibers
and collagen specifically in the endocardium, reminiscent of the
pathological features observed in primary EFE. Clinically, primary
EFE is found mainly in infants, children, and adolescents and is
frequently accompanied by contractile deterioration similar to
DCM. Although there have been some reports suggesting the heri-
table causality of primary EFE (37, 38), the precise pathogenetic
mechanisms have not been elucidated to date. These DKO mice
may provide the first mouse model of EFE. Further genetic analy-
sis of cardiac-specific isoform of Gab1 will certainly contribute to
our understanding of the pathogenesis of EFE.

DKO mouse hearts also displayed abnormal vasculatures as well
as EFE. Microarray analysis enabled us to identify several tran-
scripts that were upregulated by NRG-1p in the control hearts
but not in DKO hearts. Among these transcripts selected in the
cluster analysis, TSP1, EphA4, and Ang1 have been reported to be
involved in the intercellular-dependent vascular regulation (40,
44, 45). Intriguingly, NRG-1p/ErbB2/ErbB4 signaling, Ang1/Tie2
signaling, VEGF/VEGFR2 signaling, and serotonin-mediated
(5-HT,p-mediated) signaling are required for the proper matura-
tion of endocardium (16, 17, 40, 46, 47). Moreover, Ang1- or Tie2-
deficient mice exhibit embryonic lethality accompanied by abnor-
mally dilated vessels as well as defects in the endocardium (40, 42,
48). Furthermore, we demonstrated for the first time that postna-
tal cardiomyocytes are important Angl-producing cells, whereas
Ang]1 has been believed to be mainly secreted from vascular mural
cells such as pericytes and VSMCs (40, 41). Thus, we could pro-
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Figure 7

Gab1 and Gab2 are required for NRG-1p—dependent ERK and AKT activation in the heart. (A) NRG-1p-induced activation of ERK and AKT
in the hearts from the indicated mice was assessed using phospho-specific Abs. Activation of ERK and AKT was exclusively attenuated in
DKO hearts compared with the other 3 groups. Representative blots of 4 experiments are shown. (B) Phosphorylation of ERK was quantified
against total ERK (n = 4). (C) Phosphorylation of AKT was quantified against total AKT (n = 4). *P < 0.05, **P < 0.01 for the indicated groups.
Tyrosine phosphorylation of Gab1 (D) and Gab2 (E) and their association with SHP2 and p85 in hearts from the 4 groups of mice after injection

with NRG-1p was examined as in Figure 1, A and B. Arrows in D denote

the 2 isoforms of Gab1. (F) Tyrosine phosphorylation of ErbB2 (upper

panels) and ErbB4 (lower panels) in hearts from the 4 groups were assessed at 5 minutes after NRG-1B injection. Tyrosine phosphorylation of
ErbB receptors in the murine hearts upon NRG-1p stimulation was examined by IP with anti-ErbB2 or anti-ErbB4 Ab, followed by 1B with the

Abs indicated at the left.

pose that the defective expression of Angl might be involved in
the pathogenesis of EFE and abnormal vessels in DKO hearts,
though we cannot exclude the possibility that other vasculature-
regulating genes, such as TSP1 and EphA4, play important roles in
endocardial maintenance. Cardiac-specific gene ablation of Angl
would be helpful to understand its importance in cardiomyocyte-
endothelial cell interactions.

So far, it has been well established that NRG-1 functions as a
cytoprotective growth factor in cardiomyocytes (17, 21, 43). Here,
our findings propose a novel function of NRG-1; NRG-1 regu-
lates vascular homeostasis through the paracrine expression of
endothelium stabilization factors, such as Ang1, via Gab family
proteins. Importantly, accumulating evidence has revealed that
normal endothelial function is required for the maintenance of
myocardial function (16). Collectively, Gab1 and Gab2 in the myo-
cardium are essential for both maintenance of myocardial function
and stabilization of capillary or endocardial endothelium through
transmission of NRG-1B/ErbB signaling (Figure 9).

Methods

Materials. Anti~phospho-p44/p42 ERK (Thr202/Tyr204), anti-phospho-
AKT (Thr308), and anti-AKT Abs were purchased from Cell Signaling Tech-
nology. The use of anti-Gab1 and anti-Gab2 serums in IP was described
previously (13, 49). The Abs against Gab1, Gab2, and p8S used in IB analy-
sis were from Millipore; Abs against antibody recognizing phospho-tyro-
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sine (PY99), ERK1, ERK2, and SHP2 were from Santa Cruz Biotechnology
Inc.; Abs against vWF and a-SMA were from Dako; the Ab against CD31
was from BD Biosciences — Pharmingen; and the Ab against Cre was from
EMD Biosciences. Collagenase, Percoll, recombinant NRG-1§ (NRG-1p
EGF domain; sold as heregulin-1), HGF, and PDGF-BB were from Sigma-
Aldrich. HB-EGF and EGF were from R&D Systems. FGF2 was from EMD
Biosciences. LIF was from Millipore. IGF-1 and erythropoietin were kindly
provided by Astellas Pharma and Chugai Pharmaceutical Co., respectively.
Cell cultures. Primary cultures of neonatal rat cardiomyocytes were prepared
from ventricles of 1- to 2-day-old Wistar rats (Kiwa Jikken Dobutsu) on Per-
coll gradient as described previously (32). Briefly, ventricles were isolated
from neonatal rats and treated with trypsin and collagenase for 30 minutes
at 37°C. Isolated cells were suspended in 58.5% Percoll in HBSS (20 mM
HEPES, 116 mM NaCl, 12.5 mM NaH,PO,, 5.6 mM glucose, 5.4 mM KCl,
0.8 mM MgSOq; pH 7.35) and added to the discontinuous gradient consist-
ing of 40.5% and 58.5% Percoll in HBSS. After centrifugation at 1,400 g for
30 minutes at 15°C, the cardiomyocytes were collected from the interface of
the discontinuous Percoll gradient and further enriched by preplating for 60
minutes on noncoated dishes. Unattached cells were cultured as cardiomyo-
cytes in M-199 (Invitrogen) with 10% FBS. Attached cells were cultured as
noncardiomyocytes in DMEM with 10% FBS. Immunocytochemical exami-
nation with anti-sarcomeric a-actinin Ab (Sigma-Aldrich) revealed that
more than 95% cultured cells in the cardiomyocyre fraction were sarcomeric
o-actinin-positive cardiomyocytes (data not shown). The population of non-
cardiomyocytes is described in the supplemental information.
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